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a b s t r a c t

One of the major research topics in the supply chain management field is the multi-depot vehicle routing
problem with time windows (m-VRPTW). It aims to designing a set of minimum-cost routes for a vehicle
fleet servicing many customers with known demands and predefined time windows. This paper presents
an m-VRPTW local search improvement algorithm that explores a large neighborhood of the current
vailable online 18 October 2008

eywords:
upply chain management
ehicle routing

solution to discover a cheaper set of feasible routes. The neighborhood structure comprises all solutions
that can be generated by iteratively performing node exchanges among nearby trips followed by a node
reordering on every route. Manageable mixed-integer linear programming (MILP) formulations for both
algorithmic steps were developed. To further reduce the problem size, a spatial decomposition scheme
has also been applied. A significant number of large-scale benchmark problems, some of them including

tiple

c
t
t
G
c
d
t
t
a
t
c

m
s
c
c
(
g
t
a

mprovement algorithm
ILP-formulations

up to 200 customers, mul
times.

. Introduction

The supply chain management problem covers the entire
rocess of moving raw materials and input requirements from
uppliers to plants, converting them into products at process-
ng plants, shipping the finished products to several warehouses,
nd subsequently delivering them to the final customers. Effec-
ive supply chain management (SCM) should deal with a variety
f decisions at the strategic, tactical and operational levels. Struc-
ural decisions concerning the location of facilities, like production
lants or warehouses, may be viewed as strategic, while the prob-

em of determining the fleet size and the vehicle-type mix could
e regarded as tactical. At the operational level, the routing and
cheduling of vehicles/vessels and the crew assignment are to be
elected on a daily basis. Logistic costs for the chemical industry
re often considerable and sometimes as large as 20% of the pur-
hasing costs (Jetlund & Karimi, 2004). Moreover, logistic expenses
irectly related to transport operations and crew salaries consti-
ute a large portion of the total distribution cost. Consequently,
etter routes and schedules for vehicles/vessels transporting prod-

cts from production sites to depots and from depots to clients
ay result in substantial cost savings over a number of years. As
result, logistics has become an issue of increasing importance

o the chemical industry in reducing costs. Typical SCM-industrial

∗ Corresponding author. Tel.: +54 342 4559174/77; fax: +54 342 4550944.
E-mail address: jcerda@intec.unl.edu.ar (J. Cerdá).
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depots and different vehicle-types, were solved in quite reasonable CPU

© 2008 Elsevier Ltd. All rights reserved.

ases at the operational level reported in the literature involve
he delivery of refined products from depots to gasoline stations
hrough using a fleet of multi-parcel trucks (Van der Bruggen,
ruson, & Salomon, 1995), the scheduling of multi-compartment
hemical carriers transporting chemicals between upstream and
ownstream refineries and manufacturers (Jetlund & Karimi, 2004),
he dispatching of either crude oil to refineries or refined products
o industrial users through tankers and barges (Fagerholt, 2004),
nd the fresh milk transportation from hundreds of dairy farms
o processing plants and the delivery of dairy products from the
entral warehouse to retail outlets (Tarantilis & Kiranoudis, 2007).

Practical approaches to the vehicle routing problem (VRP)
ostly apply heuristic approximate algorithms providing good

olutions within a reasonable computer time. Heuristic methods
an be classified into three broad categories: tour-construction pro-
edures, tour-improvement procedures and composite procedures
Bodin, Golden, Assad, & Ball, 1983). Tour construction procedures
enerate a good set of vehicle routes from the node-to-node dis-
ance matrix. Route improvement procedures generally start with
non-optimal set of feasible tours and seek out a better solution

y performing local perturbations on the initial routes. Almost all
RP improvement algorithms iteratively use some version of a local
earch method to obtain a new set of lower-cost, feasible vehicle

outes. They range from simple improvement heuristics to modern
etaheuristics like simulated annealing, tabu search and genetic

lgorithms (Papadimitrou & Steiglitz, 1982; Gendreau, Laporte, &
otvin, 1994). Routing improvement procedures generally assume
ymmetric traveling costs (cij = cji). On the other hand, composite

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:jcerda@intec.unl.edu.ar
dx.doi.org/10.1016/j.compchemeng.2008.10.003
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r two-phase algorithms first construct an initial solution and then
ttempt to improve it using one or several tour improvement tech-
iques. The other alternative to deal with vehicle routing problems

s the use of exact approaches based on mixed-integer linear (MILP)
r mixed-integer non-linear (MINLP) mathematical formulations
Ball, Magnanti, Monma, & Nemhauser, 1995). Most of the exact
pproaches can be regarded as route construction methods.

One of the most important features of a VRP improvement algo-
ithm is the local search technique that it applies. A local search
lgorithm is basically a neighborhood search procedure that ana-
yzes a set of feasible points within the neighborhood of the current
olution and finds a better neighbor. Though the definition of the
eighborhood structure varies with the local search approach, the
et of neighbors is generally obtained from the current solution by
oing a limited number of moves. Different types of improvement
oves can be applied like string exchange, string relocation and

tring cross. String exchange means the exchange of two strings
ith at most k nodes within the same route or between neighbor-

ng routes. String relocation consists of moving a string of at most
nodes (with k = 1–2) from one to another route. String cross is

erformed when two strings of vertices on two different routes
re exchanged by crossing two edges of such routes. Therefore, the
mprovement procedure may operate on either an individual route
r several routes at a time. A critical issue is the choice of the neigh-
orhood structure, i.e. the way in which the neighborhood around
he current solution is defined. Generally, the larger the neighbor-
ood, the better is the quality of the best neighbor and the higher

s the likelihood of converging to the truly optimal solution. At the
ame time, the larger the neighborhood, the longer the time it takes
o search the neighborhood at each iteration. Therefore, a large
eighborhood is not always the best option unless it is explored

n a very efficient manner (Ahuja, Ergun, Orlin, & Punnen, 2002).
ometimes, the neighborhood is generated by weakly modifying
he current solution in only two or three edges per iteration. As a
esult, a local optimum that is very dependent on the initial solution
s found and a little improvement is generally achieved. On the con-
rary, this paper is especially interested on local search algorithms
hat efficiently explore a large neighborhood so as to provide a set
f feasible tours much cheaper than the starting routes.

Interesting surveys on classical and modern heuristic-based
mprovement methods for the vehicle routing problem with time

indows (VRPTW) can be found in Laporte, Gendreau, Potvin, and
emet (2000) and Ahuja et al. (2002). The neighborhood structure
or the classical interchange procedure proposed for the travel-
ng salesman problem (TSP) can be built by randomly breaking

trip at k points into k paths and reconnecting them in all pos-
ible ways. This is a variable-depth search method known as the
-OPT procedure (Lin & Kernighan, 1973). For k = 3, eight different
rips can be generated. If a better route among them is identi-
ed, it is adopted. If not, the value of k may be increased. The
rocedure stops at a local minimum when no further improve-
ent can be obtained. Van der Bruggen, Lenstra, and Schuur (1993)

eveloped a local search improvement procedure exploring larger
eighborhoods. The neighborhood structure is built by making arc-
xchanges on individual trips, i.e. the interchange of k arcs in a
oute by some other k arcs on the same route. If a route cannot
e improved by k-exchange is said to be k-optimal. The most used
re 2-exchange, 3-exchange and Or-exchange operations with the
ater being a special 3-exchange move in which only strings of one,
wo or three consecutive nodes are relocated on the same route

Or, 1976). On the other hand, cyclic transfer is a neighborhood
earch technique developed for multi-vehicle routing and schedul-
ng problems (Thompson & Psaraftis, 1993). It improves the set of
ehicle routes by exchanging some k nodes among b routes accord-
ng to a cyclic scheme, i.e. a b-cyclic k-transfer exchange. Usually, it

t
s
t
c
i
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s adopted b = 2 and k = 1–2. Given some routes (r1, r2, r3), a cyclic
ransfer consists of moving a certain number of requests k from
oute r1 to route r2, a similar one from route r2 to r3 and, finally, k
ustomers will be moved from route r3 to route r1. Therefore, the
yclic-transfer neighborhood of a given solution s is the set of fea-
ible routing networks that are reachable from solution s via cyclic
ransfer. It is said that s is a cyclic-transfer optimum if no member
f the cyclic-transfer neighborhood has a better objective function
alue. Xu and Kelly (1995) used three different types of moves to
efine the neighborhood structure: swaps of nodes between a pair
f routes, a global repositioning of some nodes into other routes
nd, finally, local route improvements. The node global reposi-
ioning is achieved by solving a network flow model to optimally
elocate a given number of customers into different routes. Local
oute reoptimizations are performed by means of 3-opt exchanges
nd a TSP improvement strategy. Van Breedam (1994) identified
set of four parameters that substantially influence the compu-

ational behavior of local improvement procedures: (i) the initial
olution, (ii) the type of string moves and the string length k, (iii) the
mprovement strategy for choosing the next starting solution, i.e.
he first-improvement (FI) or the best-improvement (BI) policies,
nd (iv) the extent of the search procedure within the neighbor-
ood of the current solution. The FI-strategy consists in adopting
he first neighboring solution that improves the objective function
s the next starting solution while the best-improvement strat-
gy (BI) chooses the best neighbor. Van Breedam concludes that
etter results are found in terms of both solution quality and com-
uting time by: (1) initiating the search from a good solution, (2)
erforming string exchanges with a string length k equals 2.

Metaheuristics were proposed in the 1980s in order to tackle
ombinatorial optimization problems arising in many practical
reas. Metaheuristic is an iterative process driven by some subordi-
ate heuristic. Metaheuristic techniques have been able to discover
he best solutions for the VRPTW and other difficult routing prob-
ems (Osman & Laporte, 1996). However, they usually consume a
ignificant amount of time when compared with other approaches.
etaheuristics include but are not limited to simulated anneal-

ng, tabu search, threshold algorithms, neural networks and genetic
lgorithms. Tabu search algorithms start from an initial solution
nd move at each iteration from the current solution xk to its best
eighbor xk+1 until a stopping criterion is satisfied. The value of
he objective function at xk+1 is not necessarily less than f(xk). To
void cycling, tabu solutions recently generated are prohibited for
number of iterations. Gendreau, Hertz, and Laporte (1994) intro-
uced the Taburoute algorithm with several innovative features.

nitially, several solutions are generated and a limited search within
he neighborhood of each one is carried out. The best solution found
s then selected as the starting point for the main search. The neigh-
orhood structure is defined by all solutions that can be reached
rom the starting one by removing a vertex from a particular route,
nd inserting it into a close route containing one of its m near-
st neighbors (Gendreau, Hertz, & Laporte, 1992). Solutions may
e infeasible with regards to capacity or maximum route length
onstraints. To allow this option, the objective function includes
wo additional terms penalizing overcapacity and tour overdura-
ion, respectively. In this way, the likelihood of being trapped in
local minimum is diminished. The basic tabu search procedure

an be enhanced by diversification and intensification strategies
Glover & Laguna, 1997). The intensification step consists of reop-
imizing the route in which a vertex has just been inserted. In turn,

he diversification strategy penalizes vertices that frequently move
o as to increase the probability of considering slow moving ver-
ices. In the Tabu Threshold (TT) method, the neighborhood of the
urrent solution is subdivided by grouping the admissible moves
nto a number of subsets. At each time, one of them is chosen
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R.G. Dondo, J. Cerdá / Computers and

nd the best move for the current active subset is performed. As
consequence, the number of moves being considered is reduced

nd the overall computational effort is decreased. The TT method
s based on the alternation of two steps called improve and mixed
hases. The improve phase finds a good local optimum, and the
ixed phase is aimed at escaping from a local optimum by even
oving to either a non-improving or an infeasible solution. The
ixed phase is applied when the improve phase fails to get a

etter solution. Finally, the Taillard’s search algorithm (Taillard,
993) decomposes the main problem into several subproblems
y dividing the service area into sectors centered at the central
epot and defining concentric regions within each sector. Each sub-
roblem involving the vertices in each mini-sector can be solved

ndependently, but moves of vertices to adjacent sectors are peri-
dically considered. Other metaheuristics for VRPTW can be found
n Rochat and Taillard (1995), Taillard, Badeau, Gendreau, Guertin,
nd Potvin (1997), Gambardella, Taillard, and Agazzi (1999), and
räysy, Dullaert, & Gendreau, 2004.

Dondo and Cerdá (2007) introduced a new incomplete opti-
ization algorithm that embeds a heuristic procedure into an

xact optimization method so as to discovering the best solu-
ion within a more manageable solution space. It is the so-called
hree-phase cluster-based hybrid approach for the multi-depot
ehicle routing problem with time windows (the m-VRPTW prob-
em). By taking into account the customer time windows and
he node distance matrix, a preprocessing stage is accomplished
o first group the nodes into a few clusters so as to define an
fficient, compact cluster-based VRPTW mathematical represen-
ation. The clusters are the new problem nodes and several of them
an be visited by the same vehicle at the optimum. Each optimal
luster-based trip is subsequently disaggregated into the original
equests through solving a small MILP model. In this way, detailed
ehicle routes and schedules are found. This route construction
ethod proved to be very robust to tackle not only a wide variety

f Solomon’s single-depot homogeneous fleet benchmark prob-
ems (Solomon, 1987) but also new multi-depot heterogeneous
eet VRPTW examples. Optimal or near-optimal solutions were
btained for a significant number of C-class problems with up to
00 clustered nodes, while the suboptimal gap for low-size RC and
-class problems with some node random distribution was larger
ut still acceptable. However, severe difficulties arise when the
umber of nodes is above 50 for RC-examples or higher than 25 for
-problems.

This paper presents a model-based large-scale neighborhood
LSN) search method that steadily improves an initial solution pro-
ided by the three-phase cluster-based hybrid approach of Dondo
nd Cerdá (2007). At each iteration, a sequence of two evolu-
ionary steps is normally executed (the normal mode). First, a
eighborhood around the starting solution is implicitly generated
y developing a mixed-integer linear problem (MILP) formulation
hat allows multiple nodal exchanges between neighboring trips.
y solving the MILP model, the best neighbor is found (the improve-
ent step). Next, a new different neighborhood is defined by just

llowing relocations of nodes on the same tour (the local route
eoptimization step). A well-defined neighborhood structure at
ach step permits to identify not only the feasible moves (the prob-
em variables) but also the solution space (the problem constraints)
o be explored. In this way, manageable mathematical formulations
or both subproblems can be developed and sequentially solved
hrough an efficient branch-and-bound algorithm. At each step,

he best neighbor minimizing the overall routing cost, including
xed and variable traveling expenses, is sought. Moreover, a mixed
r perturbation mode is activated whenever no better neighbor
s found through the normal procedure. The perturbation-mode
xplores a larger neighborhood that is generated by simultaneously i
ical Engineering 33 (2009) 513–530 515

aking nodal exchanges among close trips and node reordering on
very route. To further reduce the size of the MILP-formulations to
olve under normal or perturbation modes, a spatial decomposi-
ion scheme has additionally been applied. In order to get a better
valuation of the algorithm performance, a sizable set of large-scale
RPTW benchmark problems with different nodal distributions has
een tackled.

. Model assumptions

1. Problem data are known with certainty and remain invariant
with time; i.e. a deterministic, static VRPTW problem is studied.

2. Either pick-up or delivery services are provided to customers
but not both.

3. Each pick-up or delivery node must be visited within the spec-
ified time window just once.

4. Though the problem can involve several depots, each route
should start and end at the same depot.

5. The total load transported by a vehicle must never exceed its
capacity.

6. Time-window and maximum trip duration constraints can be
relaxed by including penalty cost terms in the objective func-
tion that linearly increases with the time-window violation or
the trip overduration.

7. A feasible problem solution is available to start the improve-
ment algorithm.

8. Assignment of depots to vehicles at the starting solution should
remain unchanged during the whole improvement process, i.e.
they are no longer problem variables.

9. The initial allocation of vehicles to trips constitutes a set of
fixed decisions that remain valid throughout the entire pro-
cess. However, the improved solution may include a number of
tours lower than the starting value because some vehicles may
no longer be required.

0. A local search approach that just analyzes the set of feasi-
ble points within the neighborhood of the current solution is
applied.

11. The solution space (the neighborhood) to be explored is implic-
itly generated by two types of moves: (a) balanced/unbalanced
exchanges of node strings among routes and (b) local reposi-
tioning of nodes on every route. However, just feasible moves
satisfying capacity and time constraints are considered by the
problem formulation.

2. The best feasible neighbor is chosen as the next base solution to
restart the search, i.e. the best-improvement strategy has been
adopted.

. Major problem variables

Let the set I be the transportation requests to be serviced and
he set V denote the available vehicle fleet. Let us identify each trip
y the vehicle v assigned to it at the starting solution. Therefore, the
ubset Io

v includes all nodes being serviced by vehicle v at the initial
olution. At any iteration k of the route improvement process, two
ypes of structural changes can be performed:

1) transferring nodes i ∈ I(k−1)
v from trip v to a neighboring trip

v′ /= v and vice versa;
2) changing the relative order of any pair of nodes (i,i′) on every
trip v so that vehicle v may service node i′ before visiting node
i instead of stopping earlier at node i.

Therefore, a mathematical representation of the VRPTW
mprovement problem should include two different types of 0–1
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16 R.G. Dondo, J. Cerdá / Computers and

ecision variables. Assignment variables Y (k)
iv that control the trans-

er of nodes i currently serviced by vehicle v′ to a nearby trip
. If Y (k)

iv = 1, then node i is transferred to trip v at iteration k.

therwise, it remains on the same trip v′(Y (k)
iv′ = 1) or moves to

nother neighboring route v′′. Just one of such options will be
ermitted. In addition, a set of sequencing variables Xii′ is also

ncluded in the problem formulation to reverse the order of nodes
i,i′) located on the same trip v (i.e. Yiv + Yi′v = 2) if such a move
roduces traveling cost savings. Nodes (i,i′) are usually located at
on-adjacent positions and Xii′ = 1 just indicates that node i is vis-

ted before node i′. Only one variable Xii′ controls the order of a
air of nodes (i,i′) on the same trip. In this paper, the variable

ii′ with i < i′ (i.e. node i appears before i′ in the set I) is only
efined.

Moreover, some important non-negative continuous variables
re also defined to get a complete problem representation. They
re: (a) the vehicle arrival time at node i (ATi), i ∈ I; (b) the overall
uration of trip v(OTv), v ∈ V ; (c) the accumulated variable traveling
ost from the starting depot to node i ∈ Iv along the trip v(Ci); (d) the
otal traveling cost of tour v(OCv), v ∈ V ; (e) the size of time-window
iolations for early or late vehicle arrivals at node i (Ei or Li). In turn,
he major problem data are

Asymmetrical traveling times (tv
ij
, tv

ji
) between a pair of nodes (i,

j) or between a node i and the depot (tiv, tvi) assigned to vehicle
trip v.
Asymmetrical variable traveling costs (cv

ij′ , cv
ji
) between a pair of

nodes (i,j) or between a node i visited by vehicle v and the desig-
nated depot (civ, cvi).
Duration of the pickup/delivery task at node i (sti).
The load to be delivered or picked-up at node i (wi).
The maximum capacity of vehicle v (qv).
The service time window within which the service must start at
node i [ai,bi].
The maximum allowed service time for vehicle v(tvmax

v ).
The unit-time penalty costs for early/tardy vehicle arrivals at node
i (ˇ i,�i), and for vth-tour overduration (˛v).

. The neighborhood structure

Problem nodes can be classified into two types: fixed and mov-
ng nodes. A fixed node i ∈ IF

v ⊆ Iv should stay on the current trip v
ecause the chance of reducing the overall traveling costs by mov-

ng node i to a neighboring route is rather low. However, it can
e repositioned within the same route. Some simple criterion to
stimate the likelihood of getting savings in traveling costs from
oving node i to another trip v′ is then required. Obviously, IF

v may
hange from one iteration k to the next (k + 1) since the set of nodes
n the trip v generally varies. On the contrary, it is expected that
he transfer of a moving node i ∈ IM

v = (Iv − IF
v ) to closer trips prob-

bly leads to a lower-cost solution. A route can have one or several
eighboring trips but the set of candidate routes for a particular
oving node i at iteration k, V (k)

i
, will comprise only some of them

lus the one to which belongs at the start of iteration k. In short, the
eighborhood structure will comprise vehicle routes generated by
a) transferring mobile nodes, for instance node i ∈ IM

v , from the cur-
ent route v to some arbitrary position on another trip v′ ∈ Vi(v′ /= v)
nd, (b) reordering fixed nodes i ∈ IF

v on the current trip v. Since the

eighborhood also contains the current solution, it will be never be
n empty set.

To classify the nodes on a trip into fixed or moving nodes, easy-
o-compute criteria closely related to the widely known sweep
euristic have been developed (Gillet & Miller, 1974). Such a sweep

t
A
i
f
i

Fig. 1. Model parameters (ϕ0, ϕ1) defining fixed and mobile nodes.

euristic groups together the nodes based on their angular coor-
inate with regards to some line radiating from the central depot.
s the line moves clockwise or counterclockwise, trips are con-
tructed by allocating nodes with similar angular coordinates to the
ame vehicle while its capacity is not exceeded. In this way, a set
f routes with an optimal topology pattern (i.e., non-overlapping
etal-shaped tours) usually observed on a wide range of VRP prob-

ems is generated. In a similar manner, this paper introduces the
ngular distances ϕ0 and ϕ1, with ϕ1 < ϕ0, to define a pair of charac-
eristic cones surrounding each trip v. Let us assume that the whole
ehicle fleet is housed in a central depot. Both characteristic cones
or a trip v has its origin at the central depot and its axis goes from
he origin through the centre of gravity of the trip. Besides, the two
elimiting rays form alternatively an angle ϕ0 or ϕ1 with the trip
xis (see Fig. 1). Such characteristic cones are defined to categorize
he nodes on a trip v as fixed or mobile. Values for the model param-
ters (ϕ0, ϕ1) are set by the user following the guidelines given in
ection 9.

The ϕ1-slim cone defines a narrow zone around the trip axis
ontaining the nodes that are likely to stay on the tour at the end
f the improvement process; i.e. the set of fixed nodes IF

v on trip v.
n other words, a fixed node i ∈ IF

v is one featuring an angle �iv ≤ ϕ1,
here �iv is measured from the vth-trip axis to the ray connecting
ode i to the central depot (see Fig. 1). Any node j ∈ Iv outside the ϕ1-
one (�jv > ϕ1) will be regarded as a potential mobile node on trip v
hat may be transferred to nearby trips. The angle �jv is determined
rom the polar coordinates of both the node j and the centre of
ravity of route v to which currently belongs. Such polar coordinates
re in turn computed from the Cartesian coordinates for the node j
xj, yj) and the depot � (xp, yp), respectively.

On the other hand, the ϕ0-expanded cone defines a geographical
rea beyond the ϕ1-cone that may contain nodes from neighbor-
ng routes v′ /= v (see Fig. 1). In this way, the ϕ0-cone around trip
permits to identify mobile nodes from neighboring routes that

an be transferred to trip v. They are those lying inside the ϕ0-cone
round trip v. Therefore, a mobile node j from a neighboring trip v′

eaturing an angle �jv ≤ ϕ0 measured from the vth-trip axis to the
ay connecting node j to the central depot has the route v as one of
he candidate trips to which it can move, i.e. v ∈ V (k)

j
. In other words,
he ϕ0-cone aims to define the candidate routes for mobile nodes.
s a result, the set of nodes that can move to trip v on the next

teration k(Ik
v ) becomes available. In addition to such mobile nodes

rom nearby tours, the set Ik
v will also include the fixed and mov-

ng nodes on the route v at the start of iteration k, i.e. Ik
v ⊇ Iv(k−1).
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ixed nodes in Iv(k−1) will surely stay in route v at the end of itera-
ion Iv(k−1). Besides, the trip v for some mobile nodes in Iv(k−1) may
till be the best choice. The angle ϕ0 must be sufficiently small to
enerate a problem formulation that can be solved to optimality at
ow CPU time but large enough to define a feasible space containing
etter solutions than the current one. An allocation variable Yjv is

ust defined for a mobile node j only if j ∈ Ik
v . From Fig. 1, it can be

bserved that node n1 is a fixed node on tour v while n2 is a mobile
ode from route v′ that can relocated to trip v. However, the mobile
ode n3 on route v cannot move to any other route.

Finally, it is defined a third model parameter dmax representing
he maximum allowed Euclidean distance between a trip v and
mobile node I ∈ Ik

v of a neighboring route. Despite �iv ≤ ϕ0 and,
herefore, the node i lies inside the ϕ0-cone, every node i farther
han dmax from the center of gravity of tour v cannot be transferred
o v. If so, Yiv can be deleted from the problem formulation. In all
xamples solved in the paper, the value of dmax was large enough
o never exclude a potential nodal exchange between neighboring
rips.

. The initialization procedure

To get a good starting solution, the three-phase cluster-based
onstruction method for m-VRPTW problems proposed by Dondo
nd Cerdá (2007) has been applied. Phase I is intended to mas-
ively reduce the computational burden of the subsequent phases
y cleverly grouping all customer locations into a rather small set of
easible, cost-effective clusters or “hyper-nodes”. A “feasible” clus-
er means that (a) the cluster cargo can be assigned to a single
ehicle and, in addition, (b) there exists at least a route connecting
he nodes on the cluster that satisfies all the related time win-
ow constraints. By developing the mathematical model in terms of
ew clusters rather than a huge number of customers, the VRPTW
roblem size can be sharply decreased. The aim of phase II is to
imultaneouly assigning clusters to vehicles and sequencing clus-
ers visited by the same vehicle through a compact MILP model.
rdering nodes within clusters and scheduling customer services
n every tour are the goals of phase III. To reach those objectives, a
ow-size MILP mathematical formulation must be solved as many
imes as the number of tours found in phase II. Accounting for the
elative ordering of clusters on the same tour found in phase II, the
umber of sequencing variables Sij to be considered in phase III
an be sharply diminished. This three-phase construction method
an efficienty find near-optimal solutions for 100-node VRPTW
xamples with clustered nodal distributions. Though a much better
erformance for problems with clustered (C-class) and randomized
lustered (RC-class) nodal distributions is expected, the initializa-
ion approach has also been used to tackle rather small R-class
RPTW examples. In addition, the 3-phase construction algorithm

s able to optimize vehicle-depot assignment decisions for multi-
epot VRPTW problems.

To illustrate the initialization procedure, a small example involv-
ng 25 customer locations has been tackled. It was derived from the
riginal benchmark problem C-101 proposed by Solomon (1987)
hat originally involves 100 nodes by just considering the first 25
ustomers. The example assumes a 3-vehicle homogeneous fleet
nd a single depot (see Fig. 2). Through phase I, the 25 original nodes
ave been merged into four customer clusters C1–C4. In phase II, the
hree available vehicles are allocated to such four clusters. Two of

hem visit just a single cluster while the remaining one visits the
equence of clusters C1–C2. In phase III, clusters are disaggregated
nto the original nodes to find the three tour schedules. The solution
epicted in Fig. 2 is the truly problem optimum (Dondo & Cerdá,
007).

T
t
a
e
b

ig. 2. Best solution for example C-101.25 through the initialization procedure.

. The problem solution strategy

To improve the starting set of routes, a model-based iterative

pproach has been adopted. At each iteration k, the sets of fixed (IF
v )

k

nd mobile nodes (IM
v )

k
on every route v ∈ V as well as the candidate

eighboring routes for any mobile node i(Vk
i

) are all updated. In this
ay, the neighborhood structure around the new current solution is

ound. To get a better set of feasible routes from the one available at
he start of iteration k, a MILP mathematical formulation accounting
or nodal exchanges between neighboring trips and nodal reposi-
ioning on individual routes is to be solved. Since the solution space
ust accounts for alternative routes within the proposed neigh-
oring structure, a local optimum is just found. By repeating this
rocedure at every iteration k, the proposed approach generates
sequence of solutions featuring an overall routing cost zk that

teadily diminishes. Hopefully, it will converge to the problem opti-
um. The three-step cluster-based VRPTW algorithm introduced

y Dondo and Cerdá (2007) was used to provide a good starting
oint.

Though the number of node string exchanges among trips can
e limited by a proper choice of the model parameters (ϕ0, ϕ1), the
imultaneous handling of both types of improving actions (node
xchange, local node repositioning) leads to a large, somewhat
ntractable problem formulation. To overcome such a difficulty,

mathematical decomposition strategy based on gathering the
mprovement moves into two sets has been adopted. Each set
ust comprises a single type of improvement moves, either node
xchange between close tours or node reordering on the same tour.
t each iteration k, a pair of subproblems rather than a single one

s to be sequentially solved with each one allowing just moves
f a single type. Subproblem I hopefully producing traveling cost
avings by exchanging customers among neighboring trips is first
ackled. Mobile nodes i ∈ IM can be relocated to another candidate
oute v ∈ Vi by setting Yiv = 1. Next, the new set of routes provided
y subproblem I is further improved by optimally reordering all
odes on every individual trip through subproblem II. The opti-
al values for the sequencing variables Xij controlling the relative

ocations of nodes (i,j) on the same tour are to be encountered.
herefore, there will be as many instances of subproblem II as

he number of routes at the optimum of subproblem I. The iter-
tive procedure is stopped when the decrease in overall traveling
xpenses, including penalty costs, from iteration (k − 1) to k given
y �z = (zk−1 − zk) is lower than some prespecified small number



5 Chem

ε
t
o
d
I
b
b
I
r
a

t
v
l
i
r
o
i
c
i
�
d
d
p
T
n
s
S
f
m
p
c
v
t
s

7

s
b
t
s
I
o
o
a
f

7
r

7

∑
v

w
s
w
t
l
v

∑

w
o
n
c

o

•

•

•

v
c

•

18 R.G. Dondo, J. Cerdá / Computers and

> 0. In short, the neighborhood structure has been divided into
wo parts, one involving neighboring trips generated by exchange
f mobile nodes exclusively while the other includes routes pro-
uced by the complete repositioning of nodes on individual routes.

n each case, the neighborhood is fully explored and the best option
ecomes the new incumbent solution. After updating the neigh-
orhood around the new current solution provided by subproblem

, subproblem II is solved again or vice versa. The procedure is
epeated until no further improvement on the objective function is
chieved.

Since this iterative, sequential improvement procedure can be
rapped into a local optimum, a mixed-mode phase must be acti-
ated whenever the routing cost reduction per iteration becomes
ower than a sufficiently small value ε > 0. The perturbation mode
s performed by solving subproblem III that allows not only the
eordering of nodes on every individual route but also the transfer
f mobile nodes to candidate neighboring routes, i.e. both types of
mprovement moves. To this end, ϕ1 is driving to zero and every
ustomer on any route v is a mobile node. In particular, a node j
s permitted to move from route v to v′ only if it features an angle
jv′ ≤ ϕ0 from the v′-trip axis to the ray connecting node j to the
epot. The model parameter ϕ0 should be carefully adjusted to
efine neighborhoods of proper size that lead to a solvable, com-
utationally efficient mathematical formulation for subproblem III.
herefore, the value of ϕ0 defining the set of candidate tours for any
ode i at subproblem III should be lower than the one chosen for
ubproblem I. Usually, two-third of the ϕ0-value for subproblem I.
ince subproblem III is more costly and aims to just moving away
rom a local optimum, it is applied only once every time the nor-

al mode gets stuck in a local optimum. In some large VRPTW
roblem instances, however, almost 50% of the trip improvements
ome from subproblem III. When the routing cost reduction pro-
ided by solving subproblem III is less than a small parameter ε > 0,
he improvement procedure should be stopped and the current
olution is the best one found for the problem.

. Mathematical formulations for subproblems I–III

In this section, mixed-integer linear problem formulations for
ubproblems I and II are presented. For sake of simplicity, it has
een omitted the supraindex k indicating the iteration to which
he sets IF, IM and Vi correspond. The mathematical formulation for
ubproblem III can be derived from subproblem I by simply making:
F = ∅ and, consequently, I = IM. Therefore, every problem constraint
n fixed nodes must be deleted. The fact that each node i is a mobile
ne at subproblem III does not mean that it could be transferred to
ny neighboring trip. Often, Vi denoting the set of candidate tours
or node i may only include its current route.

.1. Subproblem I: Exchanging customers among neighboring
outes

.1.1. Problem constraints
Re-assignment of vehicles to customers:

∈ Vi

Yiv = 1 ∀i ∈ IM (1)

here IM stands for the mobile node set and Vi represents the sub-

et of tours to which mobile node i can move, including the one
here it is currently located. Constraint (1) states that every cus-

omer location must be serviced by a single vehicle. Therefore, the
oad to be picked up at any node i cannot be allocated to multiple
ehicles.
ical Engineering 33 (2009) 513–530

Vehicle capacity constraints:

i ∈ IF
v

li +
∑
i ∈ IM

v

liYiv ≤ qv ∀v ∈ V (2)

here li is the amount of load to be pick up at node i, IF
v is the set

f fixed nodes currently visited by vehicle v, IM
v is the set of mobile

odes that can be allocated to vehicle v and qv is the vth-maximum
apacity.

Relationships between arrival times/traveling costs at nodes (i, j)
n the same tour:

For a pair of mobile nodes (i, j ∈ IM):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cj ≥ Ci + cv
ij

− MC (1 − Xij) − MC (2 − Yiv − Yjv)

ATj ≥ ATi + sti + tv
ij

− MT (1 − Xij) − M T (2 − Yiv − Yjv)

Ci ≥ Cj + cv
ji

− MC Xij − MC (2 − Yiv − Yjv)

ATi ≥ ATj + stj + tv
ji

− MT Xij − MT (2 − Yiv − Yjv)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀i, j ∈ IM(i < j), v ∈ Vi ∩ Vj (3)

where the adopted values for the upper bounds MC and MT are
given by

MC = max(cij/tij) ∗ tvmax
v and MT = tvmax

v

For a pair of fixed nodes (i, j ∈ IF):
Let us assume that fixed nodes (i, j) are both currently allocated

to vehicle v and node i is earlier visited. Then, node i is either a
direct or a non-direct predecessor of node j on the vth tour.{

Cj ≥ Ci + cv
ij

ATj ≥ ATi + sti + tv
ij

}
∀i, j ∈ IF

v , i ∈ PRj (4)

For a pair of mixed nodes (i ∈ IF, j ∈ IM):
Let us suppose that node i is fixed and currently assigned to

vehicle v while j is a mobile node that can be allocated to vehicle
v(j ∈ IM

v ). Assuming that i < j, then:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cj ≥ Ci + cv
ij

− MC (1 − Xij) − MC (1 − Yjv)

ATj ≥ ATi + sti + tv
ij

− MT (1 − Xij) − M (1 − Yjv)

Ci ≥ Cj + cv
ji

− MC Xij − MC (1 − Yjv)

ATi ≥ ATj + stj + tv
ji

− MT Xij − MT (1 − Yjv)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

∀i ∈ IF , j ∈ IM : i < j, v ∈ Vj (5)

In case that j < i, Xij should be replaced by (1 − Xij) in the above
inequalities.

Arrival time/traveling cost at the node first visited: If node i is first
isited, then constraints (3)–(5) become redundant and additional
onstraints should be included.

For a mobile node (i ∈ IM):

C ≥
∑

c Y ∀i ∈ IM (6)
i

v ∈ Vi

vi iv

ATi ≥
∑
v ∈ Vi

tviYiv ∀i ∈ IM (7)
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• (Subproblems II and III) Let suppose that nodes i and j are visited
by the same vehicle v. If (ai + stiv + tij) > bj , then vehicle v cannot
stop first at node i and, consequently, the sequencing variable
Xij must be fixed to zero (Xij = 0). Moreover, the expression of any
R.G. Dondo, J. Cerdá / Computers and

where tvi is the travel time from the vth-depot to mobile node i,
and cvi is the travel cost from that depot to node i.
For a fixed node (i ∈ IF):

Ci ≥ cvi ∀i ∈ IF (8)

ATi ≥ tvi ∀i ∈ IF (9)

Overall traveling time/cost for a tour v: Let us define the overall
ariable traveling cost OCv and the total duration OTv for the trip
. In addition to the OCv-term, the objective function will include
ehicle fixed costs and penalty costs for early and/or late vehicle
rrivals at customer locations and tour overdurations.

For a mobile node i that can be allocated to trip v:

OCv ≥ Ci + civ − MC (1 − Yiv) (10)

OTv ≥ Ti + sti + tiv − MC (1 − Yiv) ∀i ∈ IM
v , v ∈ Vi (11)

For a fixed node currently visited by vehicle v:

OCv ≥ Ci + civ (12)

OTv ≥ Ti + sti + tiv ∀i ∈ IF
v , v ∈ V (13)

where civ and tiv stand for the travel cost/time along the shortest
route from node i to the depot.

Earliness or tardiness on the vehicle arrival at node i:

Ei ≥ ai − Ti

Li ≥ Ti − bi

}
∀i ∈ I (14)

Overduration of trip v:

Dv ≥ OTv − tvmax
v ∀v ∈ V (15)

vmax
v is the maximum allowed duration of tour v and ODv is the

verduration of tour v.

.1.2. Objective function
The problem goal is to minimize the total service cost, including

he penalties for early/late arrivals and tour overdurations.

in
∑
v ∈ V

(OCv + ˛vODv) +
∑
i ∈ I

(ˇEi + �Li) (16)

.2. Subproblem II: repositioning nodes on every individual tour v

In subproblem II, the exchange of nodes among tours is prohib-
ted. To reduce service costs, only full reordering of nodes on every
rip can be made, i.e. a traveling-salesman problem (TSP). There-
ore, assignment variables Yiv are no longer needed and sequencing
ariables Xij are to be defined for every pair of nodes on the same
our. As a result, constraints (1)–(2) and (10)–(11) are deleted from
he problem formulation and, at the same time, constraints (3)–(9)
ecome much simpler because variables Yiv must be omitted. The
rrival time at node i can be changed by repositioning node i on the
urrent tour. Effective heuristics for TSP can alternatively be used
o solve subproblem II.

.2.1. Problem constraints
Relationships between vehicle arrival times/traveling costs at nodes

i, j) ∈ Iv: ⎫

Cj ≥ Ci + cv

ij
− MC (1 − Xij)

ATj ≥ Ti + sti + tv
ij

− MT (1 − Xij)
Ci ≥ Cj + cv

ji
− MC Xij

ATi ≥ Tj + stj + tv
ji

− MT Xij

⎪⎪⎬
⎪⎪⎭

∀i, j ∈ IV (i < j) (17)
ical Engineering 33 (2009) 513–530 519

Arrival time/traveling cost at the node i ∈ Iv first visited:

Ci ≥ cvi

ATi ≥ tvi
∀i ∈ IV (18)

Overall traveling time/cost for tour v:

OCv ≥ Ci + civ
OTv ≥ Ti + sti + tiv

∀i ∈ IV (19)

Earliness and tardiness in starting the service at node i:

Ei ≥ ai − Ti

Li ≥ Ti − bi

}
∀i ∈ I (20)

Overduration of trip v:

Dv ≥ OTv − tvmax
v ∀v ∈ V (21)

.2.2. Objective function
Similarly to subproblem I, the goal is to minimize the total ser-

ice expenses. Therefore, the objective function is given by (16).

.3. Subproblem III: simultaneous reordering and exchange of
odes

For subproblem III, the constraints (4)–(5), (8)–(9) and (12)–(13)
ritten for subproblem I no longer arise since IF = ∅ and, therefore,

very constraint on fixed nodes or any pair of mixed nodes must
e deleted. Moreover, a candidate set of tours Vi should be defined
or every node i ∈ I though it may occur that Vi for some nodes just
nclude the current choice. Therefore, the mathematical formula-
ion for subproblem III is given by Eqs. (1)–(3), (6)–(7), (10)–(11) and
14)–(16).The problem size grows because the number of assign-

ent and sequencing variables both increase. A similar impact on
he number of assignment and sequencing constraints is observed.

.4. Exact elimination rules

In order to reduce the number of assignment and sequencing
ariables, especially for subproblem III, the information on the cus-
omer time windows can help develop some exact elimination rules
Dondo & Cerdá, 2007). Such rules that regard the time windows
re hard constraints can be stated as follows:

(Subproblems I and III) If none of the used vehicles v ∈ V can ser-
vice a pair of mobile nodes (i,j) ∈ I without violating the relating
time window constraints, then two different vehicles must be
used. Then:

Yiv + Yjv ≤ 1, for any v ∈ V(= Vi ∩ Vj)

and the variable Xij plus the related sequencing constraints for
the pair of mobile nodes (i,j) can be deleted from the problem
formulation.
problem constraint involving Xij becomes simpler. By fixing Xij = 0,
it follows that node j will be serviced before node i only if the same
vehicle v visits both nodes (Yiv + Yjv = 2). Similarly, if (aj + stjv +
tji) > bi and both nodes (i,j) are on the same tour, then node i
must be first visited and Xij = 1.
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. Spatial decomposition of large VRPTW problems

As the neighborhood structure accounts for solutions generated
rom the best available set of routes by reordering nodes on each
ndividual tour or relocating customers to neighboring trips, there
s no sense in tackling the whole VRPTW problem at once. In a
ocal search environment, each tour just exchanges nodes with a
ew other routes closed to it and the attention should therefore be
ocused on a much smaller geographical area where such interact-
ng trips are confined. In order to take advantage of such a problem
eature, a Rotating Angular Sector (RAS) is defined with origin at the
entral depot (CD) and delimiting rays emanating from the CD with
ngular coordinates ˝1 and ˝2, respectively (see Fig. 3). The angle

(=˝2 − ˝1) between the extreme rays remains fixed as the RAS
otates. In order to sweep the whole service region, the RAS will
urn around the CD by equally increasing the extreme ray angular
oordinates ˝1 and ˝2 by a fixed quantity ˝. In this way, the RAS
ill take a series of angular positions {˝(1), ˝(2),. . .} before rotat-

ng 2� and start a new turn. If some but not all nodes of a trip v are

nside the RAS(m) at a particular position ˝(m) = 0.5 (˝2

(m) + ˝1
(m))

f the RAS-axis, then the procedure assumes that the whole trip
is contained in RAS(m). In other words, a node i will pertain to
AS(m) if either (a) its angular coordinate 	i is between ˝1

(m) and

F
s

Fig. 4. The VRPTW neighborhood
ig. 3. The rotating angular sector (RAS) decomposing the service region into
maller zones.

improvement algorithm.
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2
(m) (˝1

(m) ≤ 	i ≤ ˝2
(m)) or alternatively (b) the trip to which

t currently belongs has at least a node i′ satisfying the condition
1

(m) ≤ 	i′ ≤ ˝2
(m). At any location ˝(m), therefore, the RAS(m) will

ontain a limited number of complete tours. Moreover, a trip v may
elong to two consecutive locations ˝(m) and ˝(m+1) of the rotat-

ng sector. Initially, ˝1
(1) is set equal to zero. If N is the number of

AS-locations per turn, then N = (2�/˝).
Each time subproblems I and II for a particular location ˝(m) are

olved, only routes inside RAS(m) will be considered. Nodes and
rips beyond RAS(m) are ignored. Mathematical formulations for
ubproblems I and II will change with ˝(m) as long as the set of
odes I(m) and the set of tours V(m) inside the RAS both depend on
(m). At each RAS-location, subproblems I and II will be repeat-

dly solved until the procedure converges to a local optimum (the
ormal mode). It may happen that no improvement at all has been
chieved through the normal node after sweeping the N locations,
.e. the whole service area. In order to avoid getting stuck on a
ocal optimum, subproblem III will be activated (the perturbation
r mixed mode), if necessary, just on the next turn to move for-
ard towards a feasible/infeasible solution with a better value of

he objective function. If the perturbation move is successful, then
he normal mode is applied again. The procedure is repeated until
he normal mode becomes trapped on a local optimum and the
erturbation mode fails to get an improved solution. When this
appens, the procedure is stopped and the best set of routes is given
y the current incumbent solution.

In short, the solution algorithm described in Fig. 4 will have an
uter loop that iterates over the RAS-angular location ˝(m) and
n inner loop repeatedly executed to find the best routing for the
ehicles servicing the geograhical area covered by RAS(m). Within
he inner loop, either the normal or the perturbation mode is
pplied depending on whether or not the normal mode has yielded
reduction on the total transportation cost during the previous

AS-rotation. When the procedure completes another turn h, the
ew incumbent solution is obtained by considering the best vehi-
le routes found at each of the N locations of the rotating sector. If a
rip v belongs to a pair of consecutive RAS-locations m and m + 1, the
atter one will define its structure at the new best solution, i.e. the
ubset of nodes Iv and the ordering of them on trip v. Convergence
f the procedure to a local or global optimum is checked out by
omparing the total cost of the new incumbent solution after com-
leting turn h with that of the old one at the end of turn (h − 1). If
ormal and perturbation modes both fail to provide a better solu-
ion or the improvement on the objective function is less than a
mall positive scalar ε, then the procedure must be stopped. In
ther words, the method has converged if no improvement at all
as been obtained on the last two turns of the rotating angular
ector.

Since the construction algorithm of Dondo and Cerdá (2007)
lso optimizes the vehicle-depot assignment decisions, the pro-
osed improvement algorithm can also be extended to multi-depot
RPTW problems by just freezing the initial vehicle-depot alloca-

ions. To do that, a higher-level outer loop should be included in
rder to sweep the whole service area as many times as the num-
er of depots involved in the problem. At the major iteration for
epot d, the RAS element turns around depot d and the improve-
ent process will just consider the tours starting and ending at that

epot.

. Numerical results and discussion
The proposed VRPTW improvement algorithm has been applied
o a significant number of Solomon’s benchmark problems
Solomon, 1987). The classical collection of 56 Solomon’s problems
as been grouped into three different categories: C, R and RC. Prob-

c
i
A
u
t

ical Engineering 33 (2009) 513–530 521

ems of class C feature clustered customers whose time windows
ave been generated based on known solutions. Customer loca-
ions in R-class problems were randomly generated over a square
hile RC-class problems comprise a combination of clustered and

andomly generated customers. The data set for every category
omprises from 8 to 12 examples all comprising 100 nodes with
he same type of nodal distribution, a central depot, similar vehicle
apacities but different time-window distributions. Problem data
lso include the number of available vehicles, Euclidean distances
mong customers and normalized vehicle speeds making traveling
imes and Euclidean distances numerically identical. Furthermore,
ime windows are regarded as hard constraints, service times are
ndependent of customer requirements and the tour duration can-
ot exceed a maximum value tvmax

v . The selected objective is the
inimization of the total distance cost. Benchmark problems of

ach class are further classified into two types “1” and “2”, like C1
nd C2. Type-1 problems have narrow time windows and small
ehicle capacities, while type-2 problems feature wider time win-
ows and larger vehicle capacities. Solutions to type-2 problems

nclude fewer tours and longer scheduling horizons because vehi-
les have higher capacities. In addition, larger time windows make
RPTW problems very difficult to solve. This is so because the elim-

nation rules based on customer time-windows can delete a fewer
umber of arcs and have a much less impact on the problem size.
y using the cluster-based construction algorithm of Dondo and
erdá (2007), the best solutions reported in the literature for a set
f nine 100-node Solomon’s benchmark problems with clustered
istributions were found. Such a problem set includes the exam-
les: C101-C102, C105-C109, C201 and C205. Solution times for
1-problems ranges from 70 s to 120 s, while problems C201 and
205 were solved in 23.2 s and 1960s, respectively (Dondo & Cerdá,
007). Because of the good performance of the initialization proce-
ure for class-C problems, most of the examples solved in the paper
resents random and RC-nodal geographical distributions. Recom-
ended values for the parameter ϕ0 are: 0.9–1.2 for problems (C1,

C1), 0.5–0.6 for problems (R1, C2, RC2) and 0.3 for problems R2. In
urn, the ratio (ϕ0/ϕ1) has been set equal to 3.

.1. Illustrating the proposed VRPTW improvement method

To start with a simple example, a small version of Solomon’s
roblem R-112 (Solomon, 1987), called R-112.25, that just accounts
or the first 25 nodes was initially solved. The search begins from a
easible solution provided by the initialization procedure of Dondo
nd Cerdá (2007). This procedure generates near-optimal solutions
or C-class problems at low CPU time but both solution quality
nd computational efficieny badly deteriorate when applied to R-
lass problems. The starting solution for problem R-112, shown in
ig. 5a, involves four petal-shaped tours and features a total cost of
28.9 units, i.e. 8.86% above the best reported value (Kallehauge et
l., 2001). In order to get a better solution through the proposed
RPTW improvement methodology, the geographical area to be
erviced was partitioned into five angular sectors of equal-size. In
ther words, it was swept by a rotating angular sector (RAS) with a
xed angle ˝ = �/2.5 between its delimiting rays, and five different
ositions N = 5 per turn. For the perturbation mode, N was increased
o 10 by choosing ˝ = �/5 to decrease the size of the MILP model.

oreover, the following values for the model parameters: ϕ1 = 0.30,
0 = 0.90 (normal mode) and ϕ0 = 0.60 (perturbation mode) were
dopted. Such model parameters were defined to categorize the

ustomers at each angular sector into fixed and mobile nodes and,
n addition, identify the set of candidate tours for each mobile node.
t every ˝(m), the pair of subproblems I–II was iteratively solved by
sing ILOG OPL Studio 3.7 on a 1 Gb RAM 2 GHz Pentium IV PC. Since
he lowest-cost neighbor is sought, then the best improvement (BI)
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ig. 5. (a) Initial solution for example R-112.25 and (b) final solution for example
-112.25.

trategy has been adopted. Moreover, any kind of improvement
ove (string crossing, string exchange or string relocation) is con-

idered. After the RAS completes the first whole rotation, the total
istance cost decreases from 428.9 to 422.0 units in 0.7 s of CPU
ime by just using the normal mode. Fig. 6a shows the variation
f the objective function and the computer time as the improve-
ent algorithm proceeds. During the second RAS-revolution, no

mprovement at all was achieved and, consequently, the pertur-
ation mode (subproblem III) was activated. In this way, a better
olution was found on the next turn and the total cost diminishes
o 413.9 units in 7.9 s. Therefore, the normal mode was re-started
gain to further decrease the objective function up to 402.8. No
mprovement at all was obtained on the next two turns even if
he perturbation mode is applied and, consequently, the procedure
as stopped (see Fig. 6a). The new set of tours provided by the
roposed VRPTW improvement algorithm is depicted in Fig. 5b.

ts total transportation cost is 2.2% above the best-reported value,

.e. around one-fourth of the initial suboptimal gap. Moreover, it
as found in only 13.3 s after the RAS swept the service region

ix times. Fig. 5b confirms that good solutions tend to comprise a
et of non-overlapped petal-shaped routes though stringent time-
indow constraints may slightly distort some of them. The same

r
g
o
b
M

ical Engineering 33 (2009) 513–530

nal result has been found by tackling the whole problem R-112.25
t once, i.e. by choosing ˝ = 2�.

By making a comparison between the initial and the improved
olutions for problem R-112.25, it follows that a total of seven string
xchanges among tours and three local node repositioning on indi-
idual tours have been accomplished. Thus, the node string (n20,
9, n1) has been removed from V1-tour and inserted at the end
f V2-tour, and simultaneously nodes (n20, n9) swaps positions to
ield the subsequence (n9, n20, n1). In addition, the string (n18, n8)
as relocated from V3-tour to the start of the neighboring V1-tour.

herefore, a non-balanced string exchange between neighboring
rips V1 and V3 has been executed. Moreover, the node n13 initially
ssigned to vehicle V4 is the last visited by V3 on the final solution,
hile node n25 serviced by vehicle V2 at the initial solution was

elocated on the V4-route. Both moves cause the relocation of nodes
o other tours where they were optimally inserted. Finally, nodes
n5, n6) swap positions on the V3-tour, and node n21 moves for-
ard along the V4-trip to be the first customer being visited. Such

eordering of nodes can be regarded as local route improvements
n short, none of the initial tours remains unchanged. Another
nteresting observation is the fact that four of the seven string
xchanges/relocations and one of local node reordering moves all
ccur during the first rotation of the RAS by just applying the normal
ode.

.2. A variant of Solomon’s benchmark problem R-104 involving
he first 50 nodes

On the other hand, the starting solution for a variant of prob-
em R-104 comprising the first 50 nodes is shown in Fig. 7a. It is a
on-optimal solution provided by the initialization algorithm that
onsists of six tours and features a total distance cost amounting
o 771.5 units, i.e. a suboptimal gap of 23%. In order to improve
his solution, it was chosen as the initial point for the proposed
RPTW improvement algorithm. The procedure converges in 75.9 s
fter sweeping the whole service region six times. Values for the
arameters ϕ1 and ϕ0 are similar to the ones adopted at problem R-
12.25. On the first pair of rotations, the normal mode successively
educes the objective function value first from 771.5 to 684.1 units
nd then to 647.0 units in 44.6 s (see Fig. 6b). Since no improvement
t all has been achieved on the next turn of the RAS, the pertur-
ation mode was successfully activated on the fourth rotation to
et a better solution with a total distance cost of 635.0 units, i.e.
nly 1.5% above the best reported value (Kallehauge et al., 2001).
o further decrease of the objective function has been obtained
n the next two rotations and, consequently, the procedure was
topped.

The best solution found for problem R-104.50 is shown in Fig. 7b.
total of six node strings has been relocated in neighboring tours

nd a significant number of node reorderings on each individual
our was also executed to yield the final solution. From Figs. 7a and
, it follows that the string (n16, n5, n17, n45) initially visited by
2 was inserted on the V1-route and simultaneouly reordered to
ield the subsequence (n16, n17, n45, n5). Other modifications on
he starting V1-trip includes (a) the insertion of node n14 previ-
usly serviced by V2, (b) the shifting of node n6 along the route
2 from the initial to the last stop and (c) the removal of node
43 to be relocated on the V2-trip. In addition to the insertion
f n43, the route V2 presents another modification consisting in
elocating node n18 initially serviced by V2 as the first stop on

oute V3. In contrast to what happens with vehicles V1 and V2, the
roups of customers serviced by V3, V5 and V6 remain unchanged
r exhibit just a single modification (insertion of n18 in route V3),
ut the nodes on each route have been significantly reordered.
oreover, the node string on route V3 initially consisting of (n7,
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Fig. 6. Variation of the objective function with the numb

19, n36, n8, n48, n47, n49, n46) was totally rearranged to turn
nto (n18, n48, n46, n8, n47, n36, n49, n19, n7). Similarly, the chain
f nodes on V6-tour initially given by (n10, n30, n11, n31, n32,

20, n1, n27) turns into the sequence (n20, n31, n10, n11, n32,
20, n30, n1). The same situation arises when the initial and the
nal node strings on the tour V5 are compared. In contrast, the

nitial sequence of nodes in V4 still appears at the final solution
see Fig. 7b).

t
p
n
t

AS-rotations for some Solomon’s benchmark problems.

.3. Improving the starting solution for low/medium size
enchmark problems
To show the enhancement of the initial solution found through
he construction algorithm of Dondo and Cerdá (2007), the pro-
osed VRPTW improvement methodology has been applied to
ine R-class and RC-class benchmark problems involving from 25
o 50 nodes. The non-optimal value of the objective function at the
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ig. 7. (a) Initial solution for example R-104.50 and (b) best solution found for
xample R-104.50.

tarting point for each problem is given in Table 1. Suboptimal gaps
s large as 30.6% have been significantly diminished and some-
imes even vanish at surprisingly low computational cost. The final
uboptimal gap drops, on average, from 17.5% to less than 1.8%. By
omparing our final results with the best reported solutions com-
iled by Kallehauge et al. (2001), it is concluded that near-optimal

nes were discovered for the 50-node version of the following
olomon’s RC-benchmark problems: RC-102.50, RC-103.50, RC-
08.50, all involving the first 50 nodes (see Table 1 and Figs. 8 and 9).
n such cases, the total distance cost is close to the best reported
n the literature. However, the number of used vehicles is slightly

I
ϕ
o
T
e

able 1
mproving non-optimal solutions reported in Dondo and Cerdá (2007).

roblem Nodes Vehic Best known solutions Initial solutio

-102 25 6 547.9 623.2
-103 25 5 454.6 478.5
-104 50 6 625.4 771.5
-107 25 5 425.3 483.2
-111 25 5 428.9 517.3
-112 25 4 394.0 428.9
C-102 50 8 822.5 1004.9
C-103 50 6 710.9 928.4
C-108 50 6 598.1 716.5

a Seconds in a 2.0 GHz 1 GB-Ram Pentium IV PC using ILOG OPL Studio.
Fig. 9. Best solution discovered for example RC-108.50.

igher but still smaller than the one initially available (see Table 1).

n any case, the model parameters were adopted as follows: ϕ1 = 0.3,
0 = 0.90 (normal mode) and ϕ0 = 0.60 (perturbation mode). The
ptimal tours for such benchmark problems are fully described in
able 2. Variations of the objective function and the CPU time after
ach turn of the RAS for problems RC-102.50 and RC-108.50 are

n Final solution Suboptimality gap (%) CPU timea

Initial Final

547.9 14.9 0.0 3.55
463.3 5.2 1.9 5.03
635.0 23.4 1.5 75.90
444.1 13.6 4.2 4.76
436.1 19.3 1.4 17.06
402.8 8.9 2.2 13.30
840.4 22.2 2.2 36.98
730.0 30.6 2.6 62.54
599.2 19.8 0.1 292.08
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Table 2
Near-optimal solutions for some 50-node VRPTW benchmark problems.

Vehicle Route Used capacity Travel time Traveled distance

Example R-104 (50 nodes)
V1 D n37 n14 n44 n38 n16 n17 n45 n5 n6 D 128 218.1 117.2
V2 D n2 n41 n15 n43 n42 n13 D 55 180.2 84.3
V3 D n18 n48 n46 n8 n47 n36 n49 n19 n7 D 142 228.7 124.5
V4 D n40 n21 n22 n23 n39 n4 n25 n26 D 140 225.6 101.1
V5 D n28 n50 n3 n33 n9 n35 n34 n29 n24 n12 D 122 226.7 114.4
V6 D n27 n31 n10 n11 n32 n20 n30 n1 D 134 176.6 96.5

Example RC-102(50 nodes)
V1 D n22 n49 n20 D 60 167.1 76.7
V2 D n19 n23 n21 n18 n48 n25 n48 D 140 219.5 106.9
V3 D n39 n36 n40 n38 n41 D 130 157.6 90.8
V4 D n42 n44 n43 n35 n37 D 70 214.2 94.7
V5 D n33 n26 n28 n30 n32 n50 D 100 202.1 121.8
V6 D n34 n31 n29 n27 D 80 154.4 114.4
V7 D n14 n47 n11 n15 n16 n9 n10 n13 n17 n12 D 200 229.1 129.1
V8 D n3 n1 n45 n5 n8 n7 n6 n46 n4 n2 D 190 206.0 106.0

Example RC-108 (50 nodes)
V1 D n25 n23 n21 n48 n18 n19 n49 n20 n22 n24 D 200 203.8 103.8
V2 D n41 n42 n44 n43 n40 n38 n37 n35 n36 n39 D 200 232.8 104.4
V3 D n33 n32 n30 n28 n26 n27 n29 n31 n34 D 150 217.3 127.3
V4 D n12 n14 n47 n17 n16 n15 n13 n9 n11 n10 D 200 197.2 97.2
V
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epicted in Figs. 6(c)–(d), respectively. The algorithm was stopped
fter five RAS turns for problem RC-108.50 while six rotations were
equired for problems RC-102.50. In every case, most of the tour

mprovements were obtained through 2–3 successful applications
f the normal mode. Instead, the perturbation mode only yielded
moderate cost saving for problem RC-102.50. The best solutions

or problems RC-102.50 and RC-108.50 were found in 36.92 s and
92.08 s, respectively.

1
c
t
s
s

able 3
est solutions discovered and CPU time requirements for some large-scale VRPTW examp

xample Initial solution Final solution Total CPU timea (s) P

N

ϕ

00-node Solomon’s examples
-103 843.0 827.8 314.2 1
-104 843.0 824.9 391.6 1
C-102 1480.7 1420.2 1276.3 0
C-103 1554.9 1344.2 664.9 0
C-104 1508.0 1110.2 675.9 0
C-105 1906.5 1576.5 1237.8 1
C-106 1548.2 1330.8 731.6 0
-102 1846.9 1484.4 263.2 0
-103 1488.0 1242.4 1206.3 0
-104 1175.3 1059.9 838.2 0
-105 1492.4 1374.9 1059.3 0
-106 1401.5 1269.0 451.5 0
-107 1220.2 1156.4 1332.1 0
-108 1162.4 1002.2 683.6 0
-109 1357.8 1245.2 261.6 0
-110 1219.9 1129.5 215.3 0
-201 1815.0 1216.7 1565.5 0
-202 1216.0 1104.6 3458.8 0
-203 1155.0 957.0 2329.6 0

00-node Homberger’s examples
1 2 2 5090.5 4217.7 6399.6 0
1 2 3 4801.4 3707.3 3232.0 0
1 2 4 3994.8 3545.0 5805.0 0
1 2 5 4794.6 4329.2 2285.0 0

a Seconds in a 2.0 GHz 1 GB-Ram Pentium IV PC using ILOG OPL Studio.
190 211.1 95.9
30 128.3 70.6

.4. Solutions to 100-node Solomon’s benchmark problems

Tables 3 and 4 present the results found for a set of nineteen

00-node R/RC/C benchmark problems involving from 7 to 19 vehi-
les (Solomon, 1987). For each problem, the adopted values for
he model parameters at normal and perturbation modes, the final
olution, and the required CPU time are all included in Table 3. To
weep the whole geographical area to be serviced by the vehicle

les.

rocedure parameters

ormal mode Perturbation mode

0 ϕ1 ˝ T ϕ0 ˝ T

.2 0.4 �/2 60 0.4 �/3 60

.2 0.4 �/2 60 0.4 �/3 60

.9 0.3 �/2 60 0.4 �/4 60

.9 0.3 �/2 60 0.4 �/4 60

.9 0.3 �/2 60 0.4 �/4 60

.2 0.3 �/2 60 0.3 �/3 60

.8 0.2 �/2 60 0.2 �/4 60

.6 0.2 �/2 120 0.3 �/4 120

.4 0.1 �/2 120 0.4 �/4 120

.5 0.1 �/2 60 0.3 �/4 60

.5 0.1 �/2 60 0.3 �/4 60

.5 0.1 �/2 60 0.3 �/4 60

.9 0.3 �/2 120 0.4 �/4 120

.9 0.3 �/2 60 0.4 �/4 60

.9 0.3 �/2 60 0.4 �/4 60

.9 0.3 �/2 60 0.4 �/4 60

.3 0.1 �/2 180 0.2 �/5 180

.3 0.1 �/2 180 0.2 �/5 180

.3 0.1 �/2 180 0.2 �/5 180

.3 0.1 �/4 180 0.2 �/8 180

.3 0.1 �/4 180 0.2 �/8 180

.3 0.1 �/4 180 0.2 �/8 180

.3 0.1 �/4 180 0.2 �/8 180
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Table 4
Comparison with the best known solutions reported in the literature.

Example Best known solution Our best solution

Vehicles Distance Refs. Vehicles Distance Subopt. gap %

100-node Solomon’s examples
C-103 10 826.8 Kallehauge et al. (2001) 10 827.8 0.1
C-104 10 824.9 Kallehauge et al. (2001) 10 824.9 –
RC-102 14 1457.5 Kallehauge et al. (2001) 14 1420.2 –
RC-103 11 1258.2 Kallehauge et al. (2001) 13 1344.2 6.8
RC-104 10 1135.5 Kallehauge et al. (2001) 12 1110.2 –
RC-105 15 1513.7 Kallehauge et al. (2001) 16 1576.5 4.1
RC-106 11 1424.7 Berger et al. (2004) 15 1330.8 –
R-102 18 1466.6 Kallehauge et al. (2001) 19 1484.4 1.2
R-103 14 1208.7 Kallehauge et al. (2001) 14 1242.4 2.8
R-104 9 1007.2 Mester et al. (2005) 12 1059.9 5.2
R-105 15 1355.3 Kallehauge et al. (2001) 16 1374.9 1.4
R-106 13 1234.6 Kallehauge et al. (2001) 14 1269.0 2.8
R-107 13 1064.6 Kallehauge et al. (2001) 13 1156.4 8.6
R-108 12 960.9 Rousseau, Gendreau, and Pesant (2002) 14 1002.2 4.3
R-109 13 1146.9 Kallehauge et al. (2001) 14 1245.2 8.6
R-110 12 1068.0 Kallehauge et al. (2001) 12 1129.5 5.7
R-201 8 1143.2 Kallehauge et al. (2001) 7 1216.7 6.4
R-202 3 1191.7 Rousseau et al. (2002) 7 1104.6 –
R-203 3 939.5 Mester et al. (2005) 7 957.0 1.8

200-node Homberger’s examples
R1 2 2 18 4054.4 Mester and Bräysy (2005) 20 4217.7 4.0
R 2005)
R 2005)
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tomer spatial distribution and the time-window width distribution.
Likewise Solomon’s problems, the new instances are divided into
three categories: C, R and RC. Two problem sets have also been pro-
posed for each category: problems of type-1 assume narrow time
1 2 3 18 3382.6 Mester and Bräysy (
1 2 4 18 3067.9 Mester and Bräysy (
1 2 5 18 4112.9 Mester and Bräysy (

eet, four locations of the rotating angular sector (˝ = �/2) were
onsidered when applying the normal mode. The number of angu-
ar sectors into which the service region is partitioned rises to 8
˝ = �/4) when the perturbation mode is activated. The starting
oints also reported in Table 3 were always generated by the route
onstruction procedure of Dondo and Cerdá (2007), sometimes
upported by a post-processing stage to remove, if any, time con-
traint violations. On average, the CPU time required to discover
he final solutions reported in Table 3 amounts to 751.5 s, while
he suboptimality gap is less than 3.1%. As expected, problems of
ype-2 (R-201, R-202 and R-203) featuring wider time windows
ere the most time-consuming. In such cases, the geographical

egion has been divided into 10 sectors rather than 8 when apply-
ng the perturbation mode. Though the total run time amounts
o 3458.8 s, most of the transportation cost savings (almost 84%)
n problem R-202 was achieved in 371 s by making a single RAS-
otation in normal mode (see Fig. 6f). On average, the relative
ontributions of subproblems I–III to the total computer time for
00-node benchmark problems were, on average, 30%, 20% and 50%,
espectively.

The parameter T in Table 3 stands for the maximum CPU time
vailable to solve the VRPTW mathematical formulation under nor-
al or perturbation mode at each location ˝(m). The adopted value

f T ranges from 60 s to 120 s in normal/perturbation mode. In other
ords, the MILP branch-and-bound procedure applied to solve sub-
roblems I–III was stopped after reaching the time limit T. Usually,
he time required to solve the MILP model is much lower than

except for R-problems of type-2 while solving subproblem III.
n such cases, the value of T has been increased to 180. Compari-
on of the results with the best solutions reported in the literature
ased on the number of used vehicles and the total travel distance

s shown in Table 4. For three of the problems (RC-102, RC-104,

-202), new better solutions were identified (see Tables 4 and 5
nd Figs. 10 and 11). Note that the new better solutions use a few
ore vehicles than the best known solutions. Table 4 also includes

he sources reporting the best solutions for such Solomon’s prob-
ems.
19 3707.3 9.6
19 3545.0 9.0
20 4329.2 5.0

.5. Solutions to examples with 200 nodes and multiple depots

Similarly to the set of 100-node examples proposed by Solomon
1987), a new family of benchmark problems involving a much
igher number of customers, a homogeneous vehicle fleet and a
ingle depot was introduced by Homberger and Gehring (1999).
roblems with 200, 400, 600, 800 and 1000 customers are avail-
ble. The new problem instances have been designed following the
ame guidelines used to define Solomon’s 100-node benchmark
roblems. Therefore, each one is identified by: the fleet size, the
ommon vehicle capacity, travel distances between nodes, the cus-
Fig. 10. Best solution discovered for example RC-104.100.
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Table 5
New best solutions found for some 100-node VRPTW problems.

Vehicle Route Capacity Travel time Traveled distance

Example RC-102 (100 nodes)
V1 D n85 n63 n76 n51 n84 n56 D 95 154.0 80.6
V2 D n90 n66 D 22 166.2 29.2
V3 D n2 n45 n1 n3 n5 n8 n46 n4 n100 n70 D 176 224.1 102.1
V4 D n14 n47 n73 n79 n6 n7 n55 D 111 188.1 114.6
V5 D n11 n15 n16 n9 n10 n13 n17 n12 n82 D 189 233.6 114.9
V6 D n42 n44 n61 n81 n54 n68 D 76 184.0 94.6
V7 D n48 n21 n23 n19 n18 n22 n49 n20 n24 n25 D 200 224.0 118.1
V8 D n62 n29 n30 n32 n89 D 58 227.2 133.1
V9 D n91 n92 n94 n67 n71 n93 n96 n80 D 115 232.5 74.2
V10 D n52 n99 n87 n59 n97 n75 n58 D 121 228.9 115.0
V11 D n39 n36 n40 n38 n41 n43 n35 n37 n72 D 188 239.5 130.6
V12 D n65 n69 n88 n53 n78 n60 n98 D 120 202.7 91.1
V13 D n33 n28 n27 n26 n31 n34 n50 n95 D 156 207.4 123.8
V14 D n64 n57 n86 n74 n77 n83 D 97 229.1 98.3

Example RC-104 (100 nodes)
V1 D n85 n63 n89 n76 n51 n84 n56 n64 n66 D 153 193.4 103.4
V2 D n52 n59 n87 n97 n75 n58 n77 D 113 225.5 126.1
V3 D n69 n98 n53 n82 n65 n90 D 72 160.9 50.4
V4 D n88 n60 n78 n73 n79 n7 n6 n55 D 154 179.0 99.0
V5 D n12 n14 n15 n11 n10 n9 n13 n16 n17 n47 D 200 234.4 111.6
V6 D n68 n70 n1 n3 n5 n45 n8 n46 n4 n2 n100 D 197 209.2 94.2
V7 D n20 n49 n19 n18 n48 n23 n21 n25 n24 n22 D 200 221.4 85.9
V8 D n33 n32 n30 n28 n26 n27 n29 n31 n34 n94 n91 D 186 235.9 125.9
V9 D n80 n96 n93 n71 n72 n54 n81 n61 D 99 159.3 79.3
V10 D n99 n86 n74 n57 n83 D 88 200.9 61.0
V11 D n42 n44 n43 n38 n37 n35 n36 n40 n39 n41 D 200 239.8 102.5
V12 D n92 n95 n62 n50 n67 D 62 123.7 70.9

Example R-202 (100 nodes)
V1 D n83 n45 n8 n18 n89 D 63 774.0 62.8
V2 D n27 n69 n31 n88 n62 n30 n90 n10 n32 n70 n1 D 155 831.3 112.8
V3 D n39 n67 n23 n75 n72 n73 n21 n40 n53 n12 n56 n74 n54 n4 n55 n25 n26 D 266 873.2 194.1
V4 D n42 n15 n57 n87 n2 n22 n41 n43 n97 n13 n58 D 136 868.1 131.8
V5 D n46 n36 n47 n63 n11 n19 n64 n49 n48 n7 n52 n82 D 195 587.0 177.2
V n34

V 6 n5

w
w
R
w
w
t

(

6 D n28 n33 n65 n71 n29 n76 n3 n79 n78 n81 n9 n51 n20 n66 n35
n80 n77 n50 D

7 D n94 n95 n59 n92 n37 n14 n38 n44 n16 n61 n86 n85 n99 n96 n
n91 n100 n98 n93 n60 D

indows and small vehicle capacity, while type-2 problems involve

ider time windows and a larger vehicle capacity. For instance,
1 2 2 is a R-class problem of type 1/variant-2 (more stringent time
indows) with 200 nodes. Four 200-node benchmark problems
ere solved. In every case, the initial solution was found by using

he three-phase hybrid construction algorithm of Dondo and Cerdá

Fig. 11. Best solution discovered for example RC-202.100.
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n68 n24 303 899.9 250.5

n84 n17 358 872.4 175.4

2007). In some cases, however, especially if an infeasible solu-
ion has been generated, a post-processing stage was subsequently
pplied to eliminate time-window violations and/or tour overdura-
ions before starting the improvement process. The selected values
or the parameters (ϕ1, ϕ0, T) are given in Table 3. The geographical
egion to be serviced was partitioned into eighth sectors (normal
ode) or sixteen sectors (perturbation mode) to reduce the size

f the MILP formulation to be solved. Numerical results for R-class
xamples of type-1 all involving 200 nodes, a homogeneous fleet of
ariable size and a random distribution of customer locations are

hown at the bottom of Table 3. Comparison of the solutions found
ith the best ones reported in the literature is made in Table 4.

he suboptimality gap is, in all cases, less than 10%. The toughest

able 6
orst-case and average performances of the proposed methods for 100-node and

00-node VRPTW problems of different types.

roblem type Worst case performance
(gap %)

Average performance
(gap %)

00-node Solonon’s problems
-1 0.1 0.05
C-1 6.8 0.08
-1 8.6 4.51
-2 6.4 0.30

00-node Homberger’s problems
1 2 9.6 6.90
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Table 7
Comparing the performance of the proposed approach with several available VRPTW (metha)heuristic techniques.

Problem type GTA RT TB PHGA B-VH CW DCa

C1
Vehicles 10.00 10.00 10.00 10.00 10 10.00 10.00
Distance 828.38 828.45 828.45 828.50 828.95 834.05 826.35
CPU time 1800 3200 14630 1800 1800 649 353

RC1
Vehicles 11.92 12.33 11.90 11.88 11.88 12.12 14.00
Distance 1388.13 1269.48 1381.31 1414.86 1456.49 1388.15 1356.38
CPU time 1800 2600 11264 1800 1800 2900 892

R1
Vehicles 12.38 12.58 12.33 12.17 12.08 12.50 14.22
D
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istance 1210.83 1197.42 1220.35
PU time 1800 2700 13774

a This work.

enchmark problem R1 2 4 reported in the paper featuring wider
ime windows requires a total running time of 2806.8 s, i.e. near
6 min.

To test the algorithm performance when tackling a multi-depot
eterogeneous fleet VRPTW problem, the Solomon’s R-104 problem
as modified and solved. The new instance of problem R-104(m)

ncludes three depots and three different types of vehicles: small
rucks with 100 units of capacity, medium size vehicles (200 units)
nd large trucks (300 units). The objective function initially equals
o 1548.8 drops to 1069.9 in 1256 s of CPU time. The solution is
epicted in Fig. 12. Continuous, dashed and dotted lines were used
o depict tours involving large, medium and small vehicles, respec-
ively.

.6. Performance analysis

Table 6 summarizes the worst case and the average perfor-
ances for the proposed VRPTW improvement algorithm, both
easured in terms of the suboptimal gap with respect to the best

olutions reported in the literature. Such performance measures
ere obtained by considering the final results found for 100-node
1/RC1/R1 Solomon’s problems and 200-node R1 2 Homberger’s
roblems. Accounting for the average performance values shown
n Table 4, it can be concluded that the behavior of the proposed
lgorithm is quite satisfactory for the set of 100-node Solomon’s
roblems. Even in the most unfavorable 200-node problem series
i.e. R1 2), the worst case gap lies below the 10% threshold.

Fig. 12. Best solution found for the 3-depot R-104(m).100 problem.

n
c
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r
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t
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i
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t
i
i

1251.40 1288.35 1241.89 1218.21
1800 1800 1382 701

In turn, Table 7 compares our method with a number of the
est available heuristic techniques in terms of three key parame-
ers: average number of used vehicles, average traveled distance
nd average CPU time. To make the comparison, just the compu-
ational results reported for 100-node Solomon’s problems were
onsidered. The reference techniques included in Table 7 are: Ant
olony System-GTA (Gambardella et al., 1999), Tabu Search-RT
Rochat & Taillard, 1995), Threshold Method-TB (Taillard et al.,
997), Parallel Hybrid Genetic Algorithm-PHGA (Berger, Barkaoui,

Bräysy, 2004), Large Neighborhood Search-BVH of Bent and
an Hentenryck (2004) and the k-exchange reduction-CW method

Cordone & Wolfer-Calvo, 2001). It can be observed that our algo-
ithm performs extremely well in terms of traveled distance and
PU time but uses a slightly higher number of vehicles. Overall, it

ooks very competitive with regards to other heuristic algorithms
n both solution quality and computer time.

0. Conclusions

Transportation costs for shipping products from depots to cus-
omers heavily depend on the proper selection of routes and
chedules for the vehicle fleet providing such delivery services. A
ovel MILP improvement framework for large-scale time window-
onstrained vehicle routing problems involving heterogeneous
eets and multiple depots has been developed. It is a local search
pproach that fully explores a rather large neighborhood around
he current solution so as to provide a better set of vehicle tours
n an efficient manner. To achieve this goal, the approach relies on
wo key building blocks: a spatial decomposition scheme and a new

ILP mathematical representation for the VRPTW improvement
roblem. A significant reduction in the problem size is obtained by
roperly adopting a single parameter ˝ to divide the geographical
rea to be serviced into N smaller angular sectors. By definition,
outes which are partially or completely inside a particular sector
elong to it. Therefore, every sector comprises a subset of entire
ours and some of them may simultaneously belong to a pair of
djacent sectors. As a result, customer exchanges between neigh-
oring zones are also considered. In addition, a pair of parameters
ϕ0, ϕ1) permits to define the set of feasible improvement moves
n every sector, i.e. the neighborhood to be explored. The spatial
ecomposition scheme is heuristically supported by the fact that

mproving actions mostly take place among nearby routes.

On the other hand, the proposed MILP problem formulation

llows to efficiently exploring a rather large solution space around
he starting point on every sector by accounting for all kinds of
mprovement moves. To get MILP-models of moderate size, the
mprovement moves have been classified into two groups: (1)
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alanced/non-balanced node string exchanges between neighbor-
ng tours and (2) node string relocations on every individual tour.
n this way, the VRPTW improvement problem for each zone can
e decomposed into a pair of lower-size MILP subproblems that are
equentially solved, using the best solution for the other subprob-
em (the normal mode) as the initial point. Soft time-window and
our overdurations can be handled by including penalty terms in
he objective function to also account for promising non-feasible
outes. However, this sequential search scheme can be trapped on
local optimum. If so, the complete MILP problem formulation

imultaneously considering both groups of improvement moves
hould be tackled (the perturbation or mixed-mode). By prop-
rly adjusting the parameters (˝, ϕ0, ϕ1,) defining (a) the number
f sectors to be independently explored, and (b) the subset of
omplete tours and the set of feasible exchange moves to be con-
idered on each zone, the problem size and the required CPU time
or the mixed-mode MILP-formulation both remain under control.
onetheless, it is adopted an upper limit T on the model solution

ime for any individual sector beyond that the branch-and-bound
rocedure is stopped. If the CPU time constraint is binding, the

ncumbent solution at time T is stored and used to define the neigh-
orhood to be explored on the next major iteration.

The starting point for the proposed VRPTW improvement
echnique is provided by the incomplete optimization algorithm
eveloped by Dondo and Cerdá (2007). This cluster-based route
onstruction algorithm not only optimizes the set of vehicle routes
t the level of clusters but also provides the best tour-depot assign-
ents. It proved to be very robust to tackle C-class problems with up

o 100 clustered nodes. However, only low-size RC and R-class prob-
ems involving 25–50 nodes can be solved at reasonable computer
imes but the final solutions feature rather large suboptimal gaps.
his is why the performance of our VRPTW improvement algorithm
n terms of solution quality and CPU time has been mostly evaluated
y solving RC-class and R-class Solomon’s benchmark problems
omprising up to 100-nodes with either a single central depot or
ultiple depots. In the latter case, tour-depot assignments at the

tarting point are kept without changes throughout the improve-
ent process. On average, the proposed improvement algorithm

onverges to a good feasible solution with a suboptimality gap
ess than 3.3%. To test its performance with multi-depot hetero-
eneous fleet VRPTW examples, a modified version of Solomon’s
-104 problem including two additional depots and three differ-
nt vehicle capacities was solved. Moreover, the algorithm has also
een applied to four VRPTW problem instances involving 200 nodes

ntroduced by Homberger and Gehring (1999).
Since the distribution problem is indeed dynamic in nature, the

RPTW problem data changes with time. Unexpected events such
s traffic jam, new customer orders or vehicle malfunctioning make
he best routing obtained with static data infeasible or at least a
on-optimal one. Solution to the VRPTW problem within a dynamic
nvironment will be studied on a next paper.
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ppendix A. Nomenclature
ets
set of transportation requests
set of available vehicles

G
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inary variables

ij sequencing binary variable denoting that node i is visited
before (Xij = 1) or after node j (Xij = 0)

iv assignment variable that controls the allocation of node i
to vehicle v

ontinuous variables
Ti vehicle arrival time at node i

i routing cost from the depot to node i

i violation of ith-time window (earliness) due to arrivals
before ai

i violation of ith-time window (tardiness) due to arrivals
later than bi

Cv overall variable cost for vehicle v
Dv overduration of trip v
Tv overall routing time for vehicle v

arameters
v unit-time penalty for vth-tour overduration.
i unit-time penalty cost for early arrival at node i

i unit-time penalty cost for late arrival at node i
small positive scalar for the stopping criterion

1 angle between the delimiting rays of the cone defining
fixed nodes

0 angle between the delimiting rays of the cone defining
mobile nodes

iv angle between the v-trip axis and the ray connecting node
i to the depot
angle between the delimiting rays of the rotating angular
sector (RAS)

i earliest service start time at node i

i latest service start time at node i
v
ij

traveling cost between nodes i and j along the trip v.

mx maximum distance between a node and the center of
gravity of a candidate tour

v maximum capacity of vehicle v
ti service time at node i
v
ij

travel time between nodes i and j along the trip v.
vmax

v maximum allowed service time for vehicle v
CPU time limit

i amount of load to pick up at node i
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