
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 146, Number 6, June 2018, Pages 2417–2423
http://dx.doi.org/10.1090/proc/14017

Article electronically published on February 21, 2018

SPECTRA FOR CUBES IN PRODUCTS
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(Communicated by Alexander Iosevich)

Abstract. We consider “cubes” in products of finite cyclic groups and we
study their tiling and spectral properties. (A set in a finite group is called a
tile if some of its translates form a partition of the group and is called spectral
if it admits an orthogonal basis of characters for the functions supported on
the set.) We show an analogue of a theorem due to Iosevich and Pedersen
(1998), Lagarias, Reeds and Wang (2000), and the third author of this paper
(2000), which identified the tiling complements of the unit cube in Rd with
the spectra of the same cube.

1. Introduction to tilings and spectra

Let G be a locally compact abelian group equipped with Haar measure, which
is always taken to be the counting measure on discrete groups. (We will deal
exclusively with finite groups in this paper.) If A and B are two sets in G, we write
A+B for the set of all sums a+ b, a ∈ A, b ∈ B. Similarly, we write A−B for the
set of all differences a − b, a ∈ A, b ∈ B. We denote by 1E the indicator function
for the set E ⊆ G.

Definition 1 (Packing and tiling). A nonnegative measurable function f : G �→ R

is said to pack G with the set (of translates) T ⊆ G at level L ≥ 0 if∑
t∈T

f(x− t) ≤ L for a.e. x ∈ G.

We then write “f+T is packing in G at level L”, and if L is omitted we understand
it to be equal to 1.

A nonnegative function f : G �→ R tiles G at level L with the set T ⊆ G if∑
t∈T

f(x− t) = L for a.e. x ∈ G.
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We write “f +T tiles G at level L” (and if omitted we understand L = 1). The set
T is called a tiling complement of the tile f .

If f = 1E for some measurable set E, then we write “E + T is a packing” (or
tiling) rather than “1E + T is a packing” (or tiling).

Denote by Ĝ the dual group of continuous characters on G.

Definition 2 (Spectral sets). A set Λ ⊆ Ĝ is called a spectrum of a measurable
set E ⊆ G if the characters {λ}λ∈Λ form an orthonormal basis in L2(E). The set
E is then called a spectral set of G. We say that E,Λ are a spectral pair.

Fuglede’s conjecture, also known as the spectral set conjecture, suggests that
there is a connection between tilings and spectral sets.

Conjecture 1 (Fuglede [3]). A set E ⊂ G is spectral if and only if it tiles G with
some set of translates.

Fuglede’s conjecture has motivated research on spectral sets for decades. It is now
known to be false in both directions when G = Rd, for d ≥ 3 (see [1,2,9,10,15,16]),
but the conjecture remains open in several interesting groups. Certain positive
results also exist. For instance, the conjecture is true for unions of two intervals in
R [11], and for convex domains in R2 [4]. Recently it was also established that the
conjecture holds in G = Zp × Zp for any prime p [5].

We will focus on the case when G is a finite abelian group; that is, a finite direct
product of finite cyclic groups. Recall that every finite cyclic group of order N
is isomorphic to ZN = Z/(NZ), the additive group of residues mod N . The dual

group ẐN of ZN is the collection of characters {en}, where
en(x) = exp(2πinx/N),

for n = 0, . . . , N − 1. We thus identify ẐN with ZN in the natural way. For a

function f : ZN �→ C, we define its Fourier transform f̂ as

f̂(x) =

N−1∑
k=0

f(k)e−2πixk/N .

Now suppose that Λ ⊆ ẐN 	 ZN is a spectrum of E ⊆ ZN . In finite groups,
the spectral relation is symmetric, so, equivalently, E is a spectrum of Λ. It is
not difficult to show (see, for instance, [10]) that the orthogonality of the set of
exponentials {eλ : λ ∈ Λ} is equivalent to the condition∑

λ∈Λ

∣∣∣1̂E

∣∣∣2 (x− λ) ≤ |E|2 for all x ∈ ZN ,

where |E| denotes the size of E. Moreover, the orthogonality is also equivalent to
the condition

(1) Λ− Λ ⊆ {0} ∪
{
1̂E = 0

}
.

The orthogonality and completeness of the set {eλ : λ ∈ Λ} is equivalent to the
tiling condition

(2)
∑
λ∈Λ

∣∣∣1̂E

∣∣∣2 (x− λ) = |E|2 for all x ∈ ZN .
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In other words, Λ is a spectrum of E if and only if |1̂E |2 + Λ is a tiling of ZN at
level |E|2.

It is obvious that in Rd, every cube Q is both a spectral set and a tiling set (a
spectrum of [0, 1]d, for instance, is Zd). Hence, Fuglede’s conjecture is trivially true
in this special case. Moreover, the spectra of cubes in Rd have been characterized,
at least to the extent that tiling complements of the cube are known.

Theorem A ([6–8, 12]). Let Λ be a subset of Rd. Then Λ is a spectrum for the
unit cube Q = [0, 1]d if and only if Q+ Λ tiles Rd at level 1.

We remark that when a domain scales then its tiling complements scale in the
same way while its spectra scale reciprocally. Thus, a corollary of Theorem A is
that the spectra of the rectangle

R = [0, a1]× · · · × [0, ad] ⊆ Rd

are precisely the tiling complements of the “dual” rectangle

R∗ =

[
0,

1

a1

]
× · · · ×

[
0,

1

ad

]
,

and one can also make a more general statement about the spectra of linear images
of the cube (parallelepipeds).

In this paper we consider the analogous problem of characterizing the spectra
of discrete cubes in products of finite cyclic groups. Let A1, . . . , AN be positive
integers, and write

G = ZA1
× · · · × ZAN

,

from which we also obtain the isomorphism

Ĝ 	 G = ZA1
× · · · × ZAN

.

If a ≥ 1 is an integer, we write

[a] = {0, 1, 2, . . . , a− 1},
and we define the cube (in G)

Qa1,...,aN
= [a1]× [a2]× · · · × [aN ],

as well as its dual cube (in Ĝ)

Q∗
a1,...,aN

= QA1/a1,...,AN/aN

whenever a1, . . . , aN divide A1, . . . AN , respectively. Our main result is a charac-
terization of the spectra of such discrete cubes, analogous to the one valid for cubes
in Rd.

Theorem 1. Consider the cube Qa1,...,aN
in G = ZA1

× · · · × ZAN
. The condition

(3) a1 | A1, . . . , aN | AN

is necessary and sufficient for Qa1,...,aN
to be a tile and also for it to be spectral.

Suppose that (3) holds and let Λ ⊆ G. Then Λ is a tiling complement of the cube
Qa1,...,aN

if and only if Λ is a spectrum of the dual cube Q∗
a1,...,aN

.

We see that whereas any cube in Rd both tiles and has a spectrum, this is
not the case for discrete cubes in G, where both properties rest on the condition
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a1 | A1, . . . , aN | AN . Accordingly, Fuglede’s conjecture holds for discrete cubes in
G. This is not difficult to show. The main content of Theorem 1 is the identification
of tiling complements of the dual cube with the spectra of the cube.

It is well known [13,14] that the tiling complements of a cube in Rd can be quite
exotic, at least in high dimensions (failure of the Keller conjecture which claimed
that all cube tilings must have a pair of cubes that share an entire face). This is
true even for periodic tilings, and these can be looked at as tilings of a finite torus
and, after discretization, can also be looked at as tilings by discrete cubes such as
the ones we are looking at here.

Observation 1. Suppose E ⊆ H ⊆ G, where H is a subgroup of the finite group G.
Then

E tiles G ⇐⇒ E tiles H,

and
E is spectral in G ⇐⇒ E is spectral in H.

Indeed if E tiles G, then its translates are completely contained in cosets of H,
therefore H is tiled itself by copies of E. Conversely, if E tiles H, then one only
has to copy this tiling in every coset of H in order to obtain a tiling of G.

To see the corresponding equivalence for spectrality assume that E is spectral
in G. Since any character of G is also a character of H, when restricted to H, it
follows that E is spectral in H. And if E is spectral in H, then it is also spectral
in G as every character of H can be extended to a character of G.

Because of Observation 1, when studying the tiling or spectral properties of
E ⊆ G we may always view E as a subset of the group it generates, 〈E〉, and decide
the question in this setting. We thus obtain Corollary 2 below for “dilations” of the
cubes, thus establishing the Fuglede conjecture for the more general class of sets of
type (4).

Notation. As is common we write (m,n) for the greatest common divisor of the
integers m and n.

Corollary 2. Suppose

(4) E = s1[k1]× s2[k2]× · · · × sN [kN ] ⊆ ZA1
× · · · × ZAN

,

where
s[k] = s{0, 1, . . . , k − 1} = {0, s, 2s, . . . , (k − 1)s},

and we are assuming that all points in sj [kj ] are distinct mod Aj, j = 1, 2, . . . , N .
Write Aj = A′

j(Aj , sj) and sj = s′j(Aj , sj).
Then E is spectral if and only if it is a tile, and this happens exactly when

kj | A′
j , j = 1, 2, . . . , N.

Furthermore, the set
Λ ⊆ ZA1

× · · · × ZAN

is a spectrum for E if and only if the set

Λ̃ = {(s′1λ1 mod A′
1, . . . , s

′
NλN mod A′

N ) : (λ1, . . . , λN ) ∈ Λ}
is a tiling complement of the cube

Q̃ = [A′
1/k1]× · · · × [A′

N/kN ]

in the group ZA′
1
× · · · × ZA′

N
.
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The proofs of Theorem 1 and Corollary 2 are given in §2.

2. Proofs

The proof of Theorem 1 is essentially the same regardless of the number N of
finite group factors in the product group G. We therefore prove Theorem 1 in the
special case when G = ZA × ZB and Qa,b = [a]× [b].

We will need the following lemma.

Lemma 1. Let f be the indicator function of Qa,b ⊆ G = ZA × ZB. Then if Z(f̂)

is the set of zeros of the Fourier transform of f in Ĝ 	 G we have

(5) Z(f̂) =

{
(j, k) �= (0, 0) :

A

(A, a)
| j or

B

(B, b)
| k

}
.

Note also that Z(f̂) does not intersect the difference set

(6) Q A
(A,a)

, B
(B,b)

−Q A
(A,a)

, B
(B,b)

.

Proof. We have that

f̂(j, k) = 1̂[a](j) · 1̂[b](k),

where the indicator functions 1[a] and 1[b] are defined on the groups ZA and ZB,

respectively. Hence, f̂ vanishes if and only if either 1̂[a] or 1̂[b] is zero. This gives
the conditions in (5).

The set in (6) is the cube

(7)

{
−

(
A

(A, a)
− 1

)
, . . . ,

A

(A, a)
− 1

}
×

{
−

(
B

(B, b)
− 1

)
, . . . ,

B

(B, b)
− 1

}
,

which clearly does not intersect Z(f̂). �
Proof of Theorem 1. Notice first that (3) is obviously necessary and sufficient for
Qa,b to be a tile. Moreover, it is clear that (3) is sufficient for Qa,b to be spectral,
as {

(x, y) ∈ ZA × ZB :
A

a
| x, B

b
| y

}
is then one possible spectrum of Qa,b. We will see below that (3) is also a necessary
condition for spectrality.

Suppose then that Qa,b has Λ as a spectrum. Write f for the indicator function
of Qa,b and observe that Λ− Λ \ {0} does not intersect the difference set of

Q A
(A,a) ,

B
(B,b)

according to (1) and Lemma 1. Hence Q A
(A,a) ,

B
(B,b)

+ Λ is a packing in G, so that∣∣∣Q A
(A,a)

, B
(B,b)

∣∣∣ · |Λ| ≤ |G|.

Since Λ is a spectrum of Qa,b it follows that |Λ| = |Qa,b|, so the above inequality
reads

(8)
A

(A, a)

B

(B, b)
ab ≤ AB.

The only way this can happen is if it is an equality (as a/(A, a) ≥ 1, b/(B, b) ≥ 1)
and this implies a | A and b | B. The dual cube is defined in this case, and since the
inequality in (8) is actually an equality it follows that the packing Q A

(A,a)
, B
(B,b)

+Λ
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is in fact a tiling of G, as we had to show. We have shown that if Λ is a spectrum
of Qa,b, then (3) holds and Λ is a tiling complement of the dual cube.

For the converse suppose that a | A and b | B, so that the dual cube Q∗
a,b of

Qa,b exists, and suppose also that Q∗
a,b + Λ is a tiling of Ĝ 	 G. Taking Fourier

transforms on the tiling condition

1Q∗
a,b

∗ 1Λ = 1,

we get that

1̂Q∗
a,b

· 1̂Λ = AB 1{0},

which implies that 1̂Λ is supported on the set
{
1̂Q∗

a,b
= 0

}
∪{0}, and, according to

Lemma 1, this latter set is contained in the complement of

(9) {−(a− 1), . . . , (a− 1)} × {−(b− 1), . . . , (b− 1)}.
Thus 1̂Λ is supported at 0 plus the complement of the support of 1Qa,b

∗ 1−Qa,b
.

We have therefore
1̂Λ ·

(
1Qa,b

∗ 1−Qa,b

)
= |Qa,b|21{0},

and by taking the inverse Fourier transform we get

1Λ ∗
∣∣∣1̂Qa,b

∣∣∣2 = |Qa,b|2.

Hence |1̂Qa,b
|2+Λ tiles G at level |Qa,b|2, and by (2) this is precisely what it means

for Λ to be a spectrum of Qa,b. �
Proof of Corollary 2. If s[k] ⊆ ZA, then

〈s[k]〉 = 〈s〉
= {ns mod A : n ∈ Z}(10)

=

{
0 mod A, s mod A, 2s mod A, . . . ,

(
A

(A, s)
− 1

)
s mod A

}
	 ZA′ ,

where A′ = A/(A, s). It follows that

(11) 〈E〉 	 ZA′
1
× · · · × ZA′

N
,

and, under the obvious isomorphism

(0, . . . , 0, sj , 0, . . . , 0) → (0, . . . , 0, 1, 0, . . . , 0)

implied in (11), the image of E is the cube

Q = [k1]× · · · × [kN ].

So, to decide if E tiles the original group ZA1
× · · · ×ZAN

or is spectral therein we
can equivalently answer the same question for Q in the group (11). According to
Theorem 1 the cube Q tiles the group (11) if and only if

kj | A′
j =

Aj

(Aj , sj)
, for j = 1, 2, . . . , N,

and the same condition is equivalent to Q being spectral in the same group.
If (λ1, . . . , λN ) ∈ ZA1

× · · · × ZAN
is a character on ZA1

× · · · × ZAN
, then,

restricted on the subgroup 〈E〉 viewed as in (10), it becomes the character

(s′1λ1, . . . , s
′
NλN ) ∈ ZA′

1
× · · · × ZA′

N
.
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Therefore, for the collection of characters Λ on the original group ZA1
×· · ·×ZAN

to

form a spectrum of E it is necessary and sufficient that the collection Λ̃ of characters
on ZA′

1
×· · ·×ZA′

N
form a spectrum of Q, and this is equivalent to Λ̃ being a tiling

complement of the dual cube of Q in ZA′
1
× · · · × ZA′

N
, which is the cube

[A′
1/k1]× · · · × [A′

N/kN ].

�
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[9] Mihail N. Kolountzakis and Máté Matolcsi, Complex Hadamard matrices and the spectral set

conjecture, Collect. Math. Vol. Extra (2006), 281–291. MR2264214
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Instituto Argentino de Matemática “Alberto P. Calderón” (IAM-CONICET), Ar-

gentina

Email address: elona.agora@gmail.com

Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler

University Linz, Austria

Current address: Department of Mathematical Sciences, Norwegian University of Science and

Technology, 7491 Trondheim, Norway
Email address: sgrepstad@gmail.com

Department of Mathematics and Applied Mathematics, University of Crete, Voutes

Campus, GR-700 13, Heraklion, Crete, Greece

Email address: kolount@gmail.com

http://www.ams.org/mathscinet-getitem?mr=2267631
http://www.ams.org/mathscinet-getitem?mr=2221543
http://www.ams.org/mathscinet-getitem?mr=0470754
http://www.ams.org/mathscinet-getitem?mr=2024715
http://www.ams.org/mathscinet-getitem?mr=3649367
http://www.ams.org/mathscinet-getitem?mr=1643694
http://www.ams.org/mathscinet-getitem?mr=1700084
http://www.ams.org/mathscinet-getitem?mr=1767712
http://www.ams.org/mathscinet-getitem?mr=2264214
http://www.ams.org/mathscinet-getitem?mr=2237932
http://www.ams.org/mathscinet-getitem?mr=1840101
http://www.ams.org/mathscinet-getitem?mr=1758237
http://www.ams.org/mathscinet-getitem?mr=1155280
http://www.ams.org/mathscinet-getitem?mr=1920144
http://www.ams.org/mathscinet-getitem?mr=2159781
http://www.ams.org/mathscinet-getitem?mr=2067470

	1. Introduction to tilings and spectra
	2. Proofs
	References

