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Abstract
We present an overview of recent advances in the study of energy dynamics and mechanisms for
energy conversion in qubit systems with special focus on realizations in superconducting
quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat
generation, energy transport and energy conversion in these systems with and without
time-dependent driving considering the effect of equilibrium and non-equilibrium
environments. We analyze specific problems and mechanisms under current investigation in the
context of qubit systems. These include the problem of energy dissipation and possible routes
for its control, energy pumping between driving sources and heat pumping between reservoirs,
implementation of thermal machines and mechanisms for energy storage. We highlight the
underlying fundamental phenomena related to geometrical and topological properties, as well as
many-body correlations. We also present an overview of recent experimental activity in this
field.
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1. Introduction

In the middle of the twentieth century an epochal revolution in
technology took place after the development of semiconduct-
ors and electronic devices, accelerating, in the last decades,
toward an impressive and constant miniaturization. Although
quantum effects are crucial in the semiconductors, they oper-
ate as macroscopic bodies. The scenario has changed consid-
erably with the emergence of the so called quantum techno-
logies where the (quantum) devices operate at the level of
single atoms, ions and spins, by fully exploiting the quantum-
mechanical nature of these systems.

The building blocks of quantum computers are the qubits
and several proposals have been formulated to realize this
fundamental component [1]. These ongoing technological
developments were triggered by several important scientific
advances. In solid-state systems, nanofabrication techniques,
enable the construction of nano-devices like quantum dots
to confine a few electrons [2, 3], nanomechanical [4] and
optomechanical [5] systems, electronic interferometers in
topological insulators [6] as well as superconducting circuits
[7, 8]. The field of atomic and molecular optical (AMO) phys-
ics devoted to study trapped atom/ions and photons has lead
to unprecedented level of control from few qubits to com-
plex quantum many-body states [9, 10]. Nitrogen vacancies
(NVs) centers in diamond [11], has turned into one of the
most competitive implementations in many quantum inform-
ation processing protocols. An overview of this continuously
growing and successful adventure can be found in [12]. The
diversity of operations in quantum devices include, quantum-
state manipulation, measurements and the implementation of
logic gates. Nowadays, prototypes of quantum computers are
already used to implement machine-learning algorithms [13]
as well as quantum simulations [14].

In quantum devices belonging to the new technological
generation, the focus of the performance is naturally the pre-
cision and the computational possibilities. In order to bene-
fit from the quantum properties of these devices it is neces-
sary to overcome problems such as miniaturization, error
correction, and scalability. There are also big expectations on
the quantum advantage regarding the energetic optimization.
However, it is acknowledged that this aspect is still unclear
[15]. In this sense, there is an increasing consensus about the
need of a special effort at the level of both fundamental and
applied research to further understand this important side of
the quantum technologies [16]. The understanding and con-
trol of the energy dynamics and entropy generation ubiquitous
of all these systems is of paramount importance. In particular,
the fact that most of their operations require the challenging
conditions imposed by mK temperatures, motivates the search
for efficient in-chip cooling and the possibility of converting
the generated heat into useful work.

The introduction of thermalmachines, like heat engines and
refrigerators, has been at the heart of the industrial revolu-
tion that took place between mid-19th century and the begin-
ning of the last century. Similarly, in the last 10 years,
the efforts devoted to investigate heat manipulation/conver-
sion in quantum devices grew enormously [17–22]. At the
experimental level, one direction of research has been the
implementation of the thermodynamic cycles and refrigera-
tionmechanisms in few-level quantum systems, like atoms and
ions [23–25], NV centers [26, 27]. Another direction is the
study of thermoelectric effects, energy harvesting and refri-
geration in a diversity of solid state devices, like quantum
dots [28–37], superconducting nanostructures [38–40], nano
electro-and optomechanical devices [41] and systems in the
quantum Hall regime [42–44]. The third direction is the study
of the energetics of superconducting qubits in quantum cir-
cuits, on which we focus in the present contribution. All these
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setups belong to the paradigm of open quantum systems, since
they are based on a configuration where a few-level coherent
quantum system is operated out of equilibrium in contact to
macroscopic parts which play the role of reservoirs and/or the
environment generated by their measurement and manipula-
tion setup.

A qubit is the simplest system to generate a quantum-
state superposition. So far, qubits realized in superconduct-
ing quantum circuits [45–49] are among the most advanced
platforms regarding scalability and degree of concrete imple-
mentations. These qubits are akin the atomic realizations in
quantum electrodynamic cavities, since the superconducting
device is designed to behave as a two-level system while the
embedding circuit behaves akin a photonic cavity. In addition,
the quantum dynamics of the qubit-circuit system is formally
similar to that induced by the atom-light interaction in the
cavity [50]. The coupling between the qubit and the envir-
onment is a source of decoherence which is an undesirable
but unavoidable effect in quantum information processing. In
the investigation of many mechanisms related to the energy
dynamics the qubit-environment coupling is a key ingredi-
ent, which is amenable to being controlled in hybrid circuit
quantum electrodynamics (cQED) hosting superconducting
qubits [51]. This possibility along with the high degree of con-
trol of the physical mechanisms (voltage gates and magnetic
fluxes) to manipulate quantum states in these systems offer an
ideal playground to investigate the fundamental mechanisms
of quantum thermodynamics like heat transport, entropy pro-
duction, energy storage and energy conversion.

Aim of this review is to focus on the body of work that
dealt with heat/energy manipulation mechanisms which are
proposed to take place or have been illustrated in qubit sys-
tems. Most of the selected topics are related to solid-state plat-
forms like cQED. Nevertheless, many of the basic mechan-
isms and effects are ubiquitous in few-level quantum systems
embedded in macroscopic or noisy environments and manip-
ulated by time-dependent processes. There are several other
very relevant reviews with focus on complementary topics.
In particular, on quantum thermodynamics in connection with
quantum information [17, 18], recent advances in the descrip-
tion of entropy production in non-equilibrium systems [21]
and quantum thermodynamic devices [22]. On the specific
topic of the realization of superconducting qubits there are
also several reviews [45–49]. Of particular reference for the
present work is the Colloquium by Karimi and Pekola [20],
which focuses on quantum heat transport in condensed mat-
ter systems. We try to give some perspectives not covered
there. In particular, we address the topics of energy manipu-
lation with time-dependent driving and mechanisms of energy
conversion.

There is a rich variety of problems under the topics covered
in this review, which are basically defined by the nature of
the driving (slow, fast, single or multiple-source) and the
characteristics of the environment (thermal bath, noisy, non-
equilibrium, with feedback control). The number of phys-
ical situations range from the expected dissipation of energy
to the realization of thermal machines to generate work or

refrigerate. As in other branches of modern physics geometric
and topological properties emerge in the route through these
scenarios, and we devote some space to analyze them.

The presentation is organized as follows:
Section 2 is devoted to introduce basic concepts of quantum

thermodynamics that will be useful to discuss the main mech-
anisms addressed in the forthcoming sections. In particular, we
start presenting definitions of heat and work for quasi-static
and finite-time non-equilibrium processes. We briefly intro-
duce the different formalisms to describe of time-dependent
quantum dynamics in the slow (adiabatic) and fast (Floquet)
regimes. We also present the basic tools to describe the heat
steady-state transport induced by thermal bias applied at the
reservoirs. We finally discuss the description of the meas-
urement processes as a noisy environment for the quantum
system.

Section 3 is devoted to briefly present the simplest models
to describe a qubit system coupled to an environment modeled
by quantum harmonic oscillators.

Section 4 is devoted to the energy dynamics of a single
qubit driven by time-dependent sources and coupled to a single
thermal bath. This corresponds to the analysis of the entropy
production and energy dissipation introduced by the driving
process. A detailed description is possible within the adiabatic
regime, where geometrical approaches and control procedures
like shortcuts to adiabaticity have been proposed.

Section 5 is devoted to the mechanism of energy pumping
for a qubit coupled to a single thermal bath or isollated. We
analyze the adiabatic as well as the fast-driving regimes and
discuss the geometrical and topological properties in a com-
mon framework.

Section 6 continues with the discussion of energy pumping,
but in configurations with several thermal baths, in which case
heat is pumped between the baths as a consequence of driving.

Section 7 introduces the effect of thermal biases between
reservoirs along with time-dependent driving. The combina-
tion of these effects is the basis for the operation of thermal
machines. We consider the case of thermodynamic cycles
where the evolution takes place in steps, with the qubit
evolving isolated or coupled to a single reservoir, as well as
the adiabatic evolution taking place with the qubit coupled to
two reservoirs with a thermal bias.

Section 8 is devoted to review setups to storage energy
based on qubits.

Section 9 focuses on fundamental problems of many-body
physics taking place in qubits coupled to the environment
and their impact on the thermal response of this device. This
includes, the effects of quantum phase transitions in the spin-
boson problem as well as the problem of the thermal drop
and non-linear effects leading to rectification mechanisms.
Related experimental works to some of these problems have
been recently reviewed in [20].

Section 10 is devoted to briefly present the physical proper-
ties of superconducting devices hosting Josephson junctions,
their coupling to the surrounding circuits and their represent-
ations in terms of effective two-level models in contact to har-
monic oscillators. Full details have been presented in [45–49]
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Section 11 is devoted to review experiments on quantum
thermodynamics in qubits and quantum circuits. Finally,
section 12 is devoted to summary and conclusions.

2. Energy dynamics: preliminary concepts

Goal of this review is to analyze the energy dynamics in sys-
tems composed by one or a few interacting qubits coupled to
an external environment, in non-equilibrium scenarios.

The system under consideration is generically described by
the following Hamiltonian

H(t) =
∑
α

Hα +HS[X⃗(t)]+Hcont. (1)

The first term describes the effect of the environment, which
can be modeled by one or more Hamiltonian systems (labeled
withα). The second term describes the few-level quantum sys-
tem controlled by N time-dependent parameters. The label ℓ
will be used to enumerate them and it is convenient for nota-
tion purposes to collect them as components of a vector, X⃗(t) =
(X1(t), . . . ,Xℓ(t), . . . ,XN(t)). The last term describes the con-
tact between the driven quantum system and the environment.
Several mechanisms may take place that are associated to
energy/entropy flow, like dissipation of energy, heat transport,
pumping and heat–work conversion. We will address them in
the forthcoming sections. The aim of this section is to intro-
duce some formal concepts that will help us to analyze the
associated dynamics.

2.1. Quasi-static vs finite-time regimes

The natural question that arises in the discussion of energy
dynamics is how to identify heat and work in a time-dependent
process. This is rather easy to answer in simple terms when
the evolution is quasi-static with the system contacted to one
or more reservoirs at the same temperature T. This situation
has been discussed in textbooks [52] as well as in previous
literature [17, 18, 21, 22]. The useful concept to this end is the
frozenHamiltonianHt, which corresponds to taking a snapshot
of the parameters X⃗(t) at a given time t and define the Hamilto-
nian of equation (1) regarding the parameters as if they were
not time-dependent. We can define a thermal density operator
associated to this Hamiltonian, ρt = e−Ht/(kBT)/Tr

[
e−Ht/(kBT)

]
and use this to calculate the change in the energy stored by the

system, Ut = Tr
[
ρtHS

(
X⃗(t)

)]
, as the system evolves from t

to t+ δt. The result is

dU= Tr
[
dρtHS

(
X⃗(t)

)]
+Tr

ρt ∂HS

(
X⃗(t)

)
∂X⃗(t)

 · dX⃗(t), (2)

and we identify the first term as heat and the second one as
work.

In time-dependent non-equilibrium processes and also in
situations where the reservoirs may have different temperat-
ures, it is more natural to define fluxes. In particular, we can

formally define the power developed by the driving source
characterized by Xℓ(t) by first defining the force operator

Fℓ =− ∂H
∂Xℓ

, (3)

which results in the following expression for the power
developed on the quantum system,

P(t) =

⟨
∂H[X⃗(t)]

∂t

⟩
=
∑
ℓ

Pℓ(t),

Pℓ(t) =−⟨Fℓ⟩Ẋℓ. (4)

Similarly we can calculate the rate of change of the energy
stored in each piece of the device, ⟨Ḣj⟩ with j≡ α,sys,cont.
A quantity of particular importance is the energy flux into the
reservoirs,

Jα(t) =
⟨
Ḣα

⟩
=− i

ℏ
⟨[Hα,H]⟩. (5)

The expectation values in these expressions are taken with
respect to non-equilibrium states. In general, equations (4)
and (5) cannot be calculated exactly and we must resort to
a non-equilibrium quantum many-body approach in order
to solve the problem within some degree of approximation.
An exception corresponds to the case of bilinear Hamilto-
nians (Hamiltonians that can be expressed as combinations
of products of one creation and one annihilation operator)
for the reservoirs as well as the few-level quantum system
and the contact term. Under such conditions, it is possible to
exactly calculate these fluxes by recourse to scattering matrix
or non-equilibrium Green’s functions (Schwinger–Keldysh)
formalisms [53–59]. This is the case of many problems of
electron systems. However, this is not the case of few-level
systems described by spin models in contact to reservoirs
modeled by bosonic excitations. The latter is the relevant pic-
ture in many realizacions of qubit systems.

In a process taking place between the times t1 and t2 we
define the work developed by the time-dependent sources and
the heat entering the reservoir α as follows,

W1→2 =

ˆ t2

t1

dtP(t),

Qα,1→2 =

ˆ t2

t1

dtJα(t), (6)

with P(t) =
∑

ℓPℓ(t). While the definition of work is easily
connected with the usual definition for a quasi-static process
as in equation (2), the definition of heat in the time-domain has
been the subject of several discussions in the context of elec-
tron systems strongly coupled to fermionic reservoirs [60–68]
and, more recently, also in the context of two-level systems
[69]. In particular, there is no full consensus on how to prop-
erly account for the energy stored in the contact terms Hcont of
equation (1).

We now recall that the expectation values for the power in
equation (4) and of the energy flux in equation (5) are defined
with respect to the non-equilibrium time-dependent state of
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the full many-body system, reservoirs and couplings. In order
to make contact to the conventional thermodynamic descrip-
tion and equation (2), it is useful to split these non-equilibrium
quantities into two components as follows,

P(t) = P(cons)(t)+P(non−cons)(t),

Jα(t) = J(qs)α (t)+ J(non−eq)
α (t). (7)

The first components correspond to the expectation values for
the power and the energy flux evaluated with the frozen state ρt
instead of the full non-equilibrium state. They define the con-
servative power (cons) and quasi-static (qs) energy exchange
between system and reservoirs, associated to a sequence of
instantaneous equilibrium states described by ρt,

P(cons)(t) =−
∑
ℓ

Tr [ρtFℓ] Ẋℓ(t),

J(qs)α (t) =− i
ℏ
Tr
[
ρt [Hα,Ht]

]
. (8)

In finite-time processes there is an additional component of
the power, P(non−cons)(t), corresponding to non-conservative
processes, including entropy production, which is accompan-
ied by non-equilibrium energy exchange between the driven
system and the reservoirs, J(non−eq)

α (t). These components are
the most challenging to calculate but they describe the most
interesting effects to be addressed in the present article.

Usually, the coupling between the system and the reservoirs
is weak, in which case these quantities can be evaluated by
means of solving master equations. These have the following
general structure,

dρS
dt

=− i
ℏ
[HS,ρS] +

∑
α

Lα [ρS] , (9)

where ρS is the reduced density operator for the quantum sys-
tem. The first term describes the unitary dynamics of the isol-
ated system, while the ‘Lindbladian’ Lα depends on superop-
erators describing the effect of the coupling between system
and the reservoirs [70]. The underlying assumptions in the
derivation of this equation are (i) a weak coupling between
system and reservoir, justifying the treatment of Hcont as a
perturbation and (ii) reservoir with many degrees of freedom,
which can be represented by a continuum density of states
with short-memory (Markovian) dynamics. The terms enter-
ing Lα depend on rates, which are functions of the coup-
lings, the density of states and the temperature of the reservoir.
In non-equilibrium situations with several thermal baths, this
equation must be used with care. There are also discussions
on the appropriate basis to be chosen. The so called global
version is based on eigenstates of HS, while the local one is
based on eigenstates of those operators enteringHS which also
appear in Hcont [71–77]. The equation of motion of the matrix
elements of ρS can be derived by means of non-equilibrium
Green’s function formalism [78–81] in which case the natural
basis is the set of eigenstates of HS. A similar procedure can
be followed to calculate the currents Jα(t).

2.2. Adiabatic regime: slow dynamics

In quantum mechanics the notion of adiabaticity is related to
the slow evolution. In the context of closed systems, it refers to
changes in the spectrum of aHamiltonian as a function of time-
dependent parameters without level crossings and slow evolu-
tion in time without transitions between states. This implies a
typical time scale for the evolution that is much longer than
the internal time scales associated to inter-level transitions.
The scope of the latter definition can be extended to open
quantum systems by taking into account that the level life-time
related to the coupling between the system and the reservoirs
defines an extra internal time scale. It is important to stress
that in the context of open driven systems adiabatic is not a
synonym of quasi-static evolution. Instead, it corresponds to
the first non-equilibrium correction to the quasi-static evolu-
tion, which is proportional to the rate of change (velocity) of
the time-dependent parameters or, equivalently, to the driving
period in the case of cyclic protocols [59, 80, 82, 83].

In order to provide a more precise meaning of the adia-
batic evolution, we summarize in what follows how to describe
this regime in the general framework of the adiabatic linear-
response formalism of [84, 85], assuming one or more reser-
voirs at the same temperature. This procedure is similar to
Kubo formalism [86], but implementing the perturbation with
respect to the frozen Hamiltonian. The adiabatic evolution
in time of the expectation values of any observable O is
expressed as follows

O(t) = ⟨O⟩t+
N∑

ℓ=1

χad
t [O,Fℓ] Ẋℓ(t), (10)

where ⟨·⟩t indicates that the mean value is taken with respect
to the thermal distribution ρt corresponding to the Hamiltonian
frozen at the time t. This contribution is similar to the so-called
Born-Oppenheimer approximation and it effectively describes
a quasi-static evolutionwhere the system is in equilibrium time
by time. The other terms are the non-equilibrium adiabatic cor-
rections, which depend on the adiabatic susceptibilities

χad
t [O,Fℓ] =− i

ℏ

ˆ t

∞
dt ′(t− t ′)⟨[O(t),Fℓ(t

′)]⟩t. (11)

In the context of closed systems, an equivalent scheme was
implemented with focus on the evolution of the quantum states
[87, 88].

In this framework it is simple to identify the structure of
equation (7) when the energy fluxes in the reservoirs and the
forces are evaluated following the previous procedure. The
first term of equation (10) leads to the quasi-static and con-
servative components defined in equation (8), while the non-
equilibrium and non-conservative components read

P(non−cons)
ℓ (t) = Ẋℓ(t)

∑
ℓ ′

Λℓ,ℓ ′(X⃗)Ẋℓ ′(t),

J(non−eq)
α (t) =

∑
ℓ

Λα,ℓ(X⃗)Ẋℓ(t), (12)

being Λℓ,ℓ ′ =−χad
t [Fℓ,Fℓ ′ ] and Λα,ℓ =−χad

t

[
Ḣα,Fℓ

]
.
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2.3. Adiabatic dynamics of a few-level quantum system
weakly coupled to thermal baths

To calculate explicitly quantities like those defined in
equation (12) in the weak-coupling regime and for slow driv-
ing we can derive a quantum-master-equation following the
procedure of [80, 81, 89]. This is based on expanding the mat-
rix elements of ρS(t) into a frozen and an adiabatic component.
Symbolically, ρS(t) = ρ( f)(t)+ ρ(a)(t), where the upperscript
f indicates that we are considering the Hamiltonian frozen at
a given time tf , for which X⃗(tf) = X⃗. The frozen component is
the solution of the quantummaster equation (9) corresponding
to the frozen Hamiltonian.

The detailed structure of the Lindbladian depends on the
system under study. In many cases it is proposed on phe-
nomenological grounds. In [78–81] a systematic derivation
was proposed starting from a given Hamiltonian. This treat-
ment is formulated in terms of Green’s function (Schwinger–
Keldysh), by implementing a perturbation expansion in the
coupling strength. It focuses on stationary situations as well
as on slow driving and applies to thermal baths at temperat-
ures Tα. We summarize the outcome because this family of
master equations is very useful to analyze the slow dynamics
of qubits coupled to several baths [81, 85, 90]. The starting
point is the Hamiltonian for the few-level system expressed
in the instantaneous basis of eigenstates, {|s⟩, j= 1, . . .L}.
The baths are represented by bosonic excitations described
by H=

∑
kα
εkαa

†
kα
akα . The couplings are expressed as

follows

HS(X⃗) =
L∑
j=1

εj(X⃗)| j(X⃗)⟩⟨ j(X⃗)|,

Hcont,α(X⃗) =
L∑

j,l=1

∑
kα

Vkαξα,j,l(X⃗)| j(X⃗)⟩⟨l(X⃗)|
(
a†kα + akα

)
,

(13)

being ξαj,l(X⃗) elements of the coupling matrix expressed in the
instantaneous eigenbasis. The master equation for the frozen
component, expressed in terms of the matrix elements, reads

dρ( f)lj

dt
=
iϵlj
h
ρ
( f)
lj +

∑
m,n,α

[(
M jn
ml,α +Mlm

jn,α

)
ρ( f)mn −Mmn

jm,αρ
( f)
ln

−Mmn
ml,αρ

( f)
nj

]
. (14)

We have introduced the definition ϵlj = εl(X⃗)− εj(X⃗), and the
rate functions

Γα(ε) = γαnα(ε), Γα(ε) = γα [1+ nα(ε)] . (15)

γα(ε) =
∑

kα
Vkα/ℏδ(ε− εkα) is the spectral function associ-

ated to the coupling to the bath and nα(ε) = 1/(eε/(kBTα) − 1)
is the Bose–Einstein distribution function.

The adiabatic component can be calculated from

dρ( f)lj

dX⃗
· ˙⃗X(t) = iϵlj

h
ρ
(a)
lj +

∑
m,n,α

×
[(
M jn
ml,α +Mlm

jn,α

)
ρ(a)mn −Mmn

jm,αρ
(a)
ln −Mmn

ml,αρ
(a)
nj

]
(16)

with

M jn
ml,α = ξα,ml(X⃗)ξα,jn(X⃗)

{
Γα(ϵjn)+Γα(ϵnj)

}
. (17)

It is important to notice that there are two contributions to the
derivative of the matrix elements of the frozen density matrix
in equation (16) with respect to the parameters. One of the
contributions is because of the change of the rates elements
Mα,j,l as a consequence of the changes of the contacts ξα,j,l(X⃗)
and the energies ϵjl(X⃗). The other contribution is because of the
instantaneous states | j(X⃗)⟩. It is also interesting to highlight
that the latter remain finite even when eliminating the effect of
the coupling to the bath. In such case, equation (16) reduces to
the adiabatic evolution for a driven closed system as described
by ‘adiabatic perturbation theory’ formulated in [87, 88].

Similarly, the frozen and adiabatic component of the energy
current can be calculated from

J f/aα (t) =
∑
m,n,u

ϵun(t)Re
[
Mnu
mn,αρ

( f/a)(t)
]
. (18)

2.4. Floquet regime: fast periodic dynamics

The opposite limit to the quasi-static and adiabatic regimes,
corresponds to very fast driving. In the regime of strong driv-
ing, the notion of a reservoir with a well defined temperature
with which the few-level quantum system is contacted is not
necessarily useful and the mechanism of thermalization is still
under debate [91].

A common situation corresponds to periodic driving with
one or more commensurate frequencies and the appropriate
framework to describe these problems is Floquet theory [92]
which is the time analog of Bloch theory for spatially periodic
systems. This type of driving received significant attention
recently for the potential to generate novel collective beha-
vior in quantum systems, which may lead to novel states of
the matter [91]. The realization of some of these exotic phases
has been recently experimentally realized in a quantum pro-
cessor of superconducting qubits [93].

In the case of a single frequency ω, the Hamiltonian sat-
isfies H(t+ τ) = H(t), with τ = 2π/ω. This operator can be
expanded in Fourier series as

H(t) =
∑
k

eikωtHk. (19)
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The Floquet eigenstates have a structure consistent with this
periodicity,

|ψ(t)⟩= eiε/ℏt
+∞∑

n=−∞
e−inωt|ψm⟩. (20)

Hence, when substituted in the Schrödinger equation and using
equation (19) we find

(ε+ ℏωn) |ψn⟩=
+∞∑

m=−∞
Hm|ψn+m⟩, (21)

which defines a problem with a tight-binding structure in the
synthetic Floquet lattice. The structure of this equation also
reveals the exchange of ‘Floquet quanta’ ℏω underlying this
dynamics and effectively provides and environment for the
driven system.

This formulation can be generalized for the case ofM com-
mensurate frequencies, in which case it is convenient to define
ω⃗ = (ω1, . . . ,ωM) and also collect the corresponding Floquet
indices in a vector n⃗. Equation (21) is generalized to

(ε+ ℏω⃗ · n⃗) |ψn⃗⟩=
∑
m⃗

Hm⃗|ψn⃗+m⃗⟩. (22)

In this scenario, very interesting ideas have been formulated
on the transport or exchange of power between the driving
sources, some of them will be reviewed in section 5.3. The rel-
evant quantity to analyze is the power defined in equation (4).
For the case where X⃗(t) = ω⃗t+ φ⃗, where φ⃗ encloses M inde-
pendent phases, we get the following expression for the power
developed by the ℓth force,

Pℓ(t) = ωℓ⟨Fℓ⟩. (23)

The expectation value is calculated with respect to the non-
equilibrium state |ψ(t)⟩.

2.5. Thermal bias: non-equilibrium stationary regime

When the system is not driven (X⃗ is constant in time) but it is
contacted to several reservoirs at different temperatures, a heat
current is established following the thermal bias through the
device. Under these conditions the relevant quantity to analyze
is the steady-state heat flux at each reservoir, Jα.

The simplest configuration to discuss the mechanism of
thermal transport corresponds to a few-level system directly
connected to two reservoirs at different temperatures, Th > Tc.
The natural process in this case is a stationary heat flux from
the hot to the cold reservoir through the quantum system. On
general grounds, we should expect that the energy fluxes into
the two reservoirs are amenable to be expressed as power
series of the thermal bias ∆T= Th −Tc,

Jα =
∞∑
n=1

κα,n (∆T)
n
, α= c,h. (24)

The concomitant rate of entropy production at the reservoirs
reads

Ṡ=
∑
α=c,h

Jα
Tα
, (25)

and can be also expressed in terms of a Taylor series in
∆T. In the limit of small thermal bias, where only the lin-
ear component contributes, energy conservation is assumed.
Hence Jc =−Jh = J, which implies κh,1 =−κc,1 = Gth. The
latter parameter is the thermal conductance. When the linear-
response contribution is substituted in equation (25) we get
Ṡ= Gth (∆T)

2
/Tc. This simple heuristic observation allows

us to conclude that energy dissipation leading to entropy pro-
duction is a non-linear process, which is consistent with the
assumption that energy is conserved if we restrict ourselves to
the linear-order contributions.

The linear regime is properly accounted for the Landauer–
Büttiker formula, which can be derived exactly for bilinear
Hamiltonians [53–57],

Jc =
ˆ +∞

−∞
dε ε T (ε) [nh(ε)− nc(ε)]

=−Jh = J, exact for bilinear hamiltonians, (26)

T (ε) is the so called transmission function which charac-
terizes the transparency of the device to transmit an amount
ε of energy across it, while nα(ε) = 1/(eβαε − 1) is the
Bose–Einstein distribution function (assuming that the bath
is described as a gas of non-interacting bosonic excitations),
depending on the temperature of the reservoir through βα =
1/(kBTα). The transmission function depends on the micro-
scopic details of the setup, including the spectral properties of
the reservoirs, the central system and the couplings. In some
cases, the same structure of equation (26) is obtained for sys-
tems with many-body interactions within linear response, but
with a temperature-dependent transmission function T (ε,T).
We shall analyze some examples in section 9.2.

Beyond linear response, and for non-bilinear Hamiltonians,
it is necessary to resort to other non-equilibrium many-body
techniques to independently calculate the currents at each
reservoir. Notice that many-body interactions are expected to
introduce inelastic scattering processes that generate dissipa-
tion. That type of effects are expected to generate dissipative
components in the fluxes into the reservoirs. For weak coup-
ling between system and reservoir, quantum master equations
is the most popular framework. Following a similar derivation
as that leading to equation (9), the current at each reservoir can
be written as the frozen component of equation (18). The time
dependence in this case is not introduced by the Hamiltonian,
but by the fact that ρ̂ f(t) is the solution of the time-dependent
equation (14). The relevant regime is the long-time solution

Jα = lim
t→∞

Jα(t). (27)

The underlying assumption in this type of calculation is that
the reservoirs have a well defined temperature. For situations

7
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where the temperature bias is large, many-body interactions
may contribute to build-up an effective temperature profile
along the quantum system if it has a spatial distribution. We
shall discuss this aspect in section 9.

2.6. Slow dynamics in combination with small thermal bias.
Thermal geometric tensor and Onsager relations

The simultaneous effect of a thermal bias and driving is of
great interest in the study of thermal machines operating
in contact to thermal baths at different temperatures. In the
case of slow dynamics and for a the case of two reservoirs
with a small thermal bias ∆T—such that ∆T/T is a small
parameter—the adiabatic formalism introduced in section 2.2
can be adapted to include ∆T/T as an additional entry in an

extended vector Ẋ= (
˙⃗X,∆T/T). The extra entry associated to

the temperature bias is labeled by N+ 1. This procedure can
be naturally implemented in a very general way starting from
the Hamiltonian representation of the thermal bias introduced
by Luttinger [94, 95] and following similar steps as in the adia-
batic Kubo-like derivation presented in section 2.2. Details can
be found in [85]. Here, we outline the main result, according
to which the expressions for the non-conservative power and
the non-equilibrium heat fluxes presented in equation (12) are
extended to

P(non−cons)
ℓ (t) = Ẋℓ(t)

∑
ℓ ′

Λℓ,ℓ ′(X⃗)Ẋℓ ′(t)+ Ẋℓ(t)Λℓ,N+1(X⃗)
∆T
T

,

J(non−eq)
c (t) =

∑
ℓ

ΛN+1,ℓ(X⃗)Ẋℓ(t)+ΛN+1,N+1(X⃗)
∆T
T

. (28)

The notation highlights the fact that the linear-response coef-
ficients define a (N+ 1)× (N+ 1) matrix which is named the
thermal geometric tensor. The geometrical nature is because
of the dependence of all the entries on X⃗. The last term of the
second equation is proportional to the thermal conductance of
the system.

In the case of cycles, and focusing on quantities averaged
over the period τ , the same argument of the previous section,
regarding energy conservation of power-counting in Ẋ leads
us to conclude that

ˆ τ

0
dtJ(non−eq)

c (t) =−
ˆ τ

0
dtJ(non−eq)

h (t) = Qc. (29)

Importantly, the linear response coefficients can be shown to
satisfy Onsager relations [84, 85] so that

ΛN+1,ℓ(X⃗) =−sℓΛℓ,N+1(X⃗), Λℓ,ℓ ′(X⃗) = sℓsℓ ′Λℓ ′,ℓ(X⃗).
(30)

The sign sℓ =± depends on whether the operators Fℓ are
even/odd under the transformation t→−t.

Here, we see that the thermal geometric tensor has sym-
metric and antisymmetric components. The entropy genera-
tion is associated to the symmetric component. In fact, the
entropy production is associated to the total dissipated work.
This contains a component due to the work done by the non-
conservative driving forces and another component which

accounts for the thermal bias—the latter is the usual contri-
bution taken into account in thermoelectricity (see [19])—and
the result is

W(diss) =

ˆ τ

0
dt

{
N∑

ℓ=1

P(non−cons)
ℓ (t)+ J(non−eq)

c (t)
∆T
T

}

=

ˆ τ

0
dt ˙⃗X ·ΛS(X⃗) · ˙⃗X+ΛN+1,N+1

(
∆T
T

)2

, (31)

where we have introduced the notation ΛS(X⃗) for the matrix
containing the symmetric component of Λℓ ′,ℓ(X⃗).

All these results are valid for any system and for any type
of coupling to the thermal baths. In the case of weak coup-
ling, the explicit calculation of the coefficients defining the
thermal geometric tensor can be accomplished by solving
equations (14), (16) and (18) with a small temperature differ-
ence ∆T and performing a linear expansion in this quantity.

2.7. From Lindblad equation to quantum trajectories

The description based on quantum master equations, briefly
introduced in section 2.1, resembles the classical Langevin
dynamics of the Brownian particle embedded in the bath.
Stochastic thermodynamics is the field where this theoretical
description is elaborated in classical [96–98] and quantum-
mechanical [99–101] contexts. Recently, there is a surge of
interest in analyzing the effect of quantum measurements in
the evolution of qubit systems. Measurements are key ele-
ments in quantum mechanics in general and are fundamental
processes in the operation of quantum computing devices. In
principle, a measurement protocol could be represented by a
time-dependent term in the Hamiltonian of equation (1). How-
ever, if the consequent outcome is fast enough, it is appropri-
ate to represent this effect as a stochastic perturbation. This
point of view was adopted some time ago in the theory of con-
tinuous measurements and quantum trajectories [102, 103].
Nowadays, it motivates the study of phase transitions induced
by the effect of measurements in arrays of qubit systems,
which is an active avenue of research [104–106].

In the context of quantum thermodynamics, the stochastic
effect of measurements formally plays an analogous role as the
thermal bath but of a quantum nature [107–111]. The descrip-
tion of the stochastic dynamics has been combined with Lind-
blad master equation for a single qubit weakly coupled to
a single reservoir and we summarize below the main ideas.
Lindblad equation is formally expressed as equation (9) with

L [ρS] =
D2−1∑
k=1

Γk

(
Lkρ̂SL

†
k −

1
2

{
ρS,L

†
kLk

})
, (32)

being D the dimension of the Hilbert space of the system
and {., .} denoting anticonmmutation. The quantities Γk are
rates describing the coupling with the reservoir and Lk are
‘jump’ operators, describing the changes between the differ-
ent quantum states of the system. The effect of the measure-
ment is introduced by considering a stochastic unravelling of
this equation. This can be implemented by taking the statistical
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average over a completely positive trace-preserving map that
inverts equation (9). Such a procedure is achieved by introdu-
cing Kraus operators as follows [107]

ρS(t+ dt) =
D∑

K=1

MK(t)ρS(t)M
†
K(t), (33)

where K denotes the labeling of the eigenbasis defining the
measuring apparatus, while

MK(t) =

1− i
ℏ
dtHeff(t)+

D2−1∑
k=1

√
Γkdw

K
k (t)Lk


×
√∏

k

p(dwK
k (t)),

Heff(t) = HS(t)−
i
2

D2−1∑
k=1

ΓkL
†
kLk. (34)

Here dwK
k (t) is an stochastic increment that satisfies

⟨dwK
k (t)⟩γ = 0, ⟨⟨dwK

k (t)dw
K
l (t)⟩γ = dtδ(t− t ′)δk,l,

(35)

and p(dwK
k (t)) is the corresponding probability. Each realiz-

ation of the stochastic increment defines a quantum traject-
ory. Hence, the notation ⟨. . .⟩γ indicates average over quantum
trajectories.

Other procedures following similar ideas have been
recently proposed for the analysis of measurements in non-
equilibrium situations [112, 113]. Quantum fluctuations play
a relevant role in this context [114–119] and several works rely
on the formalism based on quantum jumps and the trajectory
description of the evolution of the system to analyze this effect
[120–124].We shall not address this topic in the present review
and we defer the reader to other review articles where it has
been covered [17, 18, 21, 22, 100, 111].

As we shall discuss in section 2.7, in quasi-static processes
it is usual to define heat andwork following the same reasoning
as in the case described in equation (2) upon calculating the
traces with the operator ρS(t) after solving equation (33) and
taking the average over all the quantum trajectories.

3. Models for a qubit and the environment of
harmonic oscillators

A qubit is a two-level system amenable to be operated in order
to prepare quantum superpositions of the basis states. The
paradigmatic Hamiltonian to describe such a system is,

Hqubit =−Bzσz−Bxσ
x, (36)

where σx, σz are the Pauli matrices. We are considering
the basis of eigenstates of the first term of equation (36),
{| ↑⟩, | ↓⟩}. The effect of the second term is to generate the
mixing of these two states. This Hamiltonian can be real-
ized in a wide variety of platforms, including atomic sys-
tems, semiconductors, NV centers, and superconductors [1].

In section 10 we shall briefly explain its realization in super-
conducting devices.

We focus on environments which can be represented by sets
of quantum harmonic oscillators. This model was introduced
by Caldeira and Leggett [125–127] and naturally describes
a reservoir of photons or phonons. As we shall discuss in
section 10, microwave resonators and transmission lines (TLs)
in cQED are also represented by this type of model. The cor-
responding Hamiltonian reads

Hres =
∑
k

ℏωka†kak, (37)

where a†k/ak creates/destroys a bosonic mode with frequency
ωk. The number of relevant modes entering this Hamiltonian
depends on the problem under study. We shall analyze in the
forthcoming sections many situations where it contains an
infinite number of modes, in which case this system behaves
as a reservoir or a thermal bath.

A natural and simple coupling between the two systems is

Hqubit−res =
∑
k

g⃗k · σ⃗
(
a†k + ak

)
, (38)

with σ⃗ = (σx,σy,σz). The coupling to the reservoir depends
on the state of the qubit. For instance, in the case of g⃗k =
(gk,x,0,0,0), the qubit and the bath are coupled when the state
of the qubit has a projection along the x-direction in the Bloch
sphere. In section 10 we shall show that this type of coup-
ling is naturally derived in common architectures of supercon-
ducting qubits coupled to TLs. In the theoretical description it
is sometimes convenient to consider the coupling of Jaynes–
Cummings model [128] of quantum optics, which reads

HJ−C =
∑
k

gk
(
σ+ak+σ−a†k

)
, (39)

with σ± = σx± iσy. This coupling is interpreted as a trans-
ition from the ground state to the excited state of the two-level
system by absorbing a photon and the opposite process, where
a photon is emitted as the state of the system changes from the
excited to the ground state.

The Hamiltonian for the two-level system coupled to a
bath of harmonic oscillators defines the celebrated spin-boson
model [127, 129]. In the theoretical description it is useful to
introduce an hybridization function characterizing the coup-
ling of the two-level system with the environment,

Γ(ε) = 2π
∑
k

|gk|2δ(ε− ℏωk). (40)

For an environment with an infinite number of oscillator
modes, this is a continuous function and it is usual to model
it by a power-law Γ(ε)∝ εs. The case with s= 1 is named
ohmic environment, while the cases with s> 1,<1 are named,
respectively, super-ohmic and sub-ohmic. This model has a
quantum phase transition at zero temperature depending on
the strength of coupling between the system and the reservoir
and the spectral properties of the latter (ohmic, subohmic or
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superohmic) [130, 131]. The phase transition from a state that
is a combination of the two qubit states to one where the
ground state is localized at one of them takes place above a
critical coupling. The type of transition strongly depends on
the nature of the bath. In the sub-ohmic case, the transition
is of second-order [132–137], while the ohmic case shows
a Kosterlitz-Thouless transition [127, 138, 139]. The super-
ohmic case does not have a phase transition but exhibits a
crossover. Another interesting feature of the ohmic envir-
onment is the associated Kondo effect [140] at sufficiently
low temperatures [141, 142]. In most of the real situations,
mainly in cQED, the degree of coupling between the qubit
and the environment is weak, which prevents the experi-
mental analysis of this phase transition and justifies its the-
oretical study by means of Lindblad-type quantum master
equations. Quite recently, however, strong-coupling configur-
ations were realized between superconducting circuits and the
electromagnetic environment [143–147], which enabled the
realization of the strongly-coupled spin-boson model in this
platform.

In the next sections we shall discuss different mechan-
isms of energy dynamics with focus on a single qubit. In
spite of the simplicity of this system, when the effect of time-
dependent driving is included and different settings with one
or more reservoirs are considered, a rich variety of phenom-
ena may take place. Our goal is to analyze several of them
in detail. Concretely, we shall consider the case of the qubit
coupled to a single reservoir at finite temperature under time-
dependent driving, in which case we identify two interest-
ing mechanism taking place: (i) energy dissipation because
of the driving (ii) power exchange between driving sources.
Then, we shall turn to analyze configurations where the qubit
is coupled to two reservoirs at the same temperature and under
time-dependent driving, where the interesting mechanism is
the possibility of pumping energy between the two reser-
voirs as a consequence of the driving. Next, we shall ana-
lyze the configurations where the driven qubit is coupled to
two reservoirs at different temperatures. This enables the real-
ization of thermal machines: heat-engines and refrigerators.
We shall also discuss the realization of batteries in config-
urations of qubits coupled to reservoirs and isolated. In the
case of arrays with two reservoirs at different temperatures,
we shall also analyze the thermal transport in the steady-state
regime.

4. Driving and energy dissipation

4.1. General considerations

One of the simplest albeit non-trivial configurations is a single
qubit under time-dependent driving coupled to a single bath
with a well defined temperature T. In terms of the two-level
Hamiltonian, these effects can be represented by the following
Hamiltonian

Hqubit(t) =−B⃗
[
X⃗(t)

]
· σ⃗, (41)

Figure 1. Illustration of the consequent energy dynamics of the
qubit under a time-dependent operation in contact to a thermal bath.
The qubit is represented by two-levels and the vector B⃗ (grey
arrow). The corresponding quantum state in Bloch coordinates is
represented by the blue arrow. The energy dynamics consists in the
exchange of work with the time-dependent sources and the
exchange of heat between the qubit and the reservoir as described
by equations (6) and (7). The net effect in a finite-time process is the
transformation of the work invested by the external sources into heat
that is dissipated into the reservoir.

with B⃗
[
X⃗(t)

]
=
(
Bx

[
X⃗(t)

]
,By

[
X⃗(t)

]
,Bz

[
X⃗(t)

])
depending

on time through the protocols X⃗(t), while σ⃗ = (σx,σy,σz)
is composed by the three Pauli matrices operating in the
qubit Hilbert space. It is natural to assume the coupling
between the driven qubit and the bosonic reservoir described
by equation (38).

The full system is described by the Hamiltonian

H(t) = Hqubit (t)+Hqubit−res +Hres, (42)

where Hres =
∑

kℏωka
†
kak is the Hamiltonian of the

Caldeira–Leggett bath of harmonic-oscillator modes as in
equation (133).

The device and represented by the Hamiltonian of
equation (42) is illustrated in figure 1. As a consequence of
the driving represented by B⃗(t) the qubit state changes in time.
In general, this also affects the degree of coupling between the
qubit and the reservoir. In this process, energy is exchanged
between the driving sources and the qubit-reservoir system.
If it takes place at a finite-time this corresponds to a non-
equilibrium evolution of the combined qubit-reservoir system
and the net result is the dissipation of the supplied energy in
the form of heat into the reservoir. The rest of this section is
devoted to analyze this mechanism.
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4.2. Adiabatic regime and thermodynamic length

We analyze here the mechanism of dissipation introduced by
the time-dependent driving in the adiabatic regime. We recall
that the main general ideas of this approach were presented in
section 2.2.

The dissipation is accounted for the non-conservative
component of the developed power, equation (12), P(diss) ≡
P(non−cons). We conclude that the net entropy production as
the system is driven between the times t1 and t2 can be
expressed as

TΣ=W(diss) =
∑
ℓ,ℓ ′

ˆ t2

t1

dtẊℓ(t)Λ
S
ℓ,ℓ ′(X⃗)Ẋℓ ′(t), (43)

being T the temperature of the reservoir, Σ the total entropy
production and W(diss) the net dissipated work.

At this point we can introduce the ideas associated to the
geometric description of the energy dissipation and entropy
production of slowly driven systems, which recently became a
topic of interest in finite-time thermodynamics. A fundamental
concept behind this description is the thermodynamic length
introduced in [148, 149] and further elaborated in [150–159].

The key property is the fact that ΛS
ℓ,ℓ ′(X⃗(t)) is positive def-

inite because of equation (43) and the fact that the second
law of the thermodynamics implies Σ⩾ 0. Consequently, this
tensor has the necessary properties to be the metric of a
Riemannian space. In a Riemannian metric it is possible to
define the distance along curves connecting different points.
The length of a curve parameterized by t, from t1 to t2 is

L=

ˆ t2

t1

dt

√
˙⃗X(t) ·ΛS(X⃗) · ˙⃗X(t), (44)

where we denoted by Λ(X⃗) the matrix with elements Λℓ,ℓ ′(X⃗).
The curves of minimal distance are called geodesics. Using

Cauchy–Schwartz inequality,
´ t1
t0
dt f 2
´ t2
t1
dtg2 ⩾

[´ t2
t1
dt fgdt

]2
,

with g= 1 and f being the argument of the integral of
equation (44) leads to the following relation

TΣ⩾ L2

δt
, (45)

with δt= t2 − t1. The dissipated power TΣ is a non-geometric
quantity because it depends on the way in which the path in
the parameter space is circulated. Nevertheless equation (45)
tells us that it is lower-bounded by a purely geometric quantity
which depends on the path, the thermodynamic length L. The
lower bound of equation (45) is saturated when the integrand
is constant along the path. This corresponds to circulating at a
velocity that satisfies a constant dissipation rate at each point
of the trajectory. Among all the possible protocols, there exist
one path—the geodesic– for which L and therefore the dissip-
ation is minimal [150, 151, 155]. This is a remarkable prop-
erty, which is very useful in the design of optimal finite-time
protocols.

In the limit of weak coupling to the reservoir, this descrip-
tion can be combined with a Lindblad master equation and the

adiabatic expansion explained in section 2.2. Here we sum-
marize the main steps. The starting point is the density matrix
expressed in the instantaneous frame of eigenstates of the qubit
Hamiltonian. This is achieved by transforming the Hamilto-
nian of equation (41) with a unitary transformation U(X⃗) as
follows

Hqubit(X⃗) = |B⃗(X⃗)|U(X⃗)σzU−1(X⃗). (46)

In the case of a qubit, a very convenient representation relies
on introducing vectors with the matrix elements ρ( f/a) in
equations (14) and (16), which are defined from the decompos-
ition of the frozen density operator in Pauli matrices as follows

ρ( f) =

(
σ0 + ρ⃗( f) · σ⃗

)
2

, ρ(a) =
ρ⃗(a) · σ⃗

2
(47)

with ρ⃗( f/a) =
(
ρ
( f/a)
x ,ρ

( f/a)
y ,ρ

( f/a)
z

)
, and

ρ( f/a)x = ρ
( f/a)
12 + ρ

( f/a)
21 , ρ( f/a)y = i

(
ρ
( f/a)
12 − ρ

( f/a)
21

)
,

ρ( f/a)z = ρ
( f/a)
11 − ρ

( f/a)
22 . (48)

In this notation, the action of the Lindbladian operator in the
master equation for ρ define a matrix M(X⃗) and a vector γ⃗
in terms of which the stationary solution of equations (14)
and (16) can be written as follows

M(X⃗)ρ⃗( f)(X⃗) = γ⃗( f)(X⃗),
∑
ℓ

∂ρ⃗( f)(X⃗)
∂Xℓ

Ẋℓ =M(X⃗)ρ⃗(a)(X⃗).

(49)

The solution is

ρ⃗(a)(X⃗) =
∑
ℓ

M−1(X⃗)
dρ⃗( f)(X⃗)
dXℓ

Ẋℓ. (50)

As mentioned in section 2.2, it is important to consider in
dρ⃗( f)(X⃗)/dXℓ, not only the changes because ofM(X⃗), but also
the change of basis introduced by U(X⃗) in equation (46). The
dissipated energy because of the driving mechanism in a time
interval between t1 and t2 reads

W(diss) =
∑
ℓ

ˆ t2

t1

dtTr

[
ρ(a)

∑
ℓ

∂Hqubit(X⃗)

∂Xℓ

]
Ẋℓ

≡
∑
ℓ

ˆ t2

t1

dtTr

[
ρ(a)

∑
ℓ

Fℓ(X⃗)

]
Ẋℓ. (51)

where Hqubit(X⃗) denotes the frozen Hamiltonian of the driven
qubit. Introducing the representation

Fℓ(X⃗) = f⃗ℓ(X⃗) · σ⃗, (52)

and substituting equation (50) in equation (51) leads to the
expression of equation (43) with

ΛS
ℓ ′,ℓ(X⃗) =M−1(X⃗)

dρ⃗( f)(X⃗)
dXℓ ′

· f⃗ℓ(X⃗). (53)
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These ideas became recently very useful in the study of
the slow evolution of driven qubits. They were the guide
in the search for optimal protocols to minimize the dissipa-
tion in a single driven qubit weakly contacted to a reservoir
modeled by the Hamiltonian of equation (137) and also for a
set of coupled qubits [160, 161]. Notice that while the bound
of equation (45) is known to exist, the explicit form of the
geodesic implies solving a non-trivial differential equation.
In [160] the derivation leading to equation (50) was formu-
lated in the language of Lindbladian operators and the Drazin
inverse. Analytical expressions were derived for a single qubit
a bath of harmonic oscillators modeled by equation (42) with
X⃗(t) = (B(t),θ(t),φ(t)) and

B⃗
(
X⃗
)
= Bn⃗, n⃗= (cosφsinθ,sinφsinθ,cosθ) , (54)

for which the unitary transformation entering equation (46)
reads

U(X⃗) =

(
cos(θ/2) −e−iφ sin(θ/2)
eiφ sin(θ/2) cos(θ/2).

)
(55)

Details of the calculation are presented in appendix A.
The result for the symmetric component of the thermal geo-

metric tensor defining the metric in equation (44) is [160]

ΛS
ℓ,ℓ ′ = Diag

(
βλB,Bλq,Bλq sin

2 θ
)
, (56)

with

λB =
1

Γ(B)
sinh(βB)

cosh3(βB)
, λq =

1
Γ(B)

tanh2(βB). (57)

The function Γ(B) = γ0Bs with s= 1,> 1,< 1 defines the
spectral properties of the bosonic bath (Ohmic, super-Ohmic
and sub-Ohmic, respectively).

This behavior is intriguing, since we can see that radial pro-
tocols are less dissipative than those evolving tangentially over
a solid angle in the low temperature regime where βB> 1.
This reveals the different nature of these two protocols. The
radial one affects an exponentially small fraction of the pop-
ulations and has a small impact at low enough temperatures.
Instead, the tangential one directly affects the off-diagonal ele-
ments of the density matrix (coherences). This remarkable dif-
ferent behavior exhibits the relevance of optimizing the proto-
cols in order to reduce the dissipation.

These ideas were also used to minimize the dissipation
in finite-time Otto and Carnot cycles implemented in qubits
[162, 163], to analyze the work fluctuations in these systems
[164, 165], and more recently, to minimize the dissipation in
cycles implemented in qubits simultaneously coupled to sev-
eral reservoirs [90, 166].

4.3. Shortcuts to adiabaticity

The first ideas behind the concept of shortcuts to adiabaticity
were proposed byBerry [167] in the context of closed quantum

systems and are formulated in simple terms in the abstract of
that paper:

For a general quantum system driven by
a slowly time-dependent Hamiltonian, trans-
itions between instantaneous eigenstates are
exponentially weak. But a nearby Hamilto-
nian exists for which the transition amp-
litudes between any eigenstates of the original
Hamiltonian are exactly zero for all values of
slowness.

Such nearby Hamiltonian is constructed by adding
‘counter-diabatic’ terms to the original time-dependent one.
In practice, this implies considering the evolution defined by
the following effective Hamiltonian

Heff(t) = H(t)+ iℏ
∑
n

(|∂tn⟩⟨n| − ⟨n|∂tn⟩|n⟩⟨n|) , (58)

where {|n⟩} are the instantaneous eigenstates of the original
Hamiltonian H(t).

For some years now, this is a topic of great interest with
many applications and the recent developments are covered
in [168]. Taking into account the analysis of the dissipation
in finite-time protocols discussed in section 4.2, it is expected
that this type ofmechanism could be useful tominimize dissip-
ation without requiring slow driving. The explicit calculation
of the counter-diabatic terms in equation (58) is a non-trivial
problem since they depend on the states of the full Hamilto-
nian. While that calculation is in principle possible for closed
systems, this is a difficult task in the case of quantum sys-
tems coupled to reservoirs [169, 170]. Furthermore, the addi-
tional counter-diabatic terms are expected to generate addi-
tional dissipation.

An interesting and different approach amenable to be used
in open quantum systems was proposed in [161, 171]. The
strategy is similar to the adiabatic linear response formalism
reviewed in section 2.2. However, instead of considering a
slow evolution, an arbitrary fast evolution with a small amp-
litude is considered. This is basically the scenario of usual
linear response theory and Kubo formalism [86]. Concretely,
small changes in the amplitudes of the parameters but arbitrary
speed as the system evolves from t0 to t1 = t0 + δt are assumed
such that

X⃗(t) = X⃗(t0)+ g(t)δ⃗X, (59)

with g(t0) = 0 and g(t1) = 1. In this approach the Hamiltonian
of the system is expanded as

H(t) = H(X⃗0)− g(t)
∑
ℓ

Fℓ(X⃗0) δXℓ. (60)

Expressing the definition of the work given in equation (6) as

W0→1 =−
∑
ℓ

ˆ t1

t0

⟨Fℓ(X⃗)⟩ Ẋℓ(t) =W(cons) +W(diss), (61)
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and calculating ⟨Fℓ⟩ in linear response, it is found

W(diss) =
∑
ℓ,ℓ ′

δXℓ δXℓ ′

ˆ t1

t0

dt
ˆ t

−∞
dt ′ ġ(t)Ψℓ,ℓ ′(t− t ′) ġ(t ′),

(62)

with

−dΨℓ,ℓ ′(t− t ′)
dt ′

= χℓ,ℓ ′(t− t ′) =− i
ℏ
Θ(t− t ′)

×⟨[Fℓ(t),Fℓ ′(t ′)]⟩0, (63)

beingχℓ,ℓ ′(t− t ′) the retarded susceptibility,Θ(t) is the Heav-
iside function and ⟨.⟩0 indicates that the statistical averages are
calculated with respect the Hamiltonian H(X⃗0). In [161] it is
argued that there exist special protocols satisfying the small
amplitude condition in a qubit system where the coupling with
reservoir is vanishing small and having W(diss) = 0. For finite
coupling, we should expectW(diss) ̸= 0, even in the limit where
the coupling is weak. In such cases, equation (62) could be
used to minimize W(diss) in fast processes. The comparison
of this approach with the optimization in the adiabatic regime
analyzed in section 4.2 is an interesting open problem.

5. Power pumping

5.1. General considerations

The mechanism of power pumping consists in the exchange of
power between driving sources of different nature in quantum
systems under cyclic driving. It may take place in open as well
as in closed quantum systems and has been been studied in
qubits in [172–174].

The net power pumping between two sources ℓ, ℓ ′ is quan-
tified by the time-average of

P(pump)
ℓ,ℓ ′ (t) =

Pℓ(t)−Pℓ ′(t)
2

, (64)

where Pℓ(t) is defined in equation (4).
In the adiabatic regime discussed in section 2.2 substituting

the expansion of equation (12) in equation (64) leads to

P(pump)
ℓ,ℓ ′ (t) =

Pℓ(t)−Pℓ ′(t)
2

= Ẋℓ(t) Λ
A
ℓ,ℓ ′(X⃗) Ẋℓ ′(t), adiabatic, (65)

where we have dropped the conservative component because
its average over a cycle vanishes. This equation stresses that
only the antisymmetric component of Λℓ,ℓ ′(X⃗) contributes.
Recalling that in section 4 it was shown that only the sym-
metric component of this tensor contributes to dissipation, we
see that power pumping can be viewed as the complementary
process to dissipation. In fact, driving forceswith an associated
antisymmetric adiabatic susceptibility do not contribute to dis-
sipation but behave similarly to a Lorentz force. This has been
discussed in driven electron systems [175–177] and in mod-
els of coupled harmonic oscillators [156]. This mechanism is
likely to be related to other work-work conversion proposals
studied in the literature [178, 179].

5.2. Topological power pumping in the adiabatic regime

One of the most paradigmatic effects associated to the adia-
batic evolution is the generation of a geometric phase that
accumulates in a cyclic protocol. This phase contributes inde-
pendently to the dynamical time-dependent one and provides
signatures of the properties of a quantum system. In quantum
mechanics this concept has been put forward by Berry
[180–182], but such a phase is not exclusive of this field and
also appears in the slow evolution of classical systems [183].
Importantly, this is a fundamental concept in the characteriza-
tion of topological phases of matter [184–189]. In fact, Chern
insulators, which are one of the best well-known topological
states of matter and include the quantum Hall state, are char-
acterized by a quantized Berry phase normalized by 2π: the
Chern number. The Berry phase can be alternatively evaluated
as an area integral of the Berry curvature.

Remarkably, these geometrical properties can be found in
the adiabatic dynamics of single qubit system. Here, the rel-
evant regime corresponds to low enough temperatures where
the system evolves close to the instantaneous ground state.
This was shown in [190] and it was experimentally verified
in [191], which will be reviewed in section 11.3. Here, we
start by briefly reviewing the main ideas of [190] expressing
them in the same notation of previous sections. In that work,
the adiabatic dynamics of the Hamiltonian of equation (41) is
analyzed and it is shown that some protocols are character-
ized by a Berry phase. In particular, spherical coordinates as
defined in equation (54) are considered and a protocol with B
constant and constant velocity θ̇ is implemented. The adiabatic
dynamics of the expectation value of Fϕ =−∂Hqubit/∂ϕ (see
section 2.2) is

⟨Fϕ⟩(t) = ⟨Fϕ⟩t+Λϕ,θ(θ,ϕ)θ̇(t). (66)

For the system in the ground state, |g⟩, the calculation of the
adiabatic susceptibility leads to

Λϕ,θ =Ωg = iℏ [⟨∂ϕg|∂θg⟩− ⟨∂θg|∂ϕg⟩] , (67)

wherewe see that it is purely antisymmetric and coincideswith
the definition of the Berry curvature. The explicit calculation
gives Λϕ,θ = ℏ/2sinθ, and the integration over the spherical
surface leads to the definition of the Chern number, which is
found to be quantized,

Cg =
1
2π

ˆ π

0
dθ
ˆ 2π

0
dϕ Ωg = 1. (68)

This result indicates that ⟨Fϕ⟩ can be characterized by the
Chern number and that it can be quantized for some proto-
cols. As we highlighted in equation (67), the Berry curvature
is related to the antisymmetric component of Λℓ,ℓ ′ and this
property has also been noticed in open quantum systems con-
nected to reservoirs at finite temperature [85].

The fact that ΛA
ℓ,ℓ ′ defines forces characterized by topolo-

gical numbers in a qubit and recalling equation (65) suggests
the possibility of topological power pumping in the adiabatic
regime of these systems. This is precisely confirmed by ana-
lyzing the results reported in [174]. In that paper, and also
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in [172, 173], the Hamiltonian of equation (41) is considered
with

B⃗(X⃗) =
B0

2
(sinX1,sinX2,2+ δ− cosX1 − cosX2) . (69)

This model is formally identical to the reciprocal-lattice rep-
resentation of a model for a Chern insulator [192, 193].
In the present case, there are two driving parameters,
X⃗= (X1(t),X2(t)), and the corresponding adiabatic reaction
forces are

F1 =− ∂H
∂X1

=
B0

2
[σx cosX1 +σz sinX1] ,

F2 =− ∂H
∂X2

=
B0

2
[σy cosX2 +σz sinX2] . (70)

The implemented driving protocol is

Xℓ(t) = ωℓt+φℓ, (71)

with frequencies ωℓ, ωℓ ′ such that they are small enough to
justify the adiabatic description. The explicit calculation of
the pumped power considering the system in the ground state
leads to

P(pump)
1,2 (X⃗) =

P1 −P2

2
= ω1ω2 Λ

A
1,2(X⃗), (72)

with ΛA
1,2(X⃗) = Ωg, given by equation (67) upon substituting

ϕ,θ by 1,2. Therefore, the pumped power is expressed as a
Berry curvature. The Hamiltonian of equation (69) is peri-
odic in the parameters X⃗. Hence it is natural to focus on the
two-dimensional region where −π ⩽ Xℓ < π, ℓ= 1,2, which
behaves as the synthetic Brillouin zone (sBz) of the Hamilto-
nian of equation (69) defined in the synthetic reciprocal space
of coordinates X⃗. Averaging over all possible initial condi-
tions φ1,φ2 is regarded as a way to quantify the mean pumped
power for irrational frequencies, corresponding to the case
where ω1/ω2 is an irrational number. Such an average can be
written as

P
(pump)

(1,2) = ω1ω2

ˆ
sBz

d2X
(2π)2

Ωg(X⃗)≡ ℏω1ω2Cg, (73)

where Cg is the Chern number. From the formal point of view,
this number is the same as the one characterizing the Chern
insulator calculated for the ground state of the Hamiltonian of
equation (69) formulated in the reciprocal space of a square
lattice [192, 193]. The explicit result is

Cg =


0, δ > 0, trivial,

1/2, δ = 0, Dirac,

1, δ < 0, topological,

corresponding, respectively, to a trivial phase with a gap
between the ground and excited states for all values of X⃗, a
system with a Dirac point for X⃗= 0 and a topological gapped
phase. Consequently, in the first case the mean pumped power

is zero, while in the other cases it is defined by an universal
quantity proportional to the Chern number.

5.3. Topological pumping in the Floquet regime

Topological quantized pumping of energy between two driven
sources was originally proposed to take place under non-
adiabatic conditions far-from-equilibrium conditions in [172,
173]. These papers focus on the time-dependent Hamilto-
nian defined in equations (41) and (69) with the protocol
of equation (71) in the Floquet regime. For arbitrary large
commensurate frequencies it is possible to solve the driven
Hamiltonian by recourse to the Floquet theory summarized in
section 2.4.

Introducing the Floquet representation in the Schrödinger
equation leads to the structure of equation (22) with n⃗=
(n1,n2), associated to the Floquet modes of ω⃗ = (ω1,ω2). In
the present problem these coupled equations can be Fourier-
transformed to the ‘momentum’ representation q⃗= (q1,q2) to
obtain the effective Hamiltonian

H=
∑
q⃗

Hq⃗+
∑
n⃗

Hn⃗, (74)

with Hn⃗ =−ℏn⃗ · ω⃗ while Hq⃗ is the Hamiltonian of
equation (41) with B⃗ defined in equation (69) and X⃗≡ q⃗,
independent of t. In this way, an effective dynamics ruled by a
time-independent Hamiltonian defined in a two-dimensional
lattice is generated. Using the analogy with the lattice model
and relying on semiclasical equations of motion for crystals
perturbed by slow electromagnetic fields [194] an expression
for the pumped power is derived. It reads

P(pump)
1,2 (t) = ω1ω2|Ωq⃗|, (75)

where Ωq⃗ is the Berry curvature of a given band q⃗. The struc-
ture of this equation is very similar to the corresponding one
in the adiabatic regime expressed in equation (72). Extending
this expression to the case of incommensurate frequencies is
interpreted as an average over the Brillouin zone of q⃗, which
leads to the definition of the Chern number as in equation (73).
The difference between the adiabatic and the Floquet cases is
that in the adiabatic one this quantity was calculated over the
ground state of the frozen qubit Hamiltonian. Instead, in the
present case it is calculated in the Floquet space. These ideas
were further explored and implemented in an electronic spin
embedded in an NV center in a diamond [195]. In [173] this
mechanism was analyzed for a qubit coupled to reservoirs.

The usefulness of the topological power exchange to con-
trol the spin dynamics in the system coupled to a circuit or cav-
ity QED was analyzed in [196] and its realization in platforms
containing arrays of qubits was discussed in [197–199]. A
unique feature that make topological phenomena so appealing
is their robustness against perturbations and it is very prom-
ising to find such properties in the context of energy exchange
in qubit systems.
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6. Heat pumping

6.1. General considerations

Quantum pumping, in particular particle pumping, has been
a subject of great interest in the context of electron systems
for some time now [82, 89, 200–203]. Basically, it consists
in inducing a net particle transport between two reservoirs
with neither electrical nor thermal bias but by means of a peri-
odic asymmetric modulation the embedded quantum system.
A widely investigated example is a quantum dot consistent of
a double-barrier structure confining a few quantum levels in
contact to electron reservoirs. Without applying any electrical
or thermal bias, gate voltages are locally applied at the walls
following an asynchronous cyclic protocol. A simple version
of such protocols consists in deforming one of the confining
walls enabling electrons to flow from the neighboring reser-
voir into the quantum dot levels while keeping the other wall
fixed. After the electrons fill-in the quantum-dot levels, the
wall is restored to its initial situation while the opposite wall
is deformed to facilitate the flow of the electrons from the
quantum dot toward its neighboring reservoir. After the elec-
trons leave the quantum dot, the wall is restored. Hence, the
initial configuration is recovered with a net transfer of elec-
trons from one reservoir to the other as a consequence of the
deformation of the confining walls.

This mechanism has a counterpart in the heat [59, 204,
205], phononic [206–209], and spin [210–212] transport.

6.2. Adiabatic heat pumping and geometric phase

We discuss below a concrete and intuitive mechanism for
heat pumping operating in a single qubit. Here, we introduce
the main ideas to describe this phenomenon in the adiabatic
regime. We focus on the slowly driven system performing a
cycle of period τ , so that the parameters satisfy X⃗(t+ τ) =
X⃗(t) while connected to two reservoirs (l, r) at the same tem-
perature T. It is important to notice that, in order to discern
the two reservoirs, there should be some asymmetry in the
couplings. In the case of the qubit, this can be achieved with
couplings to the reservoirs as in equation (38) that are defined
by different and non co-linear vectors g⃗k,l and g⃗k,r for the two
reservoirs.

The starting point is to considering the heat current defined
in equation (7). It is possible to introduce the adiabatic expan-
sion given by equation (12) to calculate the heat flowing into
each reservoir in a cycle

Qα =

ˆ τ

0
dtJα(t) =

∑
ℓ

ˆ τ

0
Λα,ℓ(X⃗)Ẋℓ. α= l, r (76)

where this term represents the non-equilibrium heat induced
by the driving processes. Since the processes associated to
entropy production are described by equation (43) and are

second-order in ˙⃗X, we conclude that this first-order component
satisfies

Ql =−Qr = Q(pump), (77)

which defines the pumped heat in the slow-driving regime.
Here we notice that this definition is similar to the concept
of power pumping previously defined in equation (64). In that
case the exchange of energy takes place between two driving
forces, while in the present case, it takes place as heat exchange
between the two baths. In fact, in analogy to equation (64) we
can define from equation (77), P(heat−pump) = (Ql −Qr)/2τ .
Furthermore, as in the case of power pump, geometrical con-
cepts similar to the Berry phase are useful to describe this
mechanism. In fact, for the sake of making the geometrical
naturemore explicit, it is useful to introduce the vector Λ⃗(X⃗) =(
Λl,1(X⃗), . . . ,Λl,N(X⃗)

)
, according to which the pumped heat

per cycle reads

Q(pump) =

˛
Λ⃗(X⃗) · d⃗X. (78)

The closed integral corresponds to the trajectory in the para-
meter space defining the cyclic protocol of the driving para-
meters. This structure is similar to the case of charge pumping,
[82, 203]. The heat pumping takes place alongwith energy dis-
sipation. The description of these processes is identical as in
section 4, taking into account the coupling to several thermal
baths.

6.3. Adiabatic heat pumping with a single qubit

We now discuss the mechanism of adiabatic pumping in
the context of single-qubit setups. We focus on the case
studied in [85, 90]. The model is similar to the one con-
sidered in section 4.1, in a configuration where the qubit is
coupled to left (l) and right (r) reservoirs at the same tem-
perature T. The driven qubit is modeled by the Hamiltonian
of equation (41) with B⃗(t) = X⃗(t) = (Bx(t),0,Bz(t)). Import-
antly, the couplings to the two reservoirs must be implemen-
tedwith two non-commuting operators. Otherwise, it would be
possible to define an effective single bath with a linear com-
bination of modes of the different reservoirs. We consider the
coupling Hamiltonian of equation (38) with g⃗l = (0,0,gz) for
the left bath and g⃗r = (gx,0,0) for the right one. Hence

Hcont,l = gz
∑
kl

(
a†kl + akl

)
σz,

Hcont,r = gx
∑
kr

(
a†kr + akr

)
σx. (79)

In the weak coupling regime, this problem can be solved
with the procedure explained in section 2.3. Details are presen-
ted in appendix B. With those elements, following [90] it is
possible to obtain analytical results for the vector Λ⃗ defining
the pumped heat in equation (78),

Λ⃗(B⃗) =
βBsin2 2θ

cosh2(2βB)
n⃗, (80)
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Figure 2. Example of a protocol leading to quantum pumping in the configuration of a driven qubit asymmetrically coupled to reservoirs at
the same temperature (see text). The sketches illustrate the instantaneous Hamiltonian and the heat fluxes at the instants tl and tr. The net
result over the cycle is highlighted in the colored box.

where n⃗ is the unit vector along the radial direction in the
(Bx,Bz)≡ B(sinθ,cosθ) plane. In terms of it, the pumped heat
reads

Q(pump) =

˛
Λ⃗(B⃗) · d⃗B=

ˆ ˆ (
∇B⃗× Λ⃗(B⃗)

)
· d2B⃗. (81)

In the last step we have introduces Stokes’ theorem to express
the line integral over the protocol in the form of a flux integ-
ral through the area enclosed by the protocol. This result is
interesting because it makes explicit the fact that, in order to
have heat pumping in a cyclic protocol with this device, it is
necessary to follow a trajectory in the parameter space where

|B⃗|= B changes. The analysis of
(
∇B⃗× Λ⃗(B⃗)

)
y
is extremely

helpful to visualize the optimal protocols.
An example of the pumping cycle is sketched in figure 2.

The two components of B⃗(t) evolve cyclically but with a phase
lag. At a given instant tl the vector B⃗(tl) points along the
x direction and the state is polarized in the x direction of
the Bloch sphere. Such a state forbids the energy exchange
with the right reservoir. This can be explicitly seen by noti-
cing that equations (B.4) and (B.5) with Bz = 0 reduces to
the master equation of the qubit coupled only to the left bath.
There is a heat flux Jl(tl) = ⟨Ḣl⟩ between the qubit and the
left bath. Assume kBT> B(tl), so that heat flows from the
left reservoir into the qubit at this time. At another instant
tr > tl, B⃗(tr) the state is rotated so that it points along z
and lets assume that the protocol is such that B(tr)> B(tl)
with B(tr)> kBT. At this time there is not energy exchange
with the left reservoir. In fact, for Bx = 0, equations (B.4)
and (B.5) correspond to the qubit coupled only to the right

bath. An energy flow Jr(tr) = ⟨Ḣr⟩ takes place between the
qubit and the right bath. Since we assumed B(tr)> kBT, the
heat now flows from the qubit to the right bath. If the cycle
is completed by decreasing B to the value B(tl), the res-
ult is a net transfer of heat from the left to the right as a
consequence of the qubit driving. This type of cycles real-
ize the mechanism of heat pumping and the direction of the
pumped heat flux can be inverted by reversing the protocol.
As in the case of the configuration analyzed in section 4 the
driving generates heat that is dissipated into the reservoirs,
as indicated in the right sketch of figure 2. The distribution
of this dissipated heat among the two reservoirs depends on
details like their density of states and their coupling with the
qubit.

The total dissipated energy for this problem can be calcu-
lated following the steps explained in section 4. In [90], ana-
lytical expressions are derived for the present example. The
result is

W(diss) =

ˆ τ

0
dt ˙⃗B ·Λ · ˙⃗B=

ˆ τ

0
dt
[
λBḂ

2(t)+λθB
2(t)θ̇2(t)

]
,

(82)

with

λB =
β sinh(βB)

2γBcosh3(βB)
, λθ =

γ

2B2
, (83)

where γ = γl = γr is the coupling strength, which is assumed
to be the same for the two baths. We can identify a behavior
akin to the example of the driven qubit coupled to a single
reservoir discussed in [160] and in section 4. In fact, radial pro-
tocols, weighted with λB, dissipate differently from protocols
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involving rotations of the qubit states without changing the
spectrum. The latter are weighted with λθ. The regime where
one is dominant with respect to the other depends on the ratio
B/kBT. As already observed in section 4, radial protocols are
associated to changes in the populations and have a small
weight at low temperatures compared to B/kB.

In [85] the following protocol is implemented in this device,

Bx(t) = Bx,0 +Bx,1 cos(Ωt+ϕ), (84)

Bz(t) = Bz,0 +Bz,1 cos(Ωt), (85)

with B(t) =
√
B2
x(t)+B2

z (t). The solution in the weak coup-
ling regime leds to the conclusion Q(pump) ∝ sin(ϕ). In [90] it
was shown that the optimal protocol regarding the maximum
heat pumping corresponds to a trajectory in the (Bx,Bz) plane
that encloses a full quadrant. The result is

Q(pump)
Max =±kBT log(2). (86)

Interestingly, this quantity is known as Landauer limit and cor-
responds to the maximum possible entropy change in a two-
level system [213, 214]. It defines a fundamental limit for
the thermodynamic cost of erasing information. The original
proposal constitutes a breakthrough in relating thermodynam-
ics and statistical mechanics with information theory. It has
been covered in detail in review articles, like [17, 18] and it is
the motivation of many recent experiments [215–225]. In the
present context, this limit is achieved in a protocol that con-
sists of an infinite-long trajectory. Such a protocol would take
infinite time to be accomplished. Hence, it corresponds to a
quasistatic limit which defines the bound for any other finite-
time protocol. The two signs of this equation correspond to the
different ways of circulating the path. More discussion will be
presented in section 7.4 in relation to the role of pumping in
the operation of thermal machines.

Interestingly, pumping can be also induced in this setup
under periodic variations of the temperatures of the two reser-
voirs, δTl(t) and δTr(t) with respect to the reference temper-
ature T [226, 227]. The possibility of realizing topological
charge pumping with qubits in cQED was suggested in [228]
in a quite different setup based on two qubits, and experimental
results on charge pumping in a superconducting circuit has
been reported in [229]. No experimental studies of heat pump-
ing in qubits have been reported yet.

7. Thermal machines

7.1. General considerations

So far we have analyzed effects that are generated purely by
time-dependent driving. Thermal machines operate with the
cyclically driven working substance—represented by the qubit
in our case of interest—contacted with reservoirs with a tem-
perature bias. In this scenario heat-work conversion is the key
mechanism.

7.2. Thermodynamic cycles

The implementation of quasi-static cycles similar to the clas-
sical thermodynamical ones in a single qubit has been con-
sidered in the qubit Hamiltonian defined in equation (41). In
particular, the well known Carnot, Otto, Stirling and other
cycles have been recently studied in [162, 163, 230–239].
Some of the related discussion has been covered in the review
articles of [17, 22, 240, 241]. We briefly summarize some
important aspects.

The relevant mechanisms can be easily understood by
expressing the qubit Hamiltonian as follows,

Hqubit(t) =−B(t) σz, (87)

with σz operating in the instantaneous eigenbasis of
equation (41). The Carnot cycle is sketched in figure 3 for
the qubit operating between a cold and a hot thermal baths at
temperatures Tc and Th, respectively. It consists of four steps:
(1) The qubit evolves coupled to the hot reservoir as the para-
meters change leading to a change of B(t) from B1 = B(t1) to
B2 = B(t2). In general, this process takes place in a finite time.
In the ideal quasi-static cycle this is assumed to be long enough
to justify considering the system in equilibriumwith the bath at
every instant during the evolution. In this step of the cycle there
is exchange of heat, Qh and work W1→2 with the reservoir. If
the evolution is such that the heat flows from the qubit toward
the reservoir, the device operates as a refrigerator, otherwise
it operates as a heat engine. (2) The qubit evolves isolated
from the two reservoirs between B2 = B(t2) and B3 = B(t3).
In this process, only work (W2→3) is exchanged between the
system and the driving sources. (3) The qubit evolves coupled
to the cold reservoir from B3 to B4 = B(t4). In this step there
is again exchange of both heat Qc and work (W3→4) with
the reservoir. (4) The last step is an evolution isolated from
the reservoir from B4 to B5 = B(t5) = B(t1) and takes place
without exchange of heat with any of the reservoirs but exchan-
ging work (W4→1) between the qubit and the external driving
sources. The steps (2) and (4) are usually named ‘adiabatic’ as
in classical cycles, where this concept applies to processes in
which no heat is exchanged. The practical way to implement
this type of evolution in classical systems is by means of a
fast change of the parameters of the working substance. We
recall, however (see section 2.2), that in quantum mechanics
the concept of ‘adiabaticity’ is instead associated to a very
slow evolution and is not necessarily associated to a process
where there is no heat exchange in the case of an open quantum
system.

An important concept to qualify the operation of the cycle
is the efficiency (in the case of the heat engine) and the coef-
ficient of performance (in the refrigerator). They are, respect-
ively, defined as

η =
W
Qh
, COP=

−Qc

W
, (88)

where the W=W1→2 +W2→3 +W3→4 +W4→1 is the total
work done in all the cycle. These definitions follow the con-
vention that Qα > 0 when it enters the reservoir α and W > 0
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Figure 3. Illustration of a Carnot cycle in a qubit for the heat engine and refrigerator operations.

when work is delivered by the driving sources into the sys-
tem. In each step Wi→j may have any sign, depending on the
protocol.

The heat and the work in the different steps of the cycle are
defined in equation (6). The conservation of the energy in the
cycle implies

W= Qh +Qc. (89)

For a quasi-static evolution we can use the definitions of
equation (8) to explicitly verify that this relation holds for the
conservative work W(cons), and the quasistatic heat exchanges
Q(qs)

h , Q(qs)
c . In addition, since for the quasi-static processes

there is no entropy production, and the total change of the
entropy in these reversible processes reads

∑
α

∆Sα =
∑
α

Q(qs)
α

Tα
= 0. (90)

Therefore, equation (89) can be expressed as

W(cons) = Q(qs)
h

(Th −Tc)
Th

, Carnot, (91)

which when substituted in equation (88) leads to the well-
known Carnot results for the efficiency and the coefficient of
performance,

ηC =
Th −Tc
Th

, COP=
1
ηC
, Carnot. (92)

For non-equilibrium finite-time protocols, the components
W(non−cons) and Q(non−eq)

α contribute as will be discussed
below. Furthermore, a precise description should also take
into account the time-dependent processes of switching on and
off the contacts to the reservoirs. The latter are usually neg-
lected in the literature although, recently, the effect of smooth
changes in the system-reservoir coupling were found to speed-
up the isothermal evolutions of Carnot cycles [242].

The Otto cycle is also based on a four-stroke protocol. The
main difference with respect to the Carnot one is in the steps

(1) and (3) where the evolution in contact with the reservoirs
takes place at constantB, hence only heat is exchanged in these
processes. This cycle is very convenient from the computa-
tional point of view, since only heat is exchanged in the strokes
(1) and (3) while only work is exchanged in the strokes (2)
and (4), which implies important simplifications in the calcu-
lations. The implementation of Otto cycles has been the focus
of many theoretical and experimental works [17, 22, 240, 241]
with recent focus on many-body effects [243] and speed up
protocols [243–249] to enhance the performance. This cycle
has been widely analyzed in the literature and we defer the
reader to [17, 22, 240, 241].

7.3. Finite-time Carnot heat engine

A good part of the literature on cycles in qubits focuses on a
Carnot cycles with a quasi-static evolution in the steps where
the system is in contact to reservoirs, and a fast evolution in
the steps where it is decoupled [230–234, 236–239]. Recently,
finite-time effects in the evolution in contact to the reservoirs
were addressed [162, 163, 235]. At finite time, besides the effi-
ciency, the other quantities qualifying the performance of the
machine are the output power, in the case of the heat engine,
and the cooling power, in the case of the refrigerator. For a
machine operating in a period τ these quantities read

P(he) =−W
τ
, P(cool) =−Qc

τ
. (93)

The drawback of the finite-time operation is the energy dissip-
ation and entropy production. The effect of the dissipation in
Carnot cycles where the evolution in contact with the reser-
voirs takes place at finite times was analyzed in the literature
in [250, 251]. The main step is to include the contribution of
the dissipated energy due to the finite-time evolution during
the strokes where the system evolves coupled to the reservoirs.
The corresponding heat exchanges with the cold and hot baths
read

Qα = Q(rev)
α +Wdiss

α = Tα∆Sα +TαΣα, α= c,h, (94)
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where ∆Sα is the reversible change in the entropy, while the
dissipative contribution associated to the entropy production
is denoted by Σα. The latter accounts for the finite-time pro-
cesses and vanishes in the limit of an ideal cycle. According
to the sign convention adopted here, the irrerversible contribu-
tions are always positive, indicating that the dissipated energy
flows into the reservoirs. Instead, the sign of the reversible
component Q(rev)

α depends on direction of the heat flux.
In [162] the conditions to obtain a maximum power in a

finite-time Carnot heat engine is studied considering one and
several coupled qubits as the working substance and slow evol-
utions in the evolutions in contact with the reservoirs. A useful
step is to introduce a change in the notation in order to get an
explicit dependence of the entropy production with the dura-
tion of the strokes, τα, α=c, h. This is achieved by changing
of the integration variable in equation (43) to s= t/τα, which
leads to the following expression for the entropy production,

Wdiss
α =

1
τα

∑
ℓ,ℓ ′

ˆ 1

0
dsẊℓ Λ

(S)
ℓ,ℓ ′(X⃗) Ẋℓ ′ = Tα

Σα

τα
, (95)

where now Ẋℓ = dXℓ/ds. Introducing the same change of
variables, the reversible part can be expressed following
equation (12),

Q(rev)
α = Tα∆Sα =

∑
ℓ

ˆ 1

0
ds Λα,ℓ(X⃗) Ẋℓ, (96)

with ∆Sc =−∆Sh =∆S. Equation (89) remains valid, even
in the case of non-conservative processes. Hence, the power of
the heat engine defined in equation (4) as well as the efficiency
defined in equation (88) read

P(he) =−Qc +Qh

τ
, η(he) =

Qc +Qh

Qh
, (97)

being τ = τc + τh. The optimization of the durations leading
to the maximum power of the heat engine was previously dis-
cussed in [250, 251]. The result is obtained after substituting
equations (94) and (95) into equation (97)

P(he) =−1
τ

(
−∆S∆T+Tc

Σc

τc
+Th

Σh

τh

)
. (98)

Maximizing with respect to the durations leads to

τc = τh

√
TcΣc

ThΣh
, τh =

2ThΣh

∆S∆T

1+

√
TcΣc

ThΣh

 ,

(99)

being ∆T= Th −Tc. Substituting these optimal durations in
equation (97), the expression for the maximum power is
obtained,

Pmax =
(∆S)2

4
(Th −Tc)

2(√
ThΣh +

√
TcΣc

)2 . (100)

We see that the power optimized with respect to the durations
of the cycle still depends on on the coefficients Σα charac-
terizing the energy dissipation into the bath. These quantit-
ies depend on the microscopic details of the driven system,
the baths, the couplings to the baths and the evolution pro-
tocols. For adiabatic driving, the description in terms of the
thermodynamic length described in section 4.2 can be used
to design the optimal protocols. This was precisely the goal
of [162] with focus on weak coupling between system and
reservoirs.

In these conditions it is shown that the bound for Pmax is
proportional to the heat capacity of the working substance.
Since the heat capacity can scale supraextensively with the
number of constituents of the engine, this result is useful in
the design of optimal many-body Carnot engines including the
effect of many-body interactions and phase transitions [252].

In the case of Otto cycles the finite-time optimization
focuses on the steps where the system evolves decoupled
from the reservoirs by means of shortcuts-to-adiabaticity. This
implies including counter-diabatic terms in the protocols as in
equation (58). These suppress inter-state transitions in the free
evolution, which improves the performance in these type of
cycles [22].

As mentioned in section 2.7, the identification of the energy
exchanges of quantum measurements as heat and work is
non-trivial. Irrespective of this identification, the measure-
ment mechanism can be regarded as an exchange of energy
which can be used to fuel thermodynamical-like cycles of
quantum working substances. There are several implementa-
tions in qubit systems [110, 113, 253–256] and similar ideas
were also followed in other quantum systems [257–259]. In
section 11.2 we will discuss an experimental implementation.

7.4. Adiabatic cycles and geometric properties

This type of cycles are closely related to the pumping mech-
anism discussed in section 6 and it can be implemented basic-
ally in the same setup as the one considered there. The cru-
cial difference is the addition of a thermal bias between the
two reservoirs, so that one of them is hot (say the right one)
and the other one is cold, having temperatures Th = Tc +∆T
and Tc, respectively. We can now formulate the question of
whether it is possible to implement the same pumping mech-
anism as before to overcome the thermal bias, in order to
make a refrigerator out of this device. The answer is yes and
the machine can be compared with the Archimedes’ screw,
which has been used since the time of the ancient Greeks
to pump water against gravity by rotating a screw inside a
pipe (see sketch of figure 4). Notice that this also illustrates
the pure pumping mechanism discussed in section 6 if the
pipe is placed horizontally. In the case of a thermal bias, the
device relies on the pumping mechanism induced by the driv-
ing to overcome the heat leak from the hot to the cold reser-
voir induced by the temperature bias, in the same way that
the Archimedes’ pump relies on the rotation of the screw to
pump the water upwards. If the pumping mechanism operates
in reverse, so that it transfers heat from the right to the left in
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Figure 4. When the protocol of figure 2 is implemented on the qubit between reservoirs at different temperatures, the pumping mechanism
can be used against the thermal bias. The device operates as a refrigerator and the mechanism bares resemblance with Archimedes’ screw
(see sketch).

the sketch of figure 4, part of the energy transported because
of the thermal bias can be used to drive the machine, which
operates as a heat engine in this case. This should be compared
with the Archimedes machine operating in reverse, realizing a
generator, in which case the water flowing down through the
pipe contributes to rotate the screw. The realization of these
machines in the quantum realm has been widely investigated
in the context of electron systems under the operation with
slow cyclic driving and electrical bias and the denomination
‘motor’ has been coined for them [260–266]. In [84] a uni-
fied framework analogous to the theory of thermoelectricity in
linear response was presented to describe motors and thermal
machines operating in the adiabatic regime under small elec-
trical and thermal biases. These ideas were further elaborated
in [85] with focus on the thermal machines and their geometric
properties.

Adiabatic thermal machines usually operate in permanent
contact to the reservoirs. The driving generates a heat pump-
ing mechanism in addition to dissipation into the reservoirs.
In order to have pumping, we typically need to break spacial
symmetries as in the case of the rotating screw of Archimedes’
machine. In the example of the qubit discussed in section 6 this
is achieved by implementing different kind of couplings with
the two reservoirs and an asymmetric driving protocol.

As in the case of the thermodynamical cycles, the pos-
sible operations are heat engine and refrigerator. The relev-
ant energy fluxes are sketched in figure 5. In [85, 90] these
two operations are analyzed for the machine based on the
setup of figure 4 with X⃗(t)≡ B⃗(t) in the qubit Hamiltonian
and asymmetric coupling to the hot and cold reservoirs as
in section 6. In what follows we discuss the characteriza-
tion of this machine in the regime where the driving is slow

Figure 5. Sketch of the operational modes of the thermal machine.

and in addition the temperature difference ∆T= Th −Tc is
small to justify a linear-response treatment in ∆T/T, being
T the reference temperature. From the formal point of view
this implies combining the linear response description of the
thermal bias with the adiabatic description as presented in
section 2.6. One of the quantities of interest in the operation of
these machines is the heat transported between the reservoirs,
given by equation (29)

Q(tr) =

ˆ τ

0
dt

{∑
ℓ

ΛN+1,ℓ(X⃗)Ẋℓ +ΛN+1,N+1(X⃗)
∆T
T

}
,

(101)

where the label (tr) highlights that this component of the heat
is transported between the two reservoirs, in the sense that
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Q(tr) = Qc =−Qh. We can distinguish the process of pump-
ing in the first term and the response to the thermal bias in
the second one. The other quantity of interest is the work
performed by the driving forces. Following equation (7) we
can identify a conservative and a non-conservative compon-
ent, W=W(cons) +W(non−cons). The first component corres-
ponds to calculating equation (8) over the cycle, which expli-
citly leads toW(cons) = 0. The non-conservative component is
obtained from equation (28) and reads

W=

ˆ τ

0
dt

{
˙⃗X ·Λ(X⃗) · ˙⃗X+

∑
ℓ

ẊℓΛℓ,N+1(X⃗)
∆T
T

}
. (102)

For the case of a qubit driven by the protocol sketched
in figure 4, we have X⃗(t)≡ B⃗(t) = (Bx(t),Bz(t)) and the
Onsager relations of equation (30) for this particular protocol
can be shown to satisfy Λ3,ℓ(B⃗) =−Λℓ,3(B⃗), for ℓ= 1,2.

Hence, introducing the notation Λ⃗(B⃗) =
(
Λ3,1(B⃗),Λ3,2(B⃗)

)
,

equations (101) and (102) lead to

Q(tr) =

˛
dB⃗ · Λ⃗(B⃗)+κ

∆T
T
,

W=

ˆ
dt ˙⃗B ·Λ(B⃗) · ˙⃗B− ∆T

T

˛
dB⃗ · Λ⃗(B⃗). (103)

As already mentioned, the first term of Q(tr) is purely due
to pumping Q(pump) =

¸
dB⃗ · Λ⃗—compare with equations (78)

and (81)—while the second term is the thermal leak induced
by the temperature difference (κ≡

´ τ
0 dtΛ3,3 is proportional

the thermal conductance). In the expression of the work we
can identify in the first component the dissipative contribu-
tion when comparing with equations (43) and (82). The second
term describes the mechanism of heat-work conversion and it
is the fundamental piece for the device to operate as a thermal
machine. It reads

−W(heat−work) =
∆T
T
Q(pump). (104)

This relation is a generalization of equation (91) to the case of
a finite-time cycle. This term is the dominant contribution toW
in the case of very slow cycles. In fact, notice that the second

term of W in equation (103) is first-order in ˙⃗B while the first
one is second-order. This is in accordance with the idea that
dissipation decreases as the evolution becomes closer to the
quasi-static limit.

The two operational modes depend on the sign of the
pumped heat Q(pump). When the pumped heat flows upstream
with respect to the temperature bias Q(pump) < 0 it can com-
pensate the effect of the heat leak represented by the second
one, resulting in Q(tr) < 0 (heat exits the cold reservoir). The
machine works as a refrigerator and the pumping generates
an extra amount of work through the mechanism of heat-work
conversion, W(heat−work) > 0. This situation is sketched in the
left panel of figure 5. The reversed operation corresponds to
the heat engine, in which case, Q(pump) > 0 and the pumped
heat flows downstream with respect to the temperature bias.
In this case, the heat-work conversion offers a mechanism

where the second term of W in equation (103) compensates
the dissipative one, enabling the possibility of extracting use-
ful work from the machine. This is sketched in the right panel
of figure 5.

We can now proceed as in [90] to express equation (103) in
terms of geometric quantities. To this end it is convenient to
introduce the change of variables s= t/τ and to define

A=

ˆ 1

0
dsΛ⃗ · ˙⃗B, L2 =

ˆ 1

0
ds ˙⃗B ·Λ · ˙⃗B, ⟨κ⟩=

ˆ 1

0
dsκ,

(105)

where the names A and L2 are related to the geometrical mean-
ing of these quantities. In fact L2 is related to the thermo-
dynamic length introduced in section 4.2, while A can be
expressed in terms of an area by recourse to Stokes’ theorem,
as discussed in section 6,

A=

˛
Λ⃗ · dB⃗=

ˆ ˆ (
∇B⃗× Λ⃗

)
· d2B⃗, (106)

where the surface in the space of parameters is enclosed by
the boundary defined by the protocol. Hence, this quantity can
be interpreted as an area in the parameter space weighted by

a Berry-type curvature
(
∇B⃗× Λ⃗

)
. Therefore, equation (103)

reduce to

Q(tr) = A+ τ⟨κ⟩∆T
T
, W=

L2

τ
− ∆T

T
A. (107)

7.5. Optimal adiabatic heat engine in linear response

The two components of the net work per cycle presented in
equation (107) can be expressed as geometrical properties in
the parameter space. In fact, the dissipative one depends on
the metric and can be related to the thermodynamic length as
discussed in section 4.2, while the heat-work term depends on
the ‘Berry-curvature’ as shown in equation (106). In [90] these
properties are used to optimize the performance of a qubit fol-
lowing the protocol of figure 4. We now summarize the pro-
cedure for the case of the heat engine operation. The starting
point is the definition of the power and the efficiency in terms
of the geometric quantities introduced before. This reads

P(he) =−W
τ

=
∆T
T
A [1− (τD/τ)]

τ
,

η =− W
Qtr

= ηC
1− (τD/τ)

1+(τD/τκ)
(108)

with the definitions

τD =
T
∆T

L2

A
, τκ =

T
∆T

A
⟨κ⟩

. (109)

It is easy to calculate the optimal duration of the cycle in order
to maximize the power and the efficiency. The results are,
respectively,

τP = 2τD, τη = τD+
√
τD(τD+ τκ), (110)
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which upon substituting in equation (108) lead to the expres-
sions for the optimal expressions for the power and the effi-
ciency. Particularly interesting is the expression for the max-
imum power, which reads

P(he)
max =

1
4
∆T2

T2

A2

L2
. (111)

We see that the problem of optimizing the protocol in the para-
meter space in order to maximize the power developed by the
heat engine reduces to the optimization of the ratio between
an area and a length in a space with a non-trivial metric. In
the case of the Euclidean metric the solution is a circle, as is
well-known since the time of the ancient Greeks. Remarkably,
for an arbitrary metric this is still an open problem in geo-
metry, which known as the isoperimetric or Cheeger problem
[267–269].

The geometrical properties introduced before are very
useful to the design of optimal protocols in qubit thermal
machines. In [90] the problem of the driven qubit asymmet-
rically coupled to the two thermal baths illustrated in figure 5
is analyzed in detail. Some results regarding the operation
without thermal bias are covered in section 6.3, including
the calculation the pumped heat, Q(pump), and the dissipated
energy because of the driving, W(diss). In the linear response
regime with respect to ∆T, these quantities define A and L2,
respectively, through equation (105). Recalling equation (86),
we notice that the optimal protocol regarding the maximum
A corresponds to a path evolving from the origin along the
axis Bx > 0, followed by a quarter of circumference of infinite
radius and closing along the axis Bz circulating from infinite to
the origin. Those protocols are, however, not optimal regard-
ing dissipation. The numerical analysis of the optimal solution
of this isoperimetric problem was found to be elipses in the

(Bx,Bz) plane, circulated at a B⃗ dependent speed ˙⃗B(B⃗). The lat-
ter is defined in order to get a constant dissipation rate at every
point of the trajectory, which is the condition leading to a min-
imum thermodynamic length for a given path, equation (44),
as discussed in section 4.

8. Batteries

Quantum batteries is another subject of active investigation
[270–277]. These are quantum systems with a discrete-level
spectrum manipulated by time-dependent processes in a way
that they can store or deliver energy. The study of quantum
batteries was triggered by [270] and has a significant develop-
ment in the context of qubit systems. The goal of that paper
is the calculation of the amount of work that can be extrac-
ted from a small quantum mechanical system which tem-
porarily stores energy: the battery. Previously, the concept
of ‘ergotropy’ had been introduced as the maximum work
that can be unitarilly extracted from a given quantum state
given a reference Hamiltonian [278]. References [270, 279]
focus on the calculation of the maximum extractable work in
the framework of several subsystems and conclude that, in

general, entangled unitary operations extract more work than
independent ones. References [271, 280, 281] focus on the
complementary problem of charging the battery. In all these
studies themodels are purely closed systems, while more com-
plex setups including the baths and dissipation processes are
considered in [273, 275, 276, 282–284].

A proposal of quantum battery with high charging power
in platforms of cQED systems was presented in [272] and fur-
ther elaborated in [285]. The goal is to extend the comparison
of the operation ofN qubits in parallel vs the operation of theN
entangled qubits as in previous works. In this study each unit
is defined by a single qubit coupled to a resonator mode, while
the entangled system corresponds to the N qubits coupled to
a common resonator mode. The considered model for the col-
lective configuration is described by Dicke Hamiltonian [286]

Hλ(t) = ℏωca†a+ω0Sz+ 2λ(t)ωcSx
(
a† + a

)
, (112)

with Sj = ℏ/2
∑N

ℓ=1σ
j
ℓ, which describes the N qubits coupled

to the resonant mode of frequency ωc when λ(t) ̸= 0. The par-
allel configurations consist of N copies of this Hamiltonian for
a single qubit. The battery is operated in a cycle, that is ruled
by the time-dependent protocol followed by the coupling term
λ(t). The latter is defined by charging, storage and discharging
times (respectively τc, τs, τd), as follows,

λ(t) =


λ , 0< t< τc,

0 , τc ⩽ t⩽ τc+ τs,

λ , τc+ τs < t< τc+ τs+ τd.

(113)

The steps are: (1) The initial state is |ψN(0)⟩=
|N⟩

⊗
|g, . . . ,g⟩, which corresponds to the N excitations in

the resonator and the ground state of the N decoupled qubits.
The coupling to the resonator is switched on during an interval
of duration τ c. (2) The resonator decouples for a time-interval
of duration τ s. (3) The resonator is coupled again for the dis-
charging step of duration τ d. The conclusion of these studies
is that the charged energy as well as the charging power is
enhanced in the correlated array in comparison to the parallel
one. The fraction of energy stored in the battery that can be
extracted in order to perform thermodynamic work, however
is reduced and depends on the details of the preparation of the
initial state.

Another type of quantum battery in the context of cQED
was proposed in [277]. The setup consists in a single
qubit coupled through a time-dependent protocol similar to
equation (113) with a many-modes waveguide. In this set-
ting, a resonant mode in the waveguide acts as a battery while
the qubit is the auxiliary system. A photon beam with a fre-
quency resonant with the qubit (ω0) is injected into the wave-
guide with an input power Pin = ℏω0Ṅin, being Ṅin the incom-
ing flux of photons. Because of the coupling with the qubit,
there is a reflected pulse with powerPout = ℏω0Ṅout, being Ṅout
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the outgoing flux of photons. The considered Hamiltonian to
describe the qubit and its coupling to the beam reads

H(t) =−ℏω0

2
σz+ iℏ

√
γ(t)Ṅ(t)

(
σ−e

iω0t−σ+e
−iω0t

)
,

(114)

where the coupling protocol is determined by γ(t). The output
power is calculated by solving themaster equation for the qubit
coupled to the resonator and the dynamical equation for the
reflected outgoing field,

bout(t) = bin(t)+
√
γσ−(t), (115)

from where it is possible to evaluate E= Tr[ρ(t)H(t)] and

Pout(t) = Pin(t)− Ė(t). (116)

The charging process corresponds to take advantage of the
spontaneous emission of the qubit (Ė(t)< 0) injecting extra
photons into the waveguide, hence charging the battery.
This device was experimentally realized in an implementa-
tion of a Maxwell demon [287], which will be discussed in
section 11.2.

9. Steady-state thermal transport

9.1. General considerations

When the qubit is placed in contact to two reservoirs with
different temperatures without any driving mechanism, heat
flows through it from the reservoir at high temperature Th to
the cold one with temperature Tc. A sketch is presented in
figure 6. In this section we review two aspects of the heat trans-
port through this device. The first one is related to the degree
of coupling between the qubit and the reservoir. The second
one is related to the structure of the reservoir and non-linear
effects in the thermal transport.

9.2. The effect of strong correlations in linear response

As mentioned before, the Hamiltonian for the two-level sys-
tem coupled to a bath of harmonic oscillators is equivalent to
the spin-boson model [127, 129], whose equilibrium proper-
ties received a significant attention some time ago. This model
has a quantum phase transition at zero temperature depend-
ing on the degree of coupling between the system and the
reservoir and the spectral properties of the latter (ohmic, sub-
ohmic or superohmic) [130, 131]. This quantum phase trans-
ition is a consequence of the many-body correlations in this
system.

In the context of electron transport, strong correlations are
crucial to generate the mechanisms of Coulomb blockade and
Kondo, which have a significant impact in the transport prop-
erties at low temperatures [288, 289]. It is, therefore, inter-
esting to investigate similar features in qubit systems. Many-
body effects in the thermal transport of the spin-boson model
have been investigated in several works [290–296]. References
[297, 298] present a systematic study of the low-temperature

behavior of the thermal conductance beyond weak coupling
between qubit and reservoir, on the basis of several many-
body methods and a numerical quantum Monte-Carlo tech-
nique. The derived equation for the heat current for the qubit
model with B⃗= (Bx,0,0) in equation (41) and couplings g⃗k =
(0,0,gzk) from Schwinger–Keldysh non-equilibrium Green’s-
function technique [299, 300] reads

Jc =−Jh =
αγ

8

ˆ
dε ε Im [χ(ε)] I(ε) [nh(ε)− nc(ε)] . (117)

It is assumed

Γν(ε) = ανI(ε), ν = h, c, I(ε) = 2
ε

ℏ

(
ε

εc

)s−1

e−ε/εc ,

(118)

being ωc an energy cutoff, α= αc +αh, and γ = 4αcαh/α
2.

The function

χ(ε) =− i
ℏ

ˆ t

0
⟨dt [σz(t),σz(0)]⟩ ei

ε
ℏ t, (119)

is the spin susceptibility. In the linear response regime, the
expectation values are calculated with respect to the the many-
body equilibrium states with the reservoirs at the mean tem-
perature T= (Tc +Th)/2. Hence, χ(ε) is a function of T. We
see that equation (117) has the structure of equation (26), in
spite of the fact that this Hamiltonian is non-bilinear but has
many-body interactions. It is possible to define a transmis-
sion function T (ε,T) = αγIm [χ(ε)] I(ε)/8. Given this func-
tion, it is easy to derive in this regime the following expres-
sion for the thermal conductance, Gth ∼ T (0,T)GQ, such that
Jc = Gth∆T with GQ = Tc(πkB)2/(3h) being the quantum of
thermal conductance, which defines the limit for the quantum
thermal transport through a single-channel bosonic or fermi-
onic system [301–303].

Saito and Kato [297] focuses on the Kondo signatures at
low temperature in this regime, while in [298] a more detailed
analysis including the comparison of the different methods to
evaluate the susceptibility defined in equation (119) is presen-
ted. A crucial effect of the coupling to the bath is the renormal-
ization of the parameter Bx of the Hamiltonian to an effect-
ive value ∆eff which depends on α and on the bare value of
Bx. This parameter represents the effective superposition of
the two basis states of the qubit in the presence of the envir-
onment and defines the relevant energy scale of the prob-
lem. The approximations considered in [298] are the ‘sequen-
tial tunneling’, which corresponds to calculating χ(ε) with
the reduced density matrix calculated with the Lindblad mas-
ter equation (9). The other one considered is the so called
‘co-tunneling’ approximation, which corresponds to includ-
ing in the master equation higher order processes in the con-
tact term by recourse to perturbation theory. The third method
is the so called ‘NIBA’ (non-interacting-blip approximation),
which is described by a rate equation derived after integ-
rating out the bosonic bath with the Feynman–Vernon func-
tional technique and dropping some terms [127]. The latter is
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Figure 6. Illustration of the thermal transport process when: (a) the qubit is contacted to reservoirs at different temperatures at fixed B⃗ and
(b) the qubit is contacted to reservoirs at different temperatures through resonators. Below each configuration, possible temperature profiles
are indicated.

a non-perturbative technique, and the approximation is based
on neglecting some family of high-order processes. The results
are compared with numerically exact calculations with con-
tinuum time quantum Monte Carlo. A summary of the main
results is presented below:

• Ohmic bath, s= 1. The thermal conductance below the crit-
ical value αc = 1 changes the behavior as a function of
T. At low temperatures (kBT≪∆eff), the numerical results
agree well with those of the co-tunneling calculation. In this
regime, the thermal conductance is always proportional to
T3. This universal behavior is typical of the Kondo effect.
At moderate (kBT∼∆eff) and high temperatures (kBT≫
∆eff), the numerical results deviate from the co-tunneling
formula and agree well with NIBA. The thermal conduct-
ance obtained by this method is proportional to T3−2α at low
temperatures. Sequential tunneling fails to predict the low-
temperature behavior and for high temperature it is valid
only in the limitα≪ αc. Forα > αc, the renormalized para-
meter∆eff tends to zero and the system is localized in one of
the states at low temperatures. The behavior of the thermal
conductance in this regime is well described by NIBA.

• Sub-Ohmic bath, s< 1. In this case, the critical value for
the localized-to-delocalized transition, αc, is a function of
s. Below αc, at moderate and high temperatures, the numer-
ical results agree well with the NIBA. At low temperat-
ures (kBT≪∆eff), the numerical results agree well with
the co-tunneling formula, showing T2s+1-dependence. The
sequential-tunneling formula cannot be applied to the sub-
ohmic case.

• Super-Ohmic bath s> 1.At low temperatures (kBT≪∆eff),
the numerical results agree with the co-tunneling description
and show T2s+1-dependence, regardless of the strength of
the system-reservoir coupling, while the agreement is better
with NIBA at higher temperatures.

9.3. The thermal-bias drop

One of the fundamental issues in quantum electron transport
induced by a voltage bias applied at the reservoirs is which
is the behavior of the voltage drop along the quantum sys-
tem placed between the two reservoirs at different chemical
potentials and to what an extent such details affect the
transport [304]. These aspects are mainly relevant beyond lin-
ear response in the bias and similar questions can be posed
regarding the temperature bias. Deep inside each of the mac-
roscopic reservoirs the temperature has a well defined value.
When the small-size quantum system is composed of several
subsystems which independently intervene in the contact with
the reservoirs at different temperatures it may happen that
some of them tend to thermalize with the neighboring reser-
voir. This would cause the temperature drop to concentrate
inside the quantum system. Another possibility is an abrupt
drop at the contact (figure 6(b)). These questions are funda-
mental and very timely after recent experimental results [305,
306], where thermal transport is investigated in a qubit sys-
tem coupled with resonators which are in turn coupled with
reservoirs. The experiments and the interpretations will be dis-
cussed in section 11.5. The Hamiltonian for the considered
setup reads

H= Hqubit +σz
∑
ν=c,h

[
gν

(
b†ν + bν

)
+ ℏΩνb

†
νbν

]
+

∑
ν=c,h,k

[
gν,k

(
b†ν + bν

)(
a†ν,k+ aν,k

)
+ ℏων,ka

†
ν,kaν,k

]
,

(120)

where the first line describes the qubit coupled to the resonat-
ors, while the second one describes the resonators coupled to
the cold and hot reservoirs.

By analogy with electron transport [304], we expect the
behavior of the thermal drop to be strongly dependent on the
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details of the system, like the degree of coupling between the
different subsystems in comparison with the coupling with the
reservoirs and the presence of many-body interactions, which
may generate a mechanism of local or global thermalization.
The transmission properties of a qubit coupled to resonators
which are coupled to reservoirs of many-harmonic oscillators
like the experimental configuration of [305, 306] is very spe-
cial from the theoretical point of view. This is because it is
technically simple to include the resonators into the descrip-
tion of the reservoirs by defining a spectral function Γ(ε) for
that combined system in order to substitute equation (118).
This is precisely the procedure followed in [307, 308]. The
result is equation (118) with

Iν(ε) = 2ανε
(ℏΩν)

2

(ℏΩ2
ν − ε2)2 +(2γνε)2

, (121)

where αν depends on the couplings gν ,gνk while γν depends
on the coupling gν,k. We see that the functional dependence
is a Lorentzian in contrast with the power-law behavior of
equation (118). In these references, the heat current through
the qubit coupled to the effective reservoirs described by
equation (121) is calculated within the NIBA approximation.
Notice that this description is equivalent to assume that the
temperature drop takes place at the qubit, while the resonat-
ors are perfectly thermalized with the neighboring reservoirs.
In [308] the thermal current is analyzed in linear response
in the temperature bias. As expected after the discussion of
section 9.2 the structure of equation (121) introduces non-
trivial and non-universal features in the behavior of the thermal
conductance as a function of the mean temperature. Similar
studies in more complex configurations were presented in
[309, 310]. The behavior for large temperature bias remains
an open problem.

In configurationswhere the couplings of the resonators with
the reservoirs are weak, this problem may be related to the
discussion of the validity of the local master equation vs the
global one, which has been the subject of many studies [71,
73–77, 311]. The question in most of this literature is the
appropriateness of using a local basis to express the reduced
density matrix within the framework of master equations of
Lindbladian nature, which are derived in perturbation theory
with respect to the couplings with the reservoirs. Local master
equations are valid when also the coupling between the differ-
ent subsystems is perturbative, while in the global case, the
density matrix is expressed in the eigenbasis of the system
composed of several connected parts.

9.4. Rectification

For some time now thermal rectification in nano-scale sys-
tems is a subject of great interest theoretically and experiment-
ally in phononic structures [312–320], spin chains [321–323],
quantum dots [324–326] and superconductors [327, 328].
Thermal rectification or thermal-diode effect means that the
thermal transport depends, not only on the magnitude of the
temperature bias, but also on its direction. Typically, the origin

of such an effect is the existence of non-linearities and asym-
metries in the setup and the regime where it takes place is bey-
ond linear response.

In the context of qubits coupled to photonic baths thermal
rectification was predicted in [329] and this effect was recently
experimentally confirmed in [306] in the configuration where
the qubit is coupled to resonators, which are in turn coupled
to thermal baths at different temperatures. This experiment is
briefly discussed in section 11.5 and already motivated several
theoretical works [330–333]. This a difficult theoretical prob-
lem which requires the proper treatment of many-body phys-
ics along with far from equilibrium conditions, which must
be solved approximately. Unlike the case of the thermal con-
ductance, this problem cannot be solved exactly numerically
because of its far-from-equilibrium nature.

In [332] rectification is studied in an anharmonic quantum
oscillator coupled to two bosonic thermal baths with Ohmic
density of states at different temperatures. In the limit of very
strong anharmonicity the system reduces to a qubit. The prob-
lem is solved with different techniques: master equation taking
cotunneling into account, nonequilibrium Green’s functions
using the Majorana representation for the spin, and exact cal-
culations based on Feynman–Vernon path-integral approach.
The calculation based on non-equilibrium Green’s functions
[299, 300] similar to the one leading to equation (117) and
considering the hybridization functions of the two reservoirs,
defined in equation (118), proportional one another leads
to the following expression for the heat current in the left
reservoir

J(∆T) =
ˆ
dε ε T (ε,T,∆T) [nl(ε)− nr(ε)] , (122)

with Tl/r = T±∆T/2. The convention is such that for
∆T>,<0 the heat flow exits/enters this reservoir. Import-
antly, although equation (122) has a structure which resembles
equation (26), the dependence of the transmission function on
∆T breaks the symmetry with respect to the exchange of the
hot and cold reservoirs. The explicit expression of this func-
tion depends on the regime and the method of calculation. The
rectification coefficient is defined as

R=
J(∆T)+ J(−∆T)
J(∆T)− J(−∆T)

, (123)

where no (perfect) rectification corresponds to R= 0,(1),
respectively. For weak coupling this parameter is found to
be upper bounded by λ(Th −Tc)/(Th +Tc), where λ= (Γl −
Γr)/(Γl +Γr) is the asymmetry parameter of the bath spec-
tral functions. For strong coupling and low temperatures there
is a strong dependence on the type or coupling to the reser-
voirs (⃗gl, g⃗r). Interestingly, all the methods agree in the limit
where the energy gap between the two levels is larger than the
temperature. However, this is the regime of lower rectifica-
tion. For low temperatures, large values of R are found in this
setup.
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In [333] and array of two qubits coupled each of them to
two LCR circuits with different temperatures was considered.
The Hamiltonian describing this system is

Hqubits =
∑
ν=c,h

Hν +
∑
j=1,2

(
B⃗j · σ⃗j+Hν,j

)+ γσz1 σ
z
2,

(124)

whereHν are the Hamiltonians of the baths and the terms Hν,j

represent the coupling of each qubit to the two baths. The prob-
lem is solved by master equations with transition rates that
depend on the temperature through the Johnson-Nyquist noise
spectral function of the LCR circuits [334]. A high rectification
ratio is found in this configuration for asymmetric couplings
to the hot and cold reservoirs.

10. Superconducting qubits and cQED

Superconducting devices with Josephson junctions and capa-
citances may be designed to realize qubits. This is a very
well established platform which has been proposed some
time ago. Several architectures have been implemented and
improved, which allow for the control and manipulation of
the quantum states by recourse to magnetic fluxes and gate
voltages. The working principles and details on the oper-
ation of these devices have been covered in at least four
review articles [45–47, 49]. Here, we briefly review the Cooper
pair box and the transmon architectures. Besides variations
of these configurations like the charge and flux qubits, there
are recent developments toward the realization of qubits in
superconducting Josephson junctions by using the Andreev
bound states in the junction [335, 336]. Another intensively
explored platform based on superconductors is the topological
one, in which case the qubits are realized in the Majorana
zero modes localized at the ends of superconducting wires
with spin–orbit coupling and with an applied magnetic field
[337, 338].

10.1. Architectures

The simplest configuration to realize a superconducting qubit
is theCooper pair box (CPB) which is sketched in figure 7 (see
left top panel). It consists in a Josephson junction between two
superconductors with a low capacitance CJ and a phase bias
φ. The knobs to manipulate the device are provided by the
magnetic flux and a gate voltage Vg, contacted to one of the
superconductors by means of a capacitance Cg. The supercon-
ducting gap∆ is sufficiently large to prevent the quasiparticle
tunneling through the junction and the charge transport takes
place only by the tunneling of Cooper pairs. The Hamiltonian
describing this system reads

HJunction = Hch +HJ = 4EC

(
N̂−Ng

)2
−EJ cos(φ̂) , (125)

where the first term describes the capacitive effects while the
second one is associated to the Josephson effect. N̂ is the
operator describing the difference in the number of Cooper

pairs contained by each superconductor, N= N1 −N2 (where
N l is the number of Cooper pairs in the superconductor l)
and Ng = CgVg/2e is the excess charge controlled by the
gate voltage. The corresponding charging energy is EC =
e2/2(Cg +CJ). In this representation, N is the quantummech-
anical conjugate of the operator φ̂, N̂=−iℏ∂/(∂φ). This
Hamiltonian can be written in the basis of eigenstates of N̂ as
follows

HCPB =
∑
N

{
4EC (N−Ng)

2 |N⟩⟨N| − EJ

2

× (|N⟩⟨N+ 1|+ |N+ 1⟩⟨N|)

}
, (126)

where the first term describes the charging energy, while the
second one described the tunneling of Cooper pairs through
the junction. The lowest eigenenergies of this Hamiltonian as
functions of Ng are shown in figures 7(a)–(d). For EC ≫ EJ,
the spectrum is dominated by the first term of the Hamilto-
nian. The eigenstates have a large component with fixed N,
except forNg close to half-integer values, corresponding to the
degeneracy points of the charging energy. At these points the
second term of the Hamiltonian generates an avoided crossing
between two adjacent states. The qubit state is realized when
focusing, for instance, at gate voltages leading to Ng ≃ 1/2
which correspond to values close to the degeneracy point of
N= 0,1 of the charging term. Close to this point, the previous
Hamiltonian can be expressed in the form of equation (36) as
follows,

Hqubit =−Bzσz−Bxσ
x =−B [cos(θ)σz+ sin(θ)σx] , (127)

with the definitions

Bz = 2EC (1− 2Ng) , Bx = EJ/2, B=
√
B2
x +B2

z ,

θ = tan−1 (Bx/Bz) , (128)

while σz, σx are Pauli matrices expressed in the basis | ↑⟩ ≡
(1,0)T and | ↓⟩ ≡ (0,1)T where 0,1 are the corresponding val-
ues of N and T denotes the transpose operation.

This Hamiltonian has a tunable parameter Bz, which can be
controlled by the gate voltage that sets Ng. This qubit config-
uration can be improved by connecting the two superconduct-
ors in a loop. In this way, the effective Josephson coupling in
equation (125) is given by [45]

HJ = (EJ1 +EJ2)cos(πΦ/Φ0)
√

1+ d2tan2 (πΦ/Φ0)

× cos(φ̂−φ0) , (129)

where EJ1 = αEJ2 and EJ2 are the tunneling amplitudes for
the Cooper pairs at the junctions, d= (1−α)/(1+α) and
φ0 = d tan(πΦ/Φ0). The effective Hamiltonian for the qubit
is given by equation (125) with the Josephson term modulated
by the magnetic flux Φ through the loop in units of the flux
quantumΦ0 = hc/2e as defined in equation (129). In this way,
not only the gate voltage but also the magnetic flux can be
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Figure 7. Sketch of the Cooper pair box (top left) and transmon (bottom left) circuits. The spectrum for different ratios of EJ/EC is shown
in the right panels. Reprinted figure with permission from [339], Copyright (2007) by the American Physical Society.

used as control parameters to manipulate the effective qubit
Hamiltonian of equation (127).

Another popular architecture is the transmon. This circuit
has been proposed in [339] and has the advantage with respect
to the CPB of being less sensitive to charge noise. It is sketched
in figure 7 (see bottom left). One of the main differences with
respect to the CPB is that this circuit hosts two Josephson junc-
tions shunted by an additional capacitance CB. The Hamilto-
nian for this circuit is also given by equation (125), with EC =
e2/2(Cg +CJ +CB), while φ̂ denotes the total phase differ-
ence between the two superconductors, which is set by the
magnetic fluxΦ. The transmon operates in the opposite limit of
the CPB, namely EC ≪ EJ, in which case the low-energy spec-
trum of the Hamiltonian of equation (125) consists in approx-
imately constant energy levels as functions of the offset charge
Ng, as shown in figure 7(d).

10.2. Circuit quantum electrodynamics

We have previously presented some architectures for super-
conducting circuits, and shown that it can effectively behave
as a two-level quantum system. Asmentioned before, whenwe
also consider the surrounding circuit we have the scenario of
a qubit embedded in an electrodynamic cavity. The role of the
cavity is played by the combination of capacitive and induct-
ive circuit elements (resonators). In fact, the dynamics of a TL
of length L with a cross section of dimensions much smaller
than L can be effectively described by the following 1D Lag-
rangian,

L=

ˆ L/2

−L/2
dx

(
l
2
j2 − 1

2c
q2
)
=

ˆ L/2

−L/2
dx

[
l
2
θ̇2 − 1

2c
(∇θ)2

]
,

(130)

being l and c, respectively, the inductance and capacitance per
unit length, while j(x, t) and q(x, t) are, respectively, the local

current and charge densities. In last identity of the previous
equation the following representation was introduced,

θ(x, t) =
ˆ x

−L/2
dx ′q(x ′, t). (131)

The equation of motion for this Lagragian is the wave equation
with velocity v= 1/

√
lc. The solution for open boundary con-

ditions with θ(−L/2, t) = θ(L/2, t) = 0 can be expanded in
normal modes as follows

θ(x, t) =

√
2
L

∑
k

cos

(
kπx
L

+αk

)
θk(t), (132)

where αk = 0, (π/2), for k odd (even) integers, respectively.
The quantum-mechanical Hamiltonian for this cavity can be
formulated by identifying the coordinates θk along with the
conjugated momenta πk = lθ̇k and defining the operators

θ̂k =

√
ℏωkc
2

L
kπ

(
ak(t)+ a†k(t)

)
,

π̂k =−i
√

ℏωkl
2

(
ak(t)− a†k(t)

)
, (133)

with ωk = kπv/L and
[
ak,a

†
k ′

]
= δk,k ′ . Therefore, the voltage

on the TL can be expressed as

V(x, t) =
1
c
∂θ(x, t)
∂x

=−
∑
k

√
ℏωk
Lc

sin

(
kπx
L

+αk

)
×
(
ak(t)+ a†k(t)

)
. (134)

To treat the coupling between a qubit realized in the CPB
architecture and the circuit we must add to the voltage Vg

in equation (126) the voltage at the connecting point of
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the TL. Assuming that the qubit is coupled at the coordin-
ate x= 0 of the TL, we substitute Ng → Ndc

g +CgV(0, t)/2e in
equation (126). Focusing as before on the two lowest-energy
states with N= 0,1 close to the degeneracy point we get for
the qubit coupled to the LC circuit the following effective
Hamiltonian

HCPB−TL =− [Bzσ
z+Bxσ

x] +
∑
k

gk
(
a†k + ak

)
× (1− 2Ng −σz) . (135)

We have defined in the previous equation gk =
−eCgVk/(Cg +CJ) with Vk =

√
ℏωk/cL while Bx,Bz are

given by equation (128) with Ng given by the dc component
Ndc
g . Changing to the basis that diagonalizes the Hamiltonian

for the isolated qubit, it reads

HCPB−TL =
Ω

2
σz+

∑
k

gk
(
a†k + ak

)
× [1− 2Ng − cos(θ)σz+ sin(θ)σx] , (136)

with Ω=
√
E2
J +

[
4EC

(
1− 2Ndc

g

)]2
and θ defined in

equation (128).
Similarly, for the case of the transmon, the coupling

between the qubit and the TL reads [339],

Htrans−TL =
Ω

2
σz+

∑
k

gk
(
a†k + ak

)
σx, (137)

with gk ≃ gk {EJ/(8EC)}1/4. The qubit coupled to the electro-
magnetic environment represented as a set of many quantum-
oscillator modes effectively defines a spin system coupled to a
Caldeira-Legget type of bath [125], as mentioned in section 3.
Notice that equations (136) and (137) have the structure of
equation (38). In the literature the rotating wave approxima-
tion is sometimes introduced in the calculations, which leads
to a coupling of the form gkσ+ak+H.c., corresponding to the
James-Cummings Hamiltonian given by equation (39) [339].

The coupling of a qubit to a single resonator corresponds to
considering a single resonant k in equations (136) and (137)
instead of many modes. Such circuits are used to introduce
operations in the qubit, to perform the readout and to imple-
ment couplings between several qubits. In particular, coup-
lings, containing σz instead of σx in equation (137) have been
implemented in designed architectures of transmons [340–
343]. Blais et al [49] presents a complete overview of the
degree of development of this technology. The transmon qubit
is one the most used one nowadays because of its stability.

10.3. Implementing heat transport in quantum
electromagnetic circuits

Real circuits typically contain resistive elements (LRC cir-
cuits). The resistors produce thermal noise and behave as
thermal photon sources. This mechanism is discussed in detail
in [20, 344] and is the concrete way to implement a temperat-
ure reservoir and to induce thermal transport in these devices.

The spectral function describing the noise correlations of the
voltage defined in equation (134), is given by

SV(ω) =
ˆ +∞

−∞
dteiωt⟨V(0, t)V(0,0⟩= 2R

ℏω
1− e−βℏω , (138)

being R the resistance of the circuit and β = 1/(kBT). In
the limit of kBT≫ ℏω this expression tends to the clas-
sical fluctuation-dissipation result SV(ω)→ 2kBTR. In typical
devices, the temperature corresponding to the level separation
in the superconducting loop is 0.5 K, which implies that the
operational temperatures for these devices should be lower
than this.

Following [20, 344] we summarize the description of the
heat transport through a qubit or an array of qubits and reson-
ators embedded into two circuits with resistors Rh and Rc at
different temperatures Th (hot) and Tc (cold). Given a spectral
function SVh(ω) defined as in equation (138) for the hot res-
istor, the incident power spectral density at the cold resistor is
given by

SPc(ω) =
Tc−h(ω)

4Rh
SVh(ω), (139)

where the (dimensionless) function Tc−h(ω) describes the
transmission probability between the two resistive circuits
though the array of qubits connecting them. Therefore, the
power entering the cold reservoir from the hot one reads

Pc =

ˆ +∞

−∞
dωSPc(ω) =

ˆ +∞

−∞
dωℏωTc−h(ω)[nh(ω)+ 1/2],

(140)

being nh(ω) = 1/[1− eℏω/(kBTh)] the Bose–Einstein distribu-
tion function corresponding to the temperature of the hot bath.
Following the same reasoning for the power entering the hot
reservoir from the cold one and assuming reciprocity such that
Tc−h(ω) = Th−c(ω), the net heat flux between the two reser-
voirs is determined from

Pnet = Pc −Ph =

ˆ +∞

−∞
dωℏωTc−h(ω)[nh(ω)− nc(ω)],

(141)

which has the same structure as the Landauer–Büttiker
description of equation (26).

11. Experiments on quantum thermodynamics in
cQED

The possibility of coupling a superconducting qubit to res-
onators acting as harmonic-oscillators environments motiv-
ated the study of a rich variety of thermodynamic concepts
in this setup. The relevant mechanisms have been discussed in
the previous sections. In the present section we review some
reported experiments in this direction as well as some theoret-
ical proposals of experiments.
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11.1. Energy dynamics of measurements

Unlike the ideal picture usually presented in textbooks, the
process of measuring a quantum state is not instantaneous but
it takes place in a finite time and it depends on the details of the
interaction between the quantum system and the measurement
apparatus.

In quantum non-demolition measurements the goal is the
continuous monitoring of the quantum system. The measure-
ment process implies the coupling of the quantum system to
a classical measuring device. In principle, such devices have
much more noise than any one dictated by the quantum uncer-
tainty principle. An effective method to reduce these effects
is to isolate the quantum system from the measuring device
to perform an indirect measurement. This process takes place
for the quantum system coupled to a quantum probe and pro-
ceeds in two steps: (i) The system undergoes a unitary inter-
action with the probe, which is initially pre-pared in a known
quantum state. (ii) The probe interacts with a classical meas-
urement device. In experiments, all physical processes occur
over some finite timescale. Assuming the knowledge of the
Hamiltonian describing the coupling between these two sys-
tems, this two-step procedure can be used to describe a con-
tinuous measurement if it occurs over an infinitesimally short
time step and is repeated continuously. In this case, inform-
ation is continuously extracted from the probe as it interacts
with the measured system.

The analysis introduced in [345] defines the basis for a
set of experiments where the trajectory of a cQED qubit is
recorded [346–350]. The probe system is a single resonator
mode of frequency fres and couples to the qubit as described in
section 3 under the conditions where second-order processes
in the coupling dominates. This defines a dispersive coupling
and is modeled by the following Hamiltonian

Hdisp−coup = B⃗ · σ⃗+ h
(
fres −

χ

2
σz
)(

a†a+
1
2

)
. (142)

This system has a dispersive coupling in z and can be eas-
ily diagonalized for B⃗= (0,0,Bz) in the basis |σ,n⟩, where
the first entry denotes the state of the qubit and the second
one labels the state of the resonator. We see that with this
type of dispersive coupling the frequency of the resonator
mode is shifted by an amount that depends on the state of
the qubit. Hence, by measuring any physical property that
depends on this frequency it is possible to infer the state of
the qubit. In practice, this is achieved by sending a signal
of a given frequency to the cavity and measure the trans-
mitted or reflected signal. The phase of the transmission sig-
nal, in particular, depends on the difference between the fre-
quency of the injected wave and the one of the cavity, which
provides the information of the state of the qubit. This meas-
urement procedure is named homodyne detection [351] and
it basically provides information on ⟨σz⟩. It can be comple-
mented with another optical technique (heterodyne detection)
that records the spontaneous fluorescent emission of the qubit,
which provides information of the components ⟨σx⟩ and ⟨σy⟩.
The analysis of thesemeasurements enables the reconstruction
of the quantum trajectory and offers the possibility of keeping

track on the evolution of the quantum state. In order to theor-
etically describe the evolution of the quantum state in contact
to the noisy environment including the backaction introduced
by the measurement, a useful technique is the stochastic mas-
ter equation introduced in section 2.7. This is a generalization
of the one that describes the dynamics of the quantum state
coupled to the reservoirs, with an additional stochastic term to
describe the effect of the measurement.

Motivated by these experiments, [352–354] address the
description of the concomitant energy dynamics and these
ideas were more recently experimentally tested in [350]. In
this work it is analyzed how quantum heat and work can be
consistently identified in systems whose environment consists
of a continuously coupled quantum detector.

The Hamiltonian describing the qubit corresponds to
equation (36) with Bz = 0 and a coupling to the electromag-
netic environment is given by the Jaynes–Cummings Hamilto-
nian equation (39). Hence, the dispersive coupling is along x,y
and the information of ⟨σx⟩ obtained by homodyne detection
is recorded. The sketch of the experimental device is shown in
figure 8(a). The evolution of the density matrix is described
by an stochastic master equation like the one discussed in
section 2.7 with an stochastic term describing the effect of the
measurement. Each trajectory corresponds to a particular real-
ization of the experiment. As a result, for an infinitesimal time
interval, the change in the density operator of a quantum tra-
jectory is written as dρ̃t = δW [ρ̃t]dt+ δQ [ρ̃t]dt, where δW
and δQ are superoperators associated to the respective unitary
and non-unitary dynamics. As indicated by the notation, and
by analogy to equation (8), the first term can be used to calcu-
late the conservative component of the work and the second
one to calculate the quasi-static heat. In this way, heat and
work for individual trajectories can be recorded. Results are
shown in figure 8(b), where we can also see that the averages
over quantum trajectories and the calculations based on a pure
Lindbladian evolutionwithout any stochastic component show
a very good agreement.

11.2. Maxwell demon

The Maxwell demon is an imaginary character introduced by
Maxwell to discuss a gedanken experiment devoted to illus-
trate the second law of thermodynamics [355]. The main idea
is the implementation of processes forbidden to spontaneously
occur because of the second law, thanks to the help of an intel-
ligent creature. An example is the split of a mixture of gasses
so that those with larger kinetic energy are collected in a com-
partment separated by a wall from those with lower kinetic
energy. This is accomplished with the help of the demon, who
classifies the particles according to their velocities and separ-
ates them into the compartments by conveniently opening or
closing a door in the wall. The solution to the seeming paradox
is solved by properly accounting for the information processed
by the demon. This results in an entropy and energy balance
which is in full agreement with the laws of thermodynamics.

A realization of the Maxwell demon in a transmon qubit
coupled to a resonator was reported in [287]. Here we sum-
marize the main idea. Assume that the qubit is first coupled to
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Figure 8. (a) Experimental setup to drive the qubit and record the quantum trajectories to analyze the work and heat. Reprinted figure with
permission from [350], Copyright (2020) by the American Physical Society. (b) Recorded quantities. W̃ and Q̃ correspond to work and heat
calculated for individual trajectories, while ⟨W̃⟩ and ⟨Q̃⟩ are the corresponding averages over trajectories. The valuesW and Q correspond to
the calculations based on the Lindbladian dynamics.

a thermal bath that prepares it in a thermal state and it is after-
wards coupled to a ‘battery’. The latter is of the type proposed
in [277] and consists of a π-pulse with a resonant frequency
that switches the populations between the excited state and the
ground state by absorbing or emitting photons, as discussed in
section 8 (see equations (114)–(116)). For a thermal state at a
low temperature, the ground state is more populated than the
excited one. Therefore, the rate of absorption is larger than that
of emission, resulting in a net power transferred from the bat-
tery to the qubit. This process decreases as the temperature of
the thermal state increases and the population of the ground
state and the excited one become similar. In the setup stud-
ied in [287] a resonator is coupled to the qubit in a way that it
plays the role of a demon which favors the process of emission
of photons when the system is coupled to the battery by pre-
venting the absorption. This results in a net transfer of power
from the system to the battery.

We now briefly discuss the concrete experiment. The com-
bined qubit-demon system is described by the Hamiltonian of
equation (142) with B⃗≡ (0,0,hfS/2) and the resonator playing
the role of the demon with fres ≡ fD. A cycle is implemented
as follows: (1) The state of the qubit is prepared in a thermal
state at a temperature Th or in a superposition quantum state.
(2) The resonator (demon) is driven with a frequency fD with
a pulse of duration longer than χ−1 and shorter than the coher-
ence times of the qubit and cavity. The process is designed to
create nD = ⟨a†a⟩ photons in the resonator only if the qubit
is in the ground state (| ↓⟩). The corresponding eigenstates of
the Hamiltonian of equation (142) are | ↓⟩⊗ |nD⟩ with energy
E↓,nD =−hfS/2+ h( fD+χ/2)nD and | ↑⟩⊗ |0⟩ with energy
E↑ = hfS/2. (3) A π-pulse, playing the role of a battery, is sent
at a frequency f S. The action of such a pulse with the demon
in the nD = 0 state is the same as without demon and consists
in switching the populations of the two qubit states. Instead,
any other state of the qubit-demon system with nD ̸= 0 is off-
resonance with the pulse by an energy −χnD and the absorp-
tion of a photon accompanied by a switch of the qubit state
is not allowed. The only allowed process for the qubit is the
emission of a photon by changing the state from | ↑⟩ to | ↓⟩.

Figure 9. Sketch of the cycle studied in [287]. (1) Preparation of
the state. (2) The demon is driven and prepared with nD photons.
(3) The battery is connected. Without the demon, it should supply
photons to the qubit. Because of the demon, it receives photons
from the qubit and it is charged. (4) Reset step. The colored box
indicates the superposition state of the qubit and the action of the
demon. The latter forbids the absorption of photons from the battery
and only allows the emission.

(4) The last step consists in reseting the demon by coupling
it to a bath at temperature Tc < Th. This completes the cycle.
See sketch of figure 9.

In the experiment of [287] the power at the battery is recor-
ded in step (3). It is verified that with the demon with nD = 0
the battery releases power to the system, while with ⟨nD⟩= 0.9
the battery receives power. In a thermal state, the photon emis-
sion from the system into the battery when the demons inter-
venes (⟨nD⟩ ̸= 0) becomes more important as the temperat-
ure increases, and this behavior is verified in this experiment.
On the other hand, when the state is prepared in a quantum
superposition, the outcome is expected to be similar to a high-
temperature initial state and this is also observed in the exper-
iment. The results are interpreted by modeling the coupling of
the system to the baths and battery in the framework of Lind-
blad master equation equation (9).

A similar setup was theoretically considered in [356],
where the thermal baths of step (1) is substituted by a
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measurement. The idea is very similar, except for the fact that
the role of the demon is to perform projective measurements in
order to select the excited state of the qubit. These type of non-
demolition measurements can be accomplished by a system
that is well described by the Hamiltonian of equation (142),
where the coupling term commutes with the Hamiltonian of
the qubit. The demon resonator is excited with microwave
pulses, the response depends on the state of the qubit and it
is calibrated as a readout element.

The qubit-demon device described by the Hamiltonian of
equation (142) with the demon used to perform measurements
was also considered in [357] to experimentally verify a fluctu-
ation theorem. Fluctuation theorems [358–363] are regarded
as generalizations of the second law of thermodynamics and
are valid away from equilibrium. The experiment by Mas-
uyama and coworkers analyzes a fluctuation theorem formu-
lated in [364], which reads

⟨
e−σ−ISh

⟩
PM

= 1−λf b, (143)

where ⟨. . .⟩PM denotes the statistical average over the
projective-measurement (PM) protocols, ISh is the stochastic
Shannon entropy the demon acquires in the PM and σ =
−(W+∆F)/kBT is the entropy change in the qubit, being W
the work extracted from the qubit and ∆F the change in the
free energy (in the experiment ∆F= 0). The constant λfb in
the previous equation is associated to irreversible processes.
The implemented protocol consists in two projective measure-
ments with feedback control. The sequence is: (1) The qubit
state is prepared in a thermal state. (2) A measurement by the
demon is performed with outcome x=↑ or ↓. The demon gains
stochastic entropy ISh =−p(x) in this process. (3) A feed-
back operation is performed. This consists in leaving the state
of the qubit unmodified if it is in the ground state or apply-
ing a π-pulse if it is in the excited state. In the latter case
work is extracted from the qubit-demon, as discussed before.
(4) The amount of extracted work is measured by a second
projective measurement z=↑ or ↓. The result is W(x,z) =
E(x)−E(z), where E(x), E(z) are the energies of the states
x and z of the qubit. In this way, the quantity ⟨eW/kBT−ISh⟩PM =∑

x,z p(x,z)e
W(x,z)/kBT−ISh(x) is experimentally recorded and

compared with the theoretical estimate of the right hand side
of equation (143). The latter is calculated by recourse to a
quantum master that takes into account the qubit relaxation
during the pulse sequence. The agreement between experi-
mental and theoretical results is excellent.

A similar device and description was used in [350] to track
the quantum trajectories of a driven qubit. The aim of this
experiment is to analyze the decomposition of changes in
the internal energy of the qubit into heat and work, as dis-
cussed in section 2.7. In the experiment, the results of two-
point measurements similar to those in [357] are compared
with the predictions of quantummaster equations based on the
Hamiltonian of equation (142). Amore complex configuration
involving two transmon qubits was considered in [365], where
a mixed-state target qubit is purified by a pure-state demon
qubit connected via an off-resonant TL. A nice overview and

comparison among these experiments has been presented in
[366].

In [367] a different experimental setting to implement a
Maxwell demon in cQED was proposed, which bares a closer
resemblance to the original idea formulated by Maxwell. The
gas chambers are substituted by LRC resonators with a tunable
frequency at different temperatures and the compartment sep-
arating these two reservoirs is realized by a qubit. This system
is basically the one discussed in section 9 (see figure 6) and the
spontaneous process dictated by the thermodynamics laws is
the heat transport from the hot to the cold reservoir through the
qubit. The action of the demon is implemented by monitoring
the quantum state of the qubit and manipulating the strength of
its contact to the reservoirs. This manipulation can be realized
by selecting the frequency of the resonator. When it coincides
with the one associated to the qubit level spacing the contact
is switched on while when these two frequencies are detuned
the contact is switched off. Hence, if the qubit is detected to
be in the ground state, it is put in contact with the cold reser-
voir, in order to favor the absorption of photons from this bath.
Instead, when it is detected to be in the excited state it is put
in contact with the hot one, in order to favor the emission of
photons into this bath. The net effect is a transfer of heat from
the cold to the hot reservoir.

11.3. Experimental measurement of a topological transition

In section 5.2 we have briefly reviewed [190] where the fact
that the Berry curvature could be measured in the adiabatic
dynamics of a qubit was pointed out. References [191, 368]
present the experimental verification of these ideas.

In [197] a transmon qubit is evolved in the adiabatic regime
following the proposal of [190]. Concretely, the Hamiltonian
of equation (41) was considered with

B⃗(θ,ϕ) =
ℏ
2
(∆1 cosθ+∆2,Ω1 sinθ cosϕ,Ω1 sinθ sinϕ) .

(144)

This model has a topological transition as a function of
∆2/∆1, where the Chern number jumps from 1 to 0, for∆2 =
∆1. The parameters are chosen in order to initialize the qubit in
its ground state at θ(t= 0) = 0 with fixed ϕ(t) = 0 and a ramp
with constant θ̇ is implemented. The evolution of the induced
force Fϕ =−∂Hqubit/∂ϕ is monitored and compared with the
description of equation (66), with the Berry curvature given
by equation (67). Experimentally, the latter is determined as
the linear coefficient of ⟨Fϕ⟩ as a function of θ̇. Given the
curvature, the Chern number is calculated from equation (68).
The comparison between theory and experiment is excellent.
When the effect of the environment is considered by simu-
lating the adiabatic evolution with Lindblad master equation
small corrections are found which tend to soften the jump at
the transition.

Results are summarized in figure 10. The upper panels
show the protocols and the calculated results for ⟨σ⃗⟩, repres-
ented in the Bloch sphere for parameters in the topological
phase (a) and outside it (b). It is clear that in the topological
case the state wraps the Bloch sphere and ⟨σy⟩ ̸= 0. Instead,
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Figure 10. Reprinted figure with permission from [191], Copyright (2014) by the American Physical Society. (a) The parameter space and
the implemented protocol for ∆2 = 0 in red (left). The corresponding calculated results for ⟨σ⃗⟩ represented in the Bloch sphere (right).
(b) The same as for (a), with ∆2 = 1.5∆1. (c) The Berry curvature measured as a function of ∆2/∆1, which is integrated in (d) to yield the
Chern number C1.

Figure 11. Sketch of the proposed experimental setup. Reprinted figure with permission from [370], Copyright (2016) by the American
Physical Society.

in the non-topological case there is no wrapping of the Bloch
sphere and ⟨σy⟩= 0. The measured Berry curvature is shown
in panel (c), while panel (d) shows the result for the Chern
number. The plots with the label spin 1/2 correspond to the
isolated system while ‘simulation’ labels the results obtained
by including the coupling to the environment modeled by a
Lindbladian dynamics.

In [198] a similar protocol andmeasurement was performed
in a CQED qubit with a different architecture and these results
were verified. Furthermore, by mapping states on the Bloch
sphere to wave vectors in the first Brillouin zone of a lattice
model, the topological transition of Haldane model [369] is
simulated in a qubit.

11.4. Thermal machine and Otto cycle

An experimental setup to implement a non-equilibrium
thermal machine on a superconducting qubit coupled to
two resonators with a resistive element (LRC circuits) was

proposed in [370] and further analyzed in [371]. The opera-
tion is argued to have a regime that corresponds to an Otto
cycle.

A sketch of the setup is presented in figure 11. The two res-
onators have different resonant frequencies, ωLC,1 and ωLC,2,
and different temperatures. The qubit is described by the
Hamiltonian of equation (41) with B⃗= E0 (∆,0,q(t)), being q
a time-dependent parameter modulated by changing the flux,
which follows the protocol,

q(t) =
1
4
[1+ cos(2πft)] . (145)

Hence, the level spacing of the qubit oscillates according to
ℏω(t) = 2E0

√
∆2 + q2(t). Each of the resonators has an asso-

ciated noise spectral function of the form of equation (138)
and it is coupled to the qubit operator σz through an inductive
element. The degree of coupling depends on the degree of tun-
ing between ωLC,j, j= 1,2 and ω(t).
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Figure 12. Left: illustration of the thermal transport process when the qubit is contacted to reservoirs at different temperatures through
resonators. Right: experimental results for the total heat power absorbed by the cold reservoir for these two configurations. Reprinted figure
with permission from [20], Copyright (2021) by the American Physical Society.

An ideal Otto cycle would consist in the following four
steps: (a) For q : 0→ 1/2: The qubit decouples from the res-
onators and evolves isolated from the reservoirs. Its popula-
tion is determined by the cold resistor. (b) At q= 1/2 the
qubit couples to the hot resonator and thermalizes with the
hot resistor. The energy flows from the qubit to the reson-
ator. (c) q : 1/2→ 0: The qubit decouples from the resonat-
ors and evolves isolated from the reservoirs. (d) At q= 0 the
qubit couples to the cold resonator and thermalized with the
cold resistor. The energy flows from the resonator to the qubit.
The full cycle operates as a refrigerator. Although the ana-
logy to the Otto cycle is useful to understand the basics of the
operation, the complete decoupling from the reservoirs does
never occur in this setup and the device actually operates as
a non-equilibrium thermal machine in permanent contact to
the reservoirs, similar to the one discussed in section 7.4. In
both [370, 371] the problem is solved by means of a non-
equilibrium master equation. The description is extended to
higher frequencies and the solution is argued to achieve a
regime where the performance resembles the one of an Otto
cycle. Estimates on the cooling power are presented in [370]
and these are consistent with the present state of the art of the
experimental detection possibilities. So far, the actual experi-
ment has not been reported.

11.5. Thermal transport

As discussed in section 9 when a few-level quantum system is
coupled to two or more baths at different temperatures, there
is typically a stationary heat flux from the hot to the cold bath
through it.

In [305] a setup similar to the one described in that section
was considered to experimentally study the thermal trans-
port through a qubit. The configuration is similar to the one
sketched in figure 6(b). Instead of coupling the qubit to the
reservoirs directly, the coupling is implemented to resonators
with a resistive element, which are contacted to metallic reser-
voirs at different temperatures as sketched in figure 12. Hence,
there are two couplings playing a role, which are, respectively,
indicated in the figure with g (between the qubit and the res-
onators) and γ (between the resonators and the thermal baths).
The proper separation into the quantum system and reservoirs
in the description of the thermal transport through the device
depends on where the thermal bias effectively drops, as dis-
cussed in section 9.3 and this depends on the ratio g/γ. For
g≪ γ, each resonator is thermalized with its reservoir. In this
regime, it is appropriate to define effective cold and hot baths
to describe the combined systems of cold and hot reservoirs in
contact to the corresponding resonator. This effective descrip-
tion is sketched in the upper part of figure 12 and implies a
proper modeling of the spectral functions for the baths to rep-
resent the combined systems. In the opposite limit of g≫ γ,
the temperature drop is more likely to take place in the contact
between the resonator and the external reservoir. Therefore, in
this case it is more appropriate to consider the quantum sys-
tem consistent of the qubit hybridized with the resonators and
this combined system coupled to the reservoirs, as sketched in
the lower part of the figure. Both scenarios were successfully
analyzed in [305] where the experimental data was properly
modeled bymeans ofmaster equations. In both configurations,
the recorded power, corresponding to the heat current through
the device through equation (141), is analyzed as a function
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of Φ, the magnetic flux through the qubit. These results were
further analyzed in [20] and a summary is shown in the right-
hand side of figure 12. An interesting feature there analyzed
is the sensitivity of the heat transport to the magnetic flux.
This is a signature of quantum coherence in the heat trans-
port, which has been previously observed in the context of
superconductors [333]. In the present case, we recall that this
flux determines the effective level spacing of the qubit, and
this is reflected in the transmission probability for the energy
transport through the device.

A related experiment was reported in [306], basically in
the same experimental device. Here, the focus was on the
heat rectification properties of the system, implying a different
amplitude in the heat current when the thermal bias in inver-
ted. Heat rectification is known to be possible only in sys-
tems with many-body interactions as discussed in section 9.4.
In this experiment, a thermal rectification of 10% was
observed.

11.6. Steady-state heat engines and refrigerators

In [372] a device where two quantum LC resonators is pro-
posed. The two resonators with natural frequencies Ωc < Ωh

are coupled via a TL to baths at temperatures Tc < Th, respect-
ively. They are connected through a Josephson junction, which
is biased with a voltage V= h(Ωh −Ωc)/2e. If the occupation
probability of the hot (h) cavity is larger than the cold (c) one,
Cooper pairs tunnel against the bias by absorbing a photon in h
and creating a photon in c. In this way, heat is converted into an
electrical supercurrent that tunnels agains the bias. The oper-
ation of this setup as a thermometer was analyzed in [373].
Interestingly, this device has been experimentally realized in
[374], although no results on the heat transport or the mech-
anism of heat–work conversion have been reported so far.

A configuration of two resonators with a temperature bias,
connected by a Josephson coupling was also considered in
[375] to realize an autonomous refrigerator. In this case,
in addition to the direct Josephson coupling, the two res-
onators are coupled through a third one with natural fre-
quency Ωr, forming a loop. The loop is threaded by a flux
ϕ, so that the Josephson Hamiltonian of the full device reads

EJ cos
(
2ϕ̂c + 2ϕ̂h + 2ϕ̂r +ϕ

)
, where ϕ̂α =

√
πe2Zα/h is the

phase fluctuation in each resonator being Zα the correspond-
ing impedance. The non-linearity of this term and imposing the
condition Ωr =Ωc +Ωh favors the emission of photons from
the cold resonator, with the consequent cooling.

12. Final remarks

The problem of the energetics and thermodynamic properties
of new quantum devices is a topic of increasing interest, which
motivates basic research while it is also paramount for the
development of quantum technologies.

We have presented an overview of the main fundamental
problems related to the energy dynamics of qubits, which are

currently under active investigation. The rich variety of phe-
nomena ranges from many-body strong correlations to the
realization of thermal machines to convert heat into useful
work and vice-versa. It also includes the fascinating topolo-
gical properties whichmay help to provide a robust framework
to control this dynamics.

We have intended to discuss theoretical results and to
provide a brief description of the theoretical tools to address
them in the different regimes along with their scope and
limitations.

The main focus in connection with concrete realizations of
these mechanisms has been put on superconducting devices.
For this reason, we devoted some space to briefly explain the
operation of these systems. We have also reviewed the main
experimental advances in the study of quantum energy dynam-
ics and thermodynamics in this qubit platforms. Nevertheless,
many of the theoretical discussions are valid or can be simply
translated to scenarios based on other qubit platforms, like
quantum dots, NV centers and AMO systems.

We hope that this contribution may provide a motivating
summary to stimulate more experimental research and help in
triggering new theoretical ideas in this field.
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Appendix A. Details on the calculation of the ΛS
ℓ,ℓ ′

for a driven qubit coupled to a single bath

We summarize some technical details to calculate equation
(56) as reported in [160]. The procedure to calculate the matrix
M(X⃗) is based on the assumption that the master equation for
the frozen density matrix is known and given by

dρ( f)

dt
=

Γg
2
D[σ+]ρ( f) +

Γd
2
D[σ−]ρ( f). (A.1)

Γg(B) and Γd are gain and damping rates describing the effect
of the coupling with the bosonic bath. These read Γg(B) =
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[1+ nB]Γ(B) and Γd(B) = nBΓ(B), being nB = (e2Bβ − 1)−1

the Bose–Einstein distribution function depending on the tem-
perature T of the bath (β = 1/kBT). The function Γ(B) =
γ0Bs with s= 1,>1,<1 defines the spectral properties of the
bosonic bath (Ohmic, super-Ohmic and sub-Ohmic, respect-
ively). The other quantities in equation (A.1) are σ± = (σx±
iσy)/2 and the superoperators areD[O]ρ= OρO† −{O†O,ρ}.
In such a case, the quantities defined in equation (49) read

M= Diag
(
−Γ+(B)/2,−Γ+(B)/2,−Γ+(B)

)
,

γ⃗ =
(
0,0,Γ−(B)

)
, (A.2)

being Γ±(B) = [Γd(B)±Γg(B)]/2. The stationary solution of
equation (A.1) in the vector notation introduced before is
ρ⃗( f) = (0,0,−Γ−(B)/Γ+(B)), which leads to

M−1 ∂ρ⃗
( f)

∂B
= λB⃗z, M−1 ∂ρ⃗

( f)

∂θ
= λq

∂n⃗
∂θ
,

M−1 ∂ρ⃗
( f)

∂φ
= λq

∂n⃗
∂φ

, (A.3)

with

λB =
1

Γ(B)
sinh(βB)

cosh3(βB)
, λq =

1
Γ(B)

tanh2(βB). (A.4)

To compute ΛS
ℓ,ℓ ′ from equation (53) we need to calculate the

vectors defining the force operator introduced in equation (52).
The result is

f⃗B = n⃗, f⃗θ = B
∂n⃗
∂θ
, f⃗φ = B

∂n⃗
∂φ

. (A.5)

Appendix B. Master equation for a driven qubit
asymmetrically coupled to two reservoirs

We present here the master equation derived as explained in
section 2.3 for a slowly driven qubit weakly coupled to thermal
baths with equation (79).

The instantaneous values of the parameters are B⃗=
(Bx,Bz). Hence, the matrix elements ξα,jl of the coupling are
obtained by transforming equation (79) to the instantaneous
frame where the Hamiltonian of equation (41) is diagonal for
these frozen parameters. The corresponding matrices are

ξl =
1
B
(Bzσ

z+Bxσ
x) , ξr =− 1

B
(Bxσ

z+Bzσ
x) . (B.1)

Assuming an Ohmic bath, the rates of equation (15) are

γα(ε) = εγα,0e
−ε/εC , ε > 0, (B.2)

being εC and energy cutoff.
Introducing the notation of equation (47), the mas-

ter equations for the frozen, equation (14), and adiabatic,
equation (16), components read, respectively, for the present
case

(E +Ml +Mr) ρ⃗
( f) = γ⃗,∑

ℓ=x,z

∂ρ⃗( f)

∂Bℓ
Ḃℓ = (Ml +Mr) ρ⃗

(a), (B.3)

with

Mα =

 0 0 Dα

0 Dα 0
0 0 Dα

 , E =

 0 −2B 0
2B 0 0
0 0 0

 ,

(B.4)

and

γ⃗ =
1
B2

(
BxBz(γr − γl),0,B

2
zγl +B2

xγr
)
, (B.5)

being Dl =−B2
x/B

2Γl, Dl = BxBz/B2Γl and Dr =−B2
zΓr,

Dr =−BxBz/B2Γr. Γα = γα
(
e2Bβα − 1

)−1
, contains the

information of the coupling with the baths with βα = 1/(kBT),
and γα being the corresponding coupling strength.
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