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ABSTRACT: 

In this work we introduce a model for analytically computing the mean partial pathlengths (MPPLs) 
of photons in optically turbid media consisting in an arbitrary number of layers, being the deepest one 
infinitely thick. This has several applications in the field of Biomedical Optics, especially when 
modelling light propagation in biological tissues and systems such as the human head. The 
computational implementation of our model surpasses the current state-of-the-art calculations done 
by means of Monte Carlo (MC) simulations, which, despite their robustness, represent a bottleneck in 
terms of computation times and hardware requirements when real-time applications are considered. 
In order to validate the approach presented in this work, we compared it with MPPLs generated by 
MC simulations for turbid layered media with different numbers of layers and several combinations 
of optical properties and thicknesses. Results show a very good agreement between theory and 
simulations, with relative errors of less than 10% having place mainly in the first layer. It is expected 
that this investigation contributes to increasing the accuracy of the models currently used for studying 
light propagation in highly heterogeneous biological tissues. 

Key words: fNIRS, Multilayered Media, Mean Partial Pathlengths, Monte Carlo Simulations 

RESUMEN: 

En este trabajo presentamos un modelo para el cálculo analítico de los caminos parciales medios 
(MPPLs) de fotones en medios ópticamente turbios formados por un número arbitrario de capas, 
siendo la última infinitamente gruesa. Esto tiene numerosas aplicaciones en el campo de la Óptica 
Biomédica, especialmente al modelar la propagación de la luz en tejidos y sistemas biológicos como la 
cabeza humana. La implementación computacional de nuestro modelo supera el estado del arte de los 
cálculos actuales realizados mediante simulaciones de Monte Carlo (MC), las cuales, a pesar de su 
robustez, representan un cuello de botella en términos de tiempos de cómputo y de requisitos de 
hardware al momento de considerar aplicaciones en tiempo real. Con el fin de validar el modelo 
presentado en este trabajo, comparamos nuestro método con los MPPLs generados por simulaciones 
de MC para medios turbios multicapas con diferentes números de capas y diferentes combinaciones 
de propiedades ópticas y de espesores. Los resultados muestran un muy buen acuerdo entre teoría y 
simulaciones, con errores relativos menores al 10% que tienen lugar principalmente en la primera 
capa. Se espera que esta investigación contribuya a aumentar la precisión de los modelos actualmente 
usados para estudiar la propagación de la luz en tejidos biológicos altamente heterogéneos. 

Palabras clave: fNIRS, Medios Multicapas, Caminos Parciales Medios, Simulaciones de Monte Carlo 
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1. Introduction 
During the last decades, Near InfraRed Spectroscopy (NIRS) has gained increasing attention in the 
Biomedical Optics community due to its ability to sense in a non-invasively way inner regions of living tissue 
with relatively low-cost and portable devices [1-5]. Among its applications we can find tissue oximetry [6], 
optical mammography [7], brain haemodynamics [8] and rheumatoid arthritis [9], to mention but a few, 
and sometimes with the additional possibility of implementing these technologies in real time [3,4]. 

The theory of light diffusion in highly scattering media can be applied to this type of problems to extract 
useful information from the detected signal [10-13], which can provide valuable insights regarding tissue 
oxygenation, chromophores concentration, structural information such as the presence of inhomogeneities 
and so on [13]. 

Regarding the experimental procedures, NIRS techniques usually require the coupling of a pair of optical 
fibres to the skin of the subject under study; one of them serves as a NIR light source, while the other one 
works as a detector, which collects the photons diffusively reflected by the explored tissue [10]. Under NIR 
illumination, biological tissues behave as highly scattering turbid media and can be characterised mainly by 
three parameters, namely the absorption coefficient, μa, the reduced scattering coefficient, μ’s, and the 
refractive index, n. In the particular case of studying brain haemodynamics, one of the main metrics used to 
evaluate the presence or absence of activation in the cortex is the attenuation A as a function of the 
wavelength λ and the source-detector distance ρ, which can be computed by means of the Modified Beer-
Lambert law (MBLL) [3]: 

𝐴(𝜌, 𝜆) =  − log (
𝐼(𝜌, 𝜆)

𝐼0(𝜌, 𝜆)
) =  𝐿(𝜌, 𝜆)Δ𝜇𝑎(𝜆), (1) 

where L(ρ,λ) is the mean partial pathlength (MPPL) of photons inside the tissue, and Δμa(λ) is the absorption 
change that produces the variation in light intensity I(ρ,λ) with respect to the reference signal I0(ρ,λ). The 
cause for these absorption changes is none other than changes in chromophores concentrations; in the field 
of functional NIRS (fNIRS), for which the main goal is to determine which region (or regions) of the brain is 
(are) activated in response to a given motor or cognitive task, two main chromophores are usually 
considered, namely oxyhaemoglobin (HbO) and deoxyhaemoglobin (HbR), so Δμa can be obtained as follows 
[3,4]: 

 

𝛥𝜇𝑎(𝜆) = 𝜀𝐻𝑏𝑂(𝜆)Δ[𝐻𝑏𝑂] + 𝜀𝐻𝑏𝑅(𝜆)Δ[𝐻𝑏𝑅], 

 

(2) 
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being εHbO (εHbR) the molar extinction coefficient of HbO (HbR) at wavelength λ. In Eq. (2), the square 
brackets in [HbO] and [HbR] represent concentrations. 

Equations (1) and (2) together represent the model used to study variations in the detected light signal 
when changes in [HbO] and [HbR] take place in biological tissues such as the human head. As it must already 
be noted by the reader (particularly through Eq. (1)), this model accounts only for homogeneous turbid 
media, i.e., those for which the optical parameters are the same throughout the whole volume. The reason 
for this is that the reconstruction process is much easier than for the case where heterogeneities are 
considered [14]; this can be seen, for example, in the computation of the MPPLs for homogeneous media, 
which can be analytically computed in a number of situations [12].  

However, biological systems like the human head are far from being optically homogeneous. Instead, a more 
natural way of modelling light propagation in such types of tissues are layered turbid media, where each 
layer has its own set of optical parameters. This requires the following modification to Eq. (1): 

 

𝐴(𝜌, 𝜆) = ∑ 𝐿𝑗(𝜌, 𝜆)𝑁
𝑗=1 Δ𝜇𝑎,𝑗(𝜌, 𝜆), 

 

(3) 

where N is the total number of layers in the medium and j is the index representing each layer. Of course, a 
change in the absorption of layer j is now due to its own combination of changes in oxy- and 
deoxyhaemoglobin, i.e., Δ[HbO]j and Δ[HbR]j. 

Regarding the fNIRS technique applied to the human brain, chromophore concentration changes of interest 
are mostly focused in the grey matter region [14-17], which, in sight of the complex structure of the human 
head, evidently makes the homogeneous models rather inappropriate. Moreover, contributions to these 
changes from more superficial layers can mask or even block the desired changes in the cortex. In order to 
account for these inaccuracies, a number of strategies have been adopted. For example, the homogeneous 
MPPL in Eq. (1) can be expressed as a product of the source-detector distance ρ, a differential pathlength 
factor (DPF) and a partial volume correction (PVC) factor, which are intended to scale lengths such as to 
represent only the distance travelled by photons in the turbid volume corresponding to the grey matter 
[18]. This approach can be combined with the use of the so-called short detector channels (SDCs), which 
consists in source-detector pairs separated by a distance ρS ~ 5-15 mm [3], allowing the collection of 
information at the surface, which can then be subtracted from the overall signal A given by Eq. (1); this 
procedure retains only information coming from deeper regions of the studied medium [3,19,20]. 

Although these methods perform better than the homogeneous models alone, they still pose some 
problems. In principle, quantities such as the DPF and the PVC must be taken as constant independently of 
the human subject under consideration and the type and place of the brain activation [18], something which 
in general is far from being true. As well as this, the use of SDCs alone introduce undesired crosstalk between 
the upper and the deeper zones being explored by light [19,20]. 

Up to date, the only way to compute the MPPLs in layered media, as the human head, was by means of Monte 
Carlo (MC) simulations [14,15,21], since it is impossible to experimentally determine them for an 
anatomically representative geometry of it. However, this approach generally requires highly demanding 
hardware capabilities and takes long computation times, preventing the retrieval of oxy- and 
deoxyhaemoglobin changes in real time experiments. Recently, some of the authors have developed a 
method to analytically compute the MPPLs in turbid media consisting of up to four flat layers (a simplified 
human head model) in a few milliseconds [22]. Of course this model is still far from the extremely complex 
anatomical description, but it can be justified by three main reasons: i) due to the highly diffusive nature of 
the medium under study, the detailed structure of the model is not of utmost importance, ii) it outperforms 
the homogeneous model approach, allowing to naturally separate the chromophore concentration changes 
occurring in the layer of interest (grey matter) from those taking place outside it and iii) real time 
experiments are now feasible. 

In this way we have been able to demonstrate that the MPPLs strongly depend on the optical properties of 
each layer, as well as on its thicknesses and on the source-detector separation ρ, something which remains 
neglected when using homogeneous models. Our method allows for increasing the specificity of the 
information retrieved from each layer and also decreases the crosstalk between them. 

In this work we present an improvement of our own method by which analytical MPPLs can be directly 
computed for diffusive media with an arbitrary number of layers. This permits an even higher increase in 
the specificity of each layers’ information, allowing to model tissue types usually packed together, such as 
the meninges, or even studying the penetration depth of photons for different source-detector arrays. The 
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time consumption remains bounded to a few milliseconds, which makes the approach still feasible for real 
time applications. Comparison with MC simulations show an excellent agreement, with errors of less than 
10%. 

This manuscript is organised as follows: Section 2 introduces the theoretical concepts needed to analytically 
compute the MPPLs in a layered turbid medium with an arbitrary number of layers; Section 3 shows the 
details of the MC simulations run for comparison purposes; Section 4 presents the main results of this work; 
and finally, the corresponding conclusions together with plausible future lines of work are discussed in 
Section 5. 

 

2. Theory 

As previously established by several works [15,21,23,24], the MPPLs of photons in layer j (j = 1, 2, ..., N) in 
an N-layered turbid medium can be calculated using the following equation: 

 

𝐿𝑗(𝜌, 𝜆) = −
1

𝑅(𝜌, 𝜆)

𝜕𝑅(𝜌, 𝜆)

𝜕𝜇𝑎𝑗

, 

 

(4) 

being R(ρ, λ) the diffuse reflectance measured at a distance ρ from the source emitting light at wavelength 
λ and impinging at the top surface of the turbid medium. It is possible to feed Eq. (4) with any analytical 
model representing R(ρ,λ) and then perform its corresponding derivatives to obtain an analytical 
expression for Lj (ρ,λ). 

 
Fig. 1.  Schematic representation of a multilayered turbid medium with a semiinfinite deepest layer. A pencil like beam impin ges onto 
the top layer at coordinates (x,y,z) =(0,0,0), which can be modelled by an isotropic source located at r0= (0,0,z0=1/μ’s,1) inside the first 

layer. The diffusively reflected light is collected at the same surface and at a distance ρ from the source.  

 

To this end, we can assume a schematic configuration as the one shown by Fig. 1. The turbid medium of 
interest (such as the human head in our case) is assumed to be formed by a stack of layers (each of them 
with optical properties μa,j, μ’s,j and nj) of finite thicknesses dj, except for the last one, which is semiinfinite. 
All the layers are separated by planar interfaces (a fair assumption if we keep ρ much smaller than the 
radius of the head). Under this configuration, it can be demonstrated that the R(ρ,λ) takes the form [25]: 

 

𝑅(𝜌, 𝜆) =
1

4𝐴(𝜋𝑅𝐸𝐵)2 ∑ 𝐺1

∞

𝑛=1

(𝑧 = 0; 𝑠𝑛 , 𝝁)
𝐽0(𝑠𝑛𝜌)

𝐽1²(𝑠𝑛𝑅𝐸𝐵)
, 

 

(5) 

Here, A is a factor that accounts for the refractive index mismatch between the turbid medium and the 
environment; REB is the extrapolated radius for which the photon fluence satisfies the extrapolated 
boundary condition [12]; J0 and J1 are the Bessel functions of the first species and of orders 0 and 1, 
respectively; G1(z = 0;sn,μ) is the Green’s function for layer 1 (where the source is placed); sn are rescaled 
Bessel zeros, such that J0(snREB) = 0; and μ = (μ1, μ2, …, μj, …, μN), where μj summarises the collection of optical 
parameters and thicknesses of layer j. Two things must be noted here: i) a pencil beam source (like the one 
represented in Fig. 1) becomes completely isotropic at a depth z0 = 1/μ’s,1 when the medium is highly 
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scattering [10,11]; and ii) as stated in Eqs. (1)-(3), the dependence of the reflectance with λ takes place 
solely by means of the absorption coefficients μa,j, which have been omitted in expression (5) for the sake 
of clarity. 

In order to compute the MPPLs given by expression (4), the explicit form of the Green’s function G1 is 
needed: 

𝐺1(𝑧 = 0; 𝑠𝑛 , 𝝁) =  
exp(−𝛼1𝑧0) − exp[−𝛼1(𝑧0 + 2𝑧𝑏,1)]

2𝐷1𝛼1
×

sinh[𝛼1(𝑧0 + 𝑧𝑏,1)] sinh[𝛼1𝑧𝑏,1]

𝐷1𝛼1 exp[𝛼1(𝑑1 + 𝑧𝑏,1)]
× 

×
𝐷1𝛼1𝑛1

2𝛽3 − 𝐷2𝛼2𝑛2
2𝛾3

𝐷1𝛼1𝑛1
2 cosh[𝛼1(𝑑1 + 𝑧𝑏,1)] 𝛽3 + 𝐷2𝛼2𝑛2

2 sinh[𝛼1(𝑑1 + 𝑧𝑏,1)] 𝛾3

, 

 

(6) 

being zb,1 the extrapolated surface in the z direction (equivalent to REB in the radial direction); Dj = 1/3μ’s, j, 
while αj are quantities given by: 

𝛼𝑗 = √
𝜇𝑎,𝑗

𝐷𝑗
+ 𝑠𝑛². 

 

(7) 

Besides, β3 and γ3 are factors obtained by recursion relations, beginning with βN and γN: 

 

𝛽𝑁 = 𝐷𝑁−1𝛼𝑁−1𝑛𝑁−1² cosh[𝛼𝑁−1𝑑𝑁−1] +𝐷𝑁𝛼𝑁𝑛𝑁² sinh[𝛼𝑁−1𝑑𝑁−1], 

𝛾𝑁 = 𝐷𝑁−1𝛼𝑁−1𝑛𝑁−1² sinh[𝛼𝑁−1𝑑𝑁−1] +𝐷𝑁𝛼𝑁𝑛𝑁² cosh[𝛼𝑁−1𝑑𝑁−1], 

 

(8) 

And then “going down” to k = 4 as follows: 

𝛽𝑘−1 = 𝐷𝑘−2𝛼𝑘−2𝑛𝑘−2² cosh[𝛼𝑘−2𝑑𝑘−2] 𝛽𝑘 + 𝐷𝑘−1𝛼𝑘−1𝑛𝑘−1² sinh[𝛼𝑘−2𝑑𝑘−2] 𝛾𝑘 , 

𝛾𝑘−1 = 𝐷𝑘−2𝛼𝑘−2𝑛𝑘−2² sinh[𝛼𝑘−2𝑑𝑘−2] 𝛽𝑘 + 𝐷𝑘−1𝛼𝑘−1𝑛𝑘−1² cosh[𝛼𝑘−2𝑑𝑘−2] 𝛾𝑘 . 

 

(9) 

Details about how these relations hold can be found in Ref. [25]. 

Equation (4) indicates that we need the derivatives of R(ρ,λ) with respect to each μa,j, which reduces to the 
calculation of the derivatives of G1: 

 

𝜕𝑅(𝜌, 𝜆)

𝜕𝜇𝑎,𝑗
=

1

4𝐴(𝜋𝑅𝐸𝐵 )²
∑

𝐺1(𝑧 = 0; 𝑠𝑛 , 𝝁)

𝜕𝜇𝑎,𝑗

∞

𝑛=1

𝐽0(𝑠𝑛𝜌)

𝐽1²(𝑠𝑛𝑅𝐸𝐵)
. 

 

(10) 

Since the different absorption coefficients act through the parameter αj, the derivatives of G1 can be 
computed as: 

 

𝜕𝛼1(𝑧 = 0; 𝑠𝑛 , 𝝁)

𝜕𝜇𝑎,𝑗
=

𝐺1(𝑧 = 0; 𝑠𝑛 , 𝝁)

𝜕𝛼𝑗 
×

𝜕𝛼𝑗

𝜕𝜇𝑎,𝑗
. 

(11) 

By means of relation (7) we can easily see that: 

𝜕𝛼𝑗

𝜕𝜇𝑎,𝑗

=
1

2𝐷𝑗𝛼𝑗

. (12) 

Now we proceed by splitting G1 as defined in expression (6) in the following manner: 

 

𝐺1 = 𝐺1
𝐼 + 𝐺1

𝐼𝐼 × 𝐺1
𝐼𝐼𝐼 , 

 

(13) 

with: 
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𝐺1
𝐼 =

exp(−𝛼1𝑧0) − exp[−𝛼1(𝑧0 + 2𝑧𝑏,1)]

2𝐷1𝛼1
, 

 

𝐺1
𝐼𝐼 =

sinh[𝛼1(𝑧0 + 𝑧𝑏,1)] sinh[𝛼1𝑧𝑏,1]

𝐷1𝛼1 exp[𝛼1(𝑑1 + 𝑧𝑏,1)]
, 

 

𝐺1
𝐼𝐼𝐼 =

𝛿

Δ
; 

 

(14) 

where: 

𝛿 = 𝐷1𝛼1𝑛1
2𝛽3 − 𝐷2𝛼2𝑛2

2𝛾3, 

𝛥 = 𝐷1𝛼1𝑛1
2 cosh[𝛼1(𝑑1 + 𝑧𝑏,1)] 𝛽3 + 𝐷2𝛼2𝑛2

2 sinh[𝛼1(𝑑1 + 𝑧𝑏,1)] 𝛾3; 

 

(15) 

these definitions will facilitate the forthcoming reading and calculus. We can begin by writing the derivative 
of G1 with respect to a α1: 

 

𝜕𝐺1

𝜕𝛼1
=

𝜕𝐺1
𝐼

𝜕𝛼1
+

𝐺1
𝐼𝐼

𝜕𝛼1
× 𝐺1

𝐼𝐼𝐼 + 𝐺1
𝐼𝐼 ×

𝐺1
𝐼𝐼𝐼

𝜕𝛼1
. 

 

(16) 

The derivatives of G1
I, G1

II and G1
III with respect to α1 are: 

 

𝜕𝐺1
𝐼

𝜕𝛼1
=

exp[−𝛼1 (𝑧0 + 2𝑧𝑏,1)] [𝛼1(𝑧0 + 2𝑧𝑏,1) + 1] −exp[−𝛼1𝑧0] (−𝛼1𝑧0)(𝑧0𝛼1 + 1)

2𝐷1𝛼1
2 , 

(17) 

∂𝐺1
𝐼𝐼

∂α1
= ({(𝑧0 + 𝑧𝑏,1) cosh[α1(𝑧0 + 𝑧𝑏,1)] sinh[α1𝑧𝑏,1] + 𝑧𝑏, 1 sinh[α1(𝑧0 + 𝑧𝑏,1)] cosh[α1𝑧𝑏,1]}α1

− sinh[α1(𝑧0 + 𝑧𝑏,1)] sinh(α1𝑧𝑏,1) [1 + α1(𝑑1 + 𝑧𝑏,1)])
1

𝐷1α1
2 exp[α1(𝑑1 + 𝑧𝑏,1)]

, 
(18) 

∂ 𝐺1
𝐼𝐼𝐼

∂ α1
=

∂𝐺1
𝐼𝐼𝐼

∂δ

∂δ

∂α1
+

∂𝐺1
𝐼𝐼𝐼

∂Δ

∂Δ

∂α1
=

1

Δ

∂δ

∂α1
−

δ

Δ
2

∂Δ

∂α1
, 

 

(19) 

with: 

𝜕𝛿

𝜕𝛼1

= 𝐷1 𝑛1 𝛽3, (20) 

𝜕𝛥

𝜕𝛼1
= [𝐷1𝑛1

2𝛽3 + (𝑑1 + 𝑧𝑏,1)𝐷2𝛼2𝑛2
2𝛾3] cosh [𝛼1(𝑑1 + 𝑧𝑏,1)] + 

(𝑑1 + 𝑧𝑏,1)𝐷1𝛼1𝑛1
2𝛽3sinh[𝛼1(𝑑1 + 𝑧𝑏,1)]. 

(21) 

Note that, by virtue of the recursion relations (9), expression (21) shows no derivatives of β3 and γ3 with 
respect to α1. 
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Next, we can write the derivatives of G1 with respect to αj being j > 1: 

 

𝜕𝐺1

∂α𝑗

= 𝐺1
𝐼𝐼 ×

∂𝐺1
𝐼𝐼𝐼

∂α𝑗

. 

 

(22) 

Although this expression seems easier to compute than its counterpart (16), in this case we will have 
nonzero derivatives of βj and γj, which implies the appearance of new recursion relations. Here it is 
convenient to begin by deriving βN and γN with respect to αN: 

 

𝜕𝛽𝑁

𝜕𝛼𝑁
= 𝐷𝑁𝑛𝑁

2 sinh(𝛼𝑁−1𝑑𝑁−1), 

𝜕𝛾𝑁

𝜕𝛼𝑁
= 𝐷𝑁𝑛𝑁

2 cosh(𝛼𝑁−1𝑑𝑁−1). 

 

(23) 

We can now do the same with βN-1 and γN-1: 

 

𝜕𝛽𝑁−1

𝜕𝛼𝑁
= 𝐷𝑁−2𝛼𝑁−2𝑛𝑁−2

2 cosh(𝛼𝑁−2𝑑𝑁−2)
𝜕𝛽𝑁

𝜕𝛼𝑁
+ 𝐷𝑁−1𝛼𝑁−1𝑛𝑁−1

2 sinh(𝛼𝑁−2𝑑𝑁−2)
𝜕𝛾𝑁

𝜕𝛼𝑁
 

𝜕𝛾𝑁−1

𝜕𝛼𝑁
= 𝐷𝑁−2𝛼𝑁−2𝑛𝑁−2

2 sinh(𝛼𝑁−2𝑑𝑁−2)
𝜕𝛽𝑁

𝜕𝛼𝑁
+ 𝐷𝑁−1𝛼𝑁−1𝑛𝑁−1

2 cosh(𝛼𝑁−2𝑑𝑁−2)
𝜕𝛾𝑁

𝜕𝛼𝑁
 

 

(24) 

Note that, as βk =  βk(αk−1,  αk, … , α𝑁) and γk   =  γk(αk−1,  αk, … , α𝑁): 

∂β𝑘

∂α𝑗
=

∂γ𝑘

∂α𝑗
= 0    for    𝑗 ≤ 𝑘 − 2. 

  

From here on, we can continue deriving with respect to αN until we reach the derivatives of β3 and γ3. 
However, at some point the intermediate derivatives of βj and γj begin to nest together, so we still need the 
following expressions to complete the set of “starting points”: 

 

∂β𝑁

∂α𝑁−1
= 𝐷𝑁−1𝑛𝑁−1

2 cosh(α𝑁−1𝑑𝑁−1) + (𝐷𝑁−1α𝑁−1𝑛𝑁−1
2 + 𝐷𝑁α𝑁𝑛𝑁

2 )𝑑𝑁−1sinh(α𝑁−1𝑑𝑁−1), 

∂γ𝑁

∂α𝑁−1
= 𝐷𝑁−1𝑛𝑁−1

2 sinh(α𝑁−1𝑑𝑁−1) + (𝐷𝑁−1α𝑁−1𝑛𝑁−1
2 + 𝐷𝑁α𝑁𝑛𝑁

2 )𝑑𝑁−1cosh(α𝑁−1𝑑𝑁−1). 

 

(25) 

Given all this, we are in conditions of deriving the recursion relations (9) with respect to any αk: 

𝜕𝛽𝑗−1

𝜕𝛼𝑘
= [𝐷𝑗−2𝑛𝑗−2

2 (
𝜕𝛼𝑗−2

𝜕𝛼𝑘
𝛽𝑗 + 𝛼𝑗−2

𝜕𝛽𝑗

𝜕𝛼𝑘
) +

𝜕𝛼𝑗−2

𝜕𝛼𝑘
𝑑𝑗−2𝐷𝑗−1𝛼𝑗−1𝑛𝑗−1

2 𝛾𝑗] cosh(𝛼𝑗−2𝑑−2)

+ [𝐷𝑗−1𝑛𝑗−1
2 (

𝜕𝛼𝑗−1

𝜕𝛼𝑘
𝛾𝑗 + 𝛼𝑗−1

𝜕𝛾𝑗

𝜕𝛼𝑘
) +

𝜕𝛼𝑗−2

𝜕𝛼𝑘
𝑑𝑗−2𝐷𝑗−2𝛼𝑗−2𝑛𝑗−2

2 𝛽𝑗] sinh (𝛼𝑗−2𝑑−2), 

 

𝜕𝛾𝑗−1

𝜕𝛼𝑘
= [𝐷𝑗−2𝑛𝑗−2

2 (
𝜕𝛼𝑗−2

𝜕𝛼𝑘
𝛽𝑗 + 𝛼𝑗−2

𝜕𝛽𝑗

𝜕𝛼𝑘
) +

𝜕𝛼𝑗−2

𝜕𝛼𝑘
𝑑𝑗−2𝐷𝑗−1𝛼𝑗−1𝑛𝑗−1

2 𝛾𝑗] sinh (𝛼𝑗−2𝑑−2)

+ [𝐷𝑗−1𝑛𝑗−1
2 (

𝜕𝛼𝑗−1

𝜕𝛼𝑘
𝛾𝑗 + 𝛼𝑗−1

𝜕𝛾𝑗

𝜕𝛼𝑘
) +

𝜕𝛼𝑗−2

𝜕𝛼𝑘
𝑑𝑗−2𝐷𝑗−2𝛼𝑗−2𝑛𝑗−2

2 𝛽𝑗]  cosh(𝛼𝑗−2𝑑−2). 

(26) 

 

These new recursion relations are completely general and rely upon three possible different conditions on 
the derivatives of αm (which do not occur simultaneously): 
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∂α𝑗−2

∂α𝑘
= δ𝑗−2,𝑘 , 

∂α𝑗−1

∂α𝑘
= δ𝑗−1,𝑘 , 

∂α𝑗−2

∂α𝑘
=

∂α𝑗−1

∂α𝑘
= 0     (k  ≥  j), 

(27) 

Where δm,k is the Kronecker’s delta. 

With all this, we are finally capable of computing the MPPLs as expressed by Eq. (4). As a last remark for 
this Section, we can mention that the mean total pathlength of photons throughout the whole medium is 
easily computed as the sum of all the mean partial pathlengths in each layer: 

 

𝐿𝑇𝑂𝑇(ρ, λ) = ∑ 𝐿𝑗(ρ, λ).

𝑁

𝑗=1

 
(28) 

 

3. Monte Carlo simulations 

In order to validate our model, MC simulations were performed to compute the MPPLs for layered media 
consisting of different numbers of layers. To this end we made use of MCX, a Matlab toolkit implemented in 
the CUDA architecture [26]. The simulations were run on a server with an 11th generation CPU Intel Core 
i7-11370H at 3.30 GHz × 8, 64 GB RAM, and a GPU NVIDIA GeForce RTX 3050 Mobile. For each simulation, 
8 × 108 photons were launched in a 3D turbid medium of 220 × 220 × 100 mm3 (voxel size of 1 mm3), taking 
an average time of 60 s. 
In all cases, different combinations of optical parameters were chosen in the range of the typical values 
found in biological tissues [27], as well as different thicknesses for each layer, so as to have a wide set of 
situations to be compared with the model introduced in the previous Section. Then, for each situation a total 
of twenty simulations were run, from which average values of the MPPLs were obtained, together with the 
corresponding standard deviations. Regarding the source-detector distance ρ, a total of twelve values were 
selected, ranging from 5 mm to 60 mm, with an isotropic point source placed at r = (0, 0, z0=1/μ’s,1) and 
detectors with a diameter of 0.5 mm. Unless otherwise stated, the refractive index of each layer was always 
set to n = 1.33; this choice is supported by the high water content of the modelled tissues. 
 

4. Results 

Our very first study regards the behaviour of the layered model introduced in Section 2 when all the layers 
have the same optical properties, which in turn implicitly represents a homogeneous medium. To this end, 
we have run MC simulations for “homogenised” two-, three-, four- and five-layered media, and compared 
the corresponding MPPLs as a function of the source-detector distance ρ with the outcomes from our model. 
The results are shown in Figs. 2 to 5 (upper rows). As it can be seen, the matching is in all cases excellent. 
As stated at the end of Section 2, the mean total pathlengths can be computed by summing up all the partial 
pathlengths. These results are shown in the corresponding lower rows of each of Figs. 2 to 5; here we have 
also added the results predicted by the homogeneous model [12]. The coincidence between the three 
methods is, once again, perfect. It is important to notice that, although the mean total pathlengths for the 
two-, three-, four- and five-layered medium are obtained by a summation over a different number of terms 
(with increasing complexity as the number of layers also increases), the final result is always the same. 

Although in principle there is no point in making use of a complex layered model when a homogeneous 
medium is involved, here we can claim that the layered model provides additional information regarding 
intermediate regions of the whole volume, and this is more evident as the number of layers increases. 

http://www.sedoptica.es/


ÓPTICA PURA Y APLICADA 

www.sedoptica.es  

 

10 

Opt. Pura Apl. 56 (2) 51145 (2023)  © Sociedad Española de Óptica  

 

 
Fig. 2. Comparison (as a function of the source-detector distance ρ) between MC simulations and the analytical model of Section 2 for 

a two-layered medium, with optical properties μa,1 = μa,2 = 0.005 mm⁻¹ and μ’s,1 = μ’s,2 = 1 mm⁻¹, and the thickness of the first layer 
being d1 = 20 mm. Top: MPPLs in layer 1 (L1, left) and in layer 2 (L2, right). Bottom: mean total pathlength (LTOT) computed as the sum 

of the partial pathlengths L1 and L2; for comparison purposes, here LTOT as predicted by the homogeneous model is also shown. 

 

 
Fig. 3. Comparison (as a function of the source-detector distance ρ) between MC simulations and the analytical model of Section 2 for 

a three-layered medium, with optical properties μa,1 = μa,2 = μa,3 = 0.005 mm⁻¹ and μ’s,1 = μ’s,2 = μ’s,3 = 1 mm⁻¹, and the thicknesses of 
the first two layers being d1 = d2 = 10 mm. Top: MPPLs in layer 1 (L1, left), in layer 2 (L2, centre) and in layer 3 (L3, right). Bottom: 
mean total pathlength (LTOT) computed as the sum of the partial pathlengths L1, L2 and L3; for comparison purposes, here LTOT as 

predicted by the homogeneous model is also shown. 
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Fig. 4. Comparison (as a function of the source-detector distance ρ) between MC simulations and the analytical model of Section 2 for 

a four-layered medium, with optical properties μa,1 = μa,2 = μa,3 = μa,4 = 0.005 mm⁻¹ and μ’s,1 = μ’s,2 = μ’s,3 = μ’s,4 = 1 mm⁻¹, and the 
thicknesses of the first three layers being d1 = 10 mm and d2 = d3 = 5 mm. Top: from left to right, MPPLs in layer 1 (L1), in layer 2 (L2), 
in layer 3 (L3) and in layer 4 (L4). Bottom: mean total pathlength (LTOT) computed as the sum of the partial pathlengths L1, L2, L3 and 

L4; for comparison purposes, here LTOT as predicted by the homogeneous model is also shown. 

 

 
Fig. 5. Comparison (as a function of the source-detector distance ρ) between MC simulations and the analytical model of Section 2 for 
a five-layered medium with optical properties μa,1 = μa,2 = μa,3 = μa,4 = μa,5 = 0.005 mm⁻¹ and μ’s,1 = μ’s,2 = μ’s,3 = μ’s,4 = μ’s,5 = 1 mm⁻¹, and 

the thicknesses of the first four layers being d1 = d2 = d3 = d4 = 5 mm. Top: from left to right, MPPL in layer 1 (L1), in layer 2 (L2), in 
layer 3 (L3), in layer 4 (L4) and in layer 5 (L5). Bottom: mean total pathlength (LTOT) computed as the sum of the partial pathlengths L1, 

L2, L3, L4 and L5; for comparison purposes, here LTOT as predicted by the homogeneous model is also shown. 

 

Next, we test our model for heterogeneous layered media. Figure 6 shows another comparison between MC 
and the layered model for a ten-layered medium; detailed information regarding the absorption and 
reduced scattering coefficients can be found in the caption. This time the comparison is excellent for all 
layers except for the first one, where we can notice small discrepancies (< 5%) for values of ρ > 25 mm. 
These differences can be explained by the fact that, for large source-detector separations combined with a 
small thickness of the first layer, the vast majority of the photons launched in the MC simulations travels 
almost directly to the lower layers of the medium before entering the diffusive regime; however, our model 
is entirely based on the diffusion theory [10-12], which means the upper layer needs appropriate 
combinations of optical and geometrical parameters in order to fulfil the conditions required for the 
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diffusive regime to hold (something that is not completely guaranteed in the particular case shown here). 
This hypothesis is supported by the results shown in the previous figures (where not only µa,1 ≪ µ’s,1, as 
needed in order to satisfy the diffusive regime, but also the thickness of the first layer is large enough in all 
cases). 

 
Fig. 6. Comparison (as a function of the source-detector distance ρ) between MC simulations and the analytical model of Section 2 for 

a ten-layered medium, with optical properties µa = (0.002, 0.020, 0.010, 0.0160, 0.004, 0.008, 0.0140, 0.0180, 0.0120, 0.006) mm⁻¹  
and µ’s = (1.20, 1.12, 0.81, 0.50, 0.88, 0.96, 0.73, 1.04, 0.57, 0.65) mm⁻¹, and d i = 2 mm, with i = 1, …, 9. 

 

 
Fig. 7. Residuals obtained by subtracting the analytical MPPLs and the MC simulated MPPLs for the ten-layered case. 

 

Fig. 7 shows the residuals of the comparison between the theoretical approach and the MC simulations that 
correspond to Fig. 6. Here, the largest differences (below 10 %) are found in the first and last layers; in the 
first case the reason for this has already been discussed in the previous paragraph, while in the latter, this 
can be explained by the low photon count for such long source-detector separations.  

 

Another interesting comparison is shown in Fig. 8, also for the previously described ten-layered medium, 
but this time as a function of the depth z. The matching between theory and MC is still very good, except 
once again for depths of z ~ 2 mm, which represent the interface between layers 1 and 2; this difference is 
consistent with the explanation given in the preceding paragraph. Here it can be noted that the sensitivity 
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of photons to depth (taken as the peak of each curve shown in the Figure) increases with the source-detector 
distance, something in accordance with all the findings reported in the literature [28-30]. As a last remark 
regarding Fig. 8., we can add that this representation of our results is equivalent to that present in [31] 
under the label of Fig. 3 (although in the latter case obtained solely by means of MC simulations for a 
homogeneous medium), but here we have had the advantage of being able to compute the MPPLs in just a 
matter of a few milliseconds. 

 
Fig. 8. Comparison between MC simulations and the MPPLs (as a function of the depth z) obtained by our analytical model for the 

ten-layered medium shown in Fig. 6 and for three different source-detector distances, namely ρ = 15 mm, ρ = 25 mm and ρ = 50 mm. 

 

The dependence of the MPPLs with ρ can in principle be inferred from Fig. 6; however, and having already 
found a fair agreement between MC and theory, we can gather all the analytical MPPLs together in one single 
plot, as shown in Fig. 9. Here it can be clearly seen that the MPPL in layer 1 saturates for values of ρ > 10 
mm, and this behaviour tends to be mimicked by the subsequent layers with the increase in the source-
detector separation until we reach the bottom layer, which finds no bounds in its increase (a reasonable 
conclusion given that it has a semiinfinite extension). The Fig. 9 described below is equivalent to that 
present in [14] under the label of Fig. 2 (again, the Figure we are referring to was obtained by means of MC 
simulations for a homogeneous medium); as mentioned before, our theory greatly improves the 
computation times compared to MC. In fact, the computation times needed to obtain the MPPLs analytically 
in a twenty-layered medium are in the order of 10 to 100 milliseconds. On the other hand, each of the twenty 
corresponding MC simulations run took about 60 seconds to be done, so in order to obtain the MPPLs, with 
a standard deviation of, at most, 30 %, a total computation time of ~1200 seconds is needed. Not to mention 
that these MC simulation times were obtained using a CUDA-parallelized code, which needs at least one GPU 
to run. CPU-based versions of the same MC programs are much slower. On the contrary, the codes needed 
to compute the MPPLs in an analytically manner can be run under much less restrictive conditions in almost 
any modern PC. 
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Fig. 9. Analytical MPPLs for the ten-layered medium shown in Fig. 6, plotted altogether as a function of the source-detector 

separation ρ.  

 

Finally, we replicate the results shown in Figs. 6, 7, 8 and 9 but now for a twenty-layered medium (Figs. 10, 
11, 12 and 13). Although this does not necessarily represent a practical situation, it is worth mentioning 
that the calculation of each and every mean partial pathlength is still possible regardless of neither the time 
consumption nor the statistics based on the detected photons (something which, in turn, is inherent in the 
nature of Monte Carlo simulations). In particular, Fig. 9 shows a very nice agreement between MC and 
theory except, again, for the first layer, this time with differences below 10%, something reasonable 
considering the rather small thickness of the layer.  

 

 
Fig. 10. Comparison (as a function of the source-detector distance ρ) between MC simulations and the analytical model of Section 2 

for a twenty-layered medium, with optical properties μa = (0.002, 0.015, 0.004, 0.010, 0.008, 0.003, 0.004, 0.002, 0.005, 0.006, 0.010, 
0.013, 0.014, 0.013, 0.008, 0.007, 0.009, 0.007, 0.012, 0.011) mm⁻¹ and μ’s = (1.10, 1.03, 0.82, 0.95, 0.78, 0.81, 0.85, 0.74, 1.06, 0.70, 

0.89, 1.07, 0.93, 0.86, 1.02, 0.72, 0.76, 0.97, 0.91, 0.99) mm⁻¹, and the thicknesses being di = 1 mm, with i = 1,…, 19. 

http://www.sedoptica.es/


ÓPTICA PURA Y APLICADA 

www.sedoptica.es  

 

15 

Opt. Pura Apl. 56 (2) 51145 (2023)  © Sociedad Española de Óptica  

 

 
Fig. 11. Residuals obtained by subtracting the analytical MPPLs and the MC simulated MPPLs for the twenty-layered case. 

 

Similarly to Fig. 7 for the ten-layered case, Fig. 11 shows the residuals that correspond to twenty-layered 
case. As mentioned before, and due to the same reasons, the largest differences are once again found in the 
first and last layers.   

 
Fig. 12. Comparison between MC simulations and the MPPLs (as a function of the depth z) obtained by our analytical model for the 
twenty-layered medium shown in Fig. 9 and for three different source-detector distances, namely ρ = 15 mm, ρ = 25 mm and ρ = 50 

mm. 
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Fig. 13. Analytical MPPLs for the twenty-layered medium shown in Fig. 9, plotted altogether as a function of the source-detector 

separation ρ. 

 

Finally, we must recall that one of the main applications of this work is the retrieval of (relative) 
haemoglobin concentration changes in cerebral blood. Current techniques mostly use homogeneous models 
to describe the human head (fast enough for real-time measurements, but rather far from reality); while 
few others compute the MPPLs in layered media by means of MC simulations (much more accurate than the 
homogeneous model, although impossible to be applied in real-time). Considering all this, we think that a 
theoretical model for the MPPLs that combines both advantages of the strategies just mentioned (i.e., the 
geometrical accuracy and the computational speed) with relative errors of less than 10% is, at least, a good 
compromise. 

Furthermore, we can claim that going as far as to use a four-layered model greatly improves the 
reconstruction of relative absorption changes in layered media, when compared with the typical 
homogeneous reconstruction [32]. 

 

5. Conclusions 

In this work, we have successfully obtained and implemented an analytical model for computing the MPPLs 
of photons in semiinfinite turbid media consisting in an arbitrary number of layers, which improves 
calculation times by several orders of magnitude (between 10³ and 10⁴) with respect to the most commonly 
used MC simulations and can be run under hardware requirements that are much less restrictive. This 
improvement will allow easy and real-time usage in experiments where brain haemodynamics, and 
particularly HbO and HbR concentration changes, are targeted. 

Comparisons between our model and results generated with MC simulations are very encouraging, with 
relative differences below 10% for the first layer when large source-detector separations are used, and just 
in the extreme case of the twenty-layered medium. As already explained, it is thought that the reason for 
these differences is the lack of diffusiveness under these conditions, something difficult to overcome 
considering that our model is based on the diffusion approximation; hence, a next step would be to obtain 
analytical MPPLs in situations where the diffusive regime is not necessarily reached, which can be done by 
using the higher order approximations to the more general Radiative Transfer Equation [11,12]. As for the 
remaining results, in all cases the discrepancies lie below 5%, demonstrating that the model presented in 
this investigation can be reliably used to replace MC simulations for retrieving absorption changes [32] and, 
furthermore, haemoglobin concentration changes. 
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As a matter of fact, the external surface of the medium, as well as the internal interfaces between layers, 
have been assumed planar, i.e., the curvature is zero. However, the human head is better represented by a 
medium with spherical rather than a flat geometry. Although the source-detector distances investigated 
here (between 5 and 60 mm) are small compared to the average radius of the head, the head itself is not 
perfectly spherical, but presents regions of higher curvature (such as the transition between the forehead 
and the lateral and top areas, among others), which implies that, at some point, theoretical MPPLs for 
spherically shaped media could be necessary. 

Nevertheless, we are certain that the current state of our model will still positively contribute to increasing 
the specificity of the measurements performed with any commercially available fNIRS acquisition device. 
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