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Abstract

Non-competitive NMDA receptor antagonists are widely used as pharmacological models of schizophrenia
due to their ability to evoke the symptoms of the illness. Likewise, serotonergic hallucinogens, acting on
5-HT2A receptors, induce perceptual and behavioural alterations possibly related to psychotic symptoms.
The neurobiological basis of these alterations is not fully elucidated. Data obtained in recent years
revealed that the NMDA receptor antagonist phencyclidine (PCP) and the serotonergic hallucinogen
1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane; DOI) produce a series of common actions in rodent pre-
frontal cortex (PFC) that may underlie psychotomimetic effects. Hence, both agents markedly disrupt PFC
function by altering pyramidal neuron discharge (with an overall increase) and reducing the power of low
frequency cortical oscillations (LFCO; <4 Hz). In parallel, PCP increased c-fos expression in excitatory
neurons of various cortical areas, the thalamus and other subcortical structures, such as the amygdala.
Electrophysiological studies revealed that PCP altered similarly the function of the centromedial and
mediodorsal nuclei of the thalamus, reciprocally connected with PFC, suggesting that its psychotomimetic
properties are mediated by an alteration of thalamocortical activity (the effect of DOI was not examined in
the thalamus). Interestingly, the observed effects were prevented or reversed by the antipsychotic drugs
clozapine and haloperidol, supporting that the disruption of PFC activity is intimately related to the
psychotomimetic activity of these agents. Overall, the present experimental model can be successfully
used to elucidate the neurobiological basis of schizophrenia symptoms and to examine the potential
antipsychotic activity of new drugs in development.
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Introduction

Schizophrenia is a severe psychiatric disease affecting
about 1% of the world population. It has an early
onset (typically late adolescence or early adulthood)
and shows a chronic and deteriorating course.
Affected individuals have a lifelong disability and
nearly 10% commit suicide. Schizophrenia is character-
ized by a variety of symptoms, including positive

(hallucinations, delusions, disorganized speech,
aberrant behaviour etc.) and negative symptoms
(depression, anxiety, emotional blunting, social with-
drawal etc.) as well as cognitive dysfunction.
Anatomical, cellular and neurochemical alterations
have been reported in various brain areas of schizo-
phrenic patients and notably in the prefrontal cortex
(PFC; Harrison, 1999; Selemon and Goldman-Rakic,
1999; Lewis and Lieberman, 2000; Harrison and
Weinberger, 2005; Lewis and Gonzalez-Burgos, 2006;
see later for extended information). Likewise, anatom-
ical and functional abnormalities of the thalamus have
also been reported in schizophrenia (Jones, 1997;
Clinton and Meador-Woodruff, 2004; Alelu-Paz and
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Gimenez-Amaya, 2008; Watis et al., 2008;
Vukadinovic, 2011; Vukadinovic and Rosenzweig,
2012) and alterations in thalamic circuits have been
suggested to be involved in the emergence of psychotic
symptoms (Lisman et al., 2010).

Here we review data produced by our group and
others supporting the involvement of the PFC and
related thalamic nuclei (centromedial and medio-
dorsal) in (a) the mechanism of action of psycho-
tomimetic drugs, in particular N-Methyl-D-aspartate
(NMDA) receptor antagonists and serotonin
[5-hydroxytryptamine (5-HT)]2A receptor agonists
and (b) the therapeutic action of antipsychotic drugs.

Prefrontal cortex and schizophrenia: an overview

The PFC plays an important role in the pathophysiol-
ogy and treatment of schizophrenia. The PFC has
poorly defined anatomical boundaries although it is
defined by its reciprocal connectivity with the medio-
dorsal nucleus of the thalamus. The PFC is involved
in many higher brain functions such as perception,
attention, memory, language, intelligence, conscious-
ness, affect etc. The dorsolateral PFC plays a key role
in cognitive processes such as working (short-term)
memory and executive functions as well as in action
planning and decision making (Fuster, 2001, 2008;
Miller and Cohen, 2001). In addition to cognitive func-
tions, the PFC is involved in the control of mood and
affect. Hence, the ventromedial PFC, or ventral cingu-
late cortex, is deeply involved in emotional processing
(Devinsky et al., 1995; Davidson and Irwin, 1999;
Cardinal et al., 2002; Phillips et al., 2003) and psychotic
symptoms such as hallucinations are associated with
hyperactivity of this PFC subdivision (Shergill et al.,
2000).

Similarly to other cortical areas, the PFC is com-
posed of ∼75–80% of pyramidal projection neurons,
which use glutamate as a transmitter and ∼20–25%
of local circuit inhibitory interneurons that use
GABA) as a transmitter. Pyramidal neurons integrate
excitatory glutamatergic afferent inputs from various
thalamic nuclei, including the mediodorsal, centro-
medial and several midline nuclei, the hippocampus,
the amygdala and the rest of cortical areas to which
it is connected (Groenewegen and Uylings, 2000;
Fuster, 2008). Local inhibitory inputs arise from
GABAergic interneurons. These have been classified
according to anatomical and neurochemical character-
istics and to their synaptic relationships with pyrami-
dal neurons (Defelipe et al., 2013). Among them,
large perysomatic, parvalbumin-containing neurons
such as the chandelier and basket cells, play a major

role in controlling excitatory pyramidal output by
targeting GABAA receptors located in the cell bodies
and initial segments of pyramidal axons (Defelipe
et al., 1989). This peculiar connectivity allows for a
direct inhibitory control of the generation of nerve
impulses by pyramidal neurons. Cortical parvalbumin-
containing GABA interneurons have been suggested
to play a role in schizophrenia symptoms; in particular,
in cognitive control (Lewis et al., 2005, 2012).

Likewise, PFC neurons receive a dense innervation
from the brainstem monoaminergic nuclei [dorsal
and median raphe nuclei, locus coeruleus and ventral
tegmental area, which employ 5-HT, noradrenaline
and dopamine (DA) as main neurotransmitters,
respectively]. These neuronal groups exert an impor-
tant modulatory role of the excitatory and inhibitory
currents in PFC neurons (Steinbusch, 1981; Vaneden
et al., 1987; Seamans and Yang, 2004; Aston-Jones
and Cohen, 2005; Puig et al., 2005; Celada and
Artigas, 2007). A large population of pyramidal and
GABAergic neurons in PFC express receptors sensitive
to monoamine neurotransmitters in mammalian brain
(Santana et al., 2004, 2009, 2012; de Almeida and
Mengod, 2007, 2008). Atypical antipsychotic drugs
such as clozapine (CLZ) show high affinity for
these monoamine receptors (in particular 5-HT2A/2C,
5-HT1A and α-adrenoceptors, and to a lesser extent,
DA D2 receptors), suggesting that the PFC is a key
brain structure in their therapeutic action, in addition
to the well-known blockade of DA D2 receptors in
the ventral striatum (Artigas, 2010).

NMDA receptors; non-competitive antagonists

Strong (ionic) actions of glutamate are mediated
by three receptor subtypes, namely the (AMPA),
kainate and NMDA receptors. These receptors are
ion channels, whose activation by glutamate allows
extracellular Na+ and Ca2+ ions to enter (and K+ ions
to leave) the neuronal cytoplasm, thus evoking rapid
and marked changes of the membrane potential
(depolarization in most instances) which subsequently
allow for the generation of action potentials. Glutamate
can also act on a family of eight G-protein coupled
metabotropic receptors, analogous to monoamine
receptors, which are suitable targets for drug develop-
ment in various fields of psychiatry (Swanson et al.,
2005; Niswender and Conn, 2010).

NMDA receptors are involved in a large number of
key physiological functions, such as long-term poten-
tiation and synaptic plasticity, and play a role in sev-
eral neurological and psychiatric disorders (Lau and
Zukin, 2007; Paoletti and Neyton, 2007). NMDA
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receptors are tetrameric ion channels composed of two
NR1 and two NR2 (A, B, C, D) subunits. A third type
of NMDA subunits (NR3, A and B) has been identified
and it changes the ionic sensitivity of the NMDA chan-
nel (Cavara and Hollmann, 2008). The NMDA receptor
ion channel is voltage-sensitive, i.e. the channel is
blocked by Mg2+ ions in resting conditions. Only
after the depolarization of the cell membrane, Mg2+

ions are released to allow for the passage of other
ions (Na+, Ca2+, K+) through the channel. Thus, in
general, AMPA-induced depolarization precedes the
functional activity of NMDA receptors.

The NMDA receptor contains several binding sites,
including the site for glutamate and competitive antag-
onists such as AP5 (or AP-V). Likewise, it contains
several regulatory sites, such as the glycine site, out-
side the channel and the Mg2+ and the non-competitive
antagonist site [also called phencyclidine (PCP) site],
inside the channel. The dissociative anaesthetics keta-
mine and PCP are non-competitive NMDA receptor
antagonists. These agents have been used as a pharma-
cological model of schizophrenia due to their ability
to evoke positive and negative symptoms of schizo-
phrenia in healthy individuals and to aggravate them
in schizophrenic patients (Javitt and Zukin, 1991;
Krystal et al., 2003). Moreover, PCP, ketamine and
dizocilpine (MK-801; not available for human use)
evoke a series of behavioural alterations in experi-
mental animals characterized by hyperlocomotion,
stereotypies and disruption in pre-pulse inhibition of
the startle response. These alterations are totally or
partly antagonized by antipsychotic drugs (Carlsson
and Carlsson, 1989; Geyer et al., 2001). However, the
cellular elements and brain networks involved in
these actions are still poorly known, although work
by different research groups in recent years has started
to clarify the actions of NMDA receptors antagonists
on PFC function.

Effects of non-competitive NMDA receptor
antagonists on neuronal activity in
thalamocortical networks

The PFC appears as a target area for these actions since
neuroimaging studies show that PCP and ketamine
increase PFC activity (Breier et al., 1997). The i.v.
administration of PCP to anaesthetized rats exerts a
complex effect on the discharge rate of pyramidal
neurons of the medial PFC (mPFC), identified by anti-
dromic activation from midbrain (Kargieman et al.,
2007). PCP (0.25mg/kg i.v.) increased the discharge
rate of 45% of the recorded neurons (to 286% of base-
line), reduced the discharge of 35% (to 43% of baseline)

and left unaffected the rest (22%). Figure 1 shows
an example of a PFC pyramidal neuron excited by
PCP. Burst firing was affected in a similar manner
(Table 1).

Likewise, the administration of PCP (0.25mg/kg
i.v.) altered the discharge of thalamic neurons project-
ing to the mPFC, in the centromedial and mediodorsal
nuclei increasing (to 424% of baseline) and decreasing
(to 41% of baseline) the activity of 57 and 20% of the
recorded neurons, respectively (23% remained un-
affected; Santana et al., 2011). Figure 1c shows a repre-
sentative example of the effect of PCP on a thalamic
neuron. Figure 2 shows the comparison of the effect
of PCP on the discharge rate of pyramidal neurons in
mPFC and of thalamic relay neurons in the centro-
medial and mediodorsal nuclei, reciprocally connected
with the mPFC (Berendse and Groenewegen, 1991;
Kuroda et al., 1998; Gabbott et al., 2005).

Double in situ hybridization experiments revealed
that PCP (10mg/kg i.p.) markedly increased c-fos
expression in glutamatergic neurons of several cortical
areas (prefrontal, somatosensory, retrosplenial, entorh-
inal; Santana et al., 2011). PCP also induced a very
marked increase of c-fos expression in various thalamic
nuclei, in particular the centromedial and mediodorsal
nuclei. PCP also increased c-fos expression in the
amygdala and had a small effect in the hippocampal
formation of the same animals (Figs 1 and 3).

Recent evidence from other groups also supports
the involvement of thalamic nuclei in the action of
NDMA receptor antagonists. Hence, ketamine admin-
istration increased the discharge rate in the nucleus
reuniens of the thalamus and subsequently, in the
cornu ammonis 1 (CA1) subfield of the hippocampus,
to which the nucleus reuniens projects (Zhang et al.,
2012). The same team also reported that NMDA recep-
tor blockade with the competitive antagonist AP-V
in the reticular thalamic nucleus evoked bursts of δ
oscillations (Zhang et al., 2009). Moreover, the effect
of systemic MK-801 administration on slow oscillations
(see later) in the PFC was mimicked by the local appli-
cation of lidocaine in the mediodorsal nucleus of the
thalamus (Kiss et al., 2011a). Furthermore, the motor
hyperactivity and behavioural stereotypies induced
by MK-801 in rats were prevented by the local (bi-
lateral) application of the GABAA agonist muscimol
in the anterior nucleus of the thalamus, suggesting
that MK-801 reduces GABAA-mediated neurotrans-
mission in the thalamus (Hill and Scorza, 2012).
Overall, these observations clearly support the impli-
cation of thalamic nuclei in the behavioural, perceptual
and possibly cognitive alterations induced by non-
competitive NMDA receptor antagonists.
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Fig. 1. Effect of phencyclidine (PCP) administration on the activity of thalamocortical networks in rat brain. (a) Macroscopic
dark-field images from emulsion-dipped coronal sections at two different anteroposterior (AP) coordinates from control and
treated rats showing the localization of cells expressing c-fos messenger RNA (mRNA). Upper row correspond to AP+3.7mm
and lower row to AP −2.5mm from bregma. Columns correspond to the treatments indicated in the figure (Sal, saline; PCP,
phencyclidine 10mg/kg i.p.; CLZ, clozapine 5mg/kg i.p.). Note the marked expression of c-fos mRNA in various cortical and
thalamic areas of PCP-treated rats together with the relative absence of a significant increase in hippocampal areas. In
prefrontal cortex, a particularly remarkable increase was observed in dorsal anterior cingulate, prelimbic and infralimbic
areas. ACAd, dorsal anterior cingulate; CM, central medial thalamic nucleus; Hyp, hypothalamus; ILA, infralimbic area of
prefrontal cortex; M, motor cortex; MD, mediodorsal thalamic nucleus; PIR, piriform cortex; PL, prelimbic cortex; RS,
retrosplenial cortex; S1, somatosensory cortex. Bar: 1mm. Panels (b) and (c) show extracellular recordings of a pyramidal and
thalamic neuron showing the effect of PCP (0.25mg/kg i.v.) on the discharge rate. Note the marked increase of the discharge
produced by PCP in both neurons, as well as the reversal of this effect by the subsequent administration of CLZ
(1mg/kg i.v.). Arrows mark the time of injections (abscissa in s).
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PCP action on corticothalamic or
thalamocortical pathways?

Despite these marked alterations of PFC function
induced by PCP, it is still unclear whether NMDA
receptor antagonists primarily affect PFC or whether
other cortical and subcortical areas reciprocally con-
nected with the PFC are also involved, in particular
the hippocampal formation and the thalamus. The
opposite effects of the systemic MK-801 administration
on the activity of putative pyramidal and GABAergic
neurons (increase and decrease, respectively) led to
the proposal of a preferential blockade of NMDA
receptors on cortical GABAergic interneurons and a
subsequent disinhibition of pyramidal neurons
(Jackson et al., 2004; Homayoun and Moghaddam,
2007). However, the local application of PCP or
MK-801 in mPFC reduced the discharge of putative
pyramidal neurons (Suzuki et al., 2002; Jodo et al.,
2005) and the study by Jodo et al. (2005) reported a
facilitation of pyramidal neuron activity in mPFC by
the local application of PCP in the hippocampal for-
mation. Moreover, the systemic, but not local, adminis-
tration of non-competitive NMDA receptor antagonists
increased neurotransmitter release in PFC (Amargos-
Bosch et al., 2006; Lopez-Gil et al., 2007) suggesting
that NMDA receptor blockade in other brain areas
may also contribute to increased PFC activity.

These electrophysiological and histological obser-
vations suggest the involvement of cortical and
thalamic areas in the action of PCP, with a minor con-
tribution of the hippocampal formation, as judged

from c-fos experiments. Given the reciprocal connec-
tivity of PFC with the centromedial and mediodorsal
nuclei of the thalamus, PCP effects may be interpreted
as resulting from a primary action of PCP on cortical
(a, top-down) or thalamic targets (b, bottom-up), as fol-
lows. (a) top-down: PCP would mainly block NMDA
receptor inputs onto PFC GABAergic interneurons, as
shown for MK-801 (Homayoun and Moghaddam,
2007), thus disinhibiting pyramidal neurons and in-
creasing corticothalamic inputs. Likewise, 2-d ketamine
treatment reduced GABAergic markers and inhibitory
synaptic transmission in PFC (Zhang et al., 2008).
(b) bottom-up: PCP blocks NMDA receptor inputs
onto GABAergic neurons in basal ganglia (ventral pal-
lidum, substantia nigra reticulata) and/or the reticular
nucleus of the thalamus (Rt); this effect would dis-
inhibit thalamic relay neurons and would increase
thalamocortical inputs. Both interpretations are not
mutually exclusive and may simultaneously occur
(Fig. 4).

A putative effect of PCP on hippocampal-PFC
neurons appears unlikely to explain the PCP-induced
changes in PFC since PCP had a minimal effect on
c-fos expression in the various hippocampal subfields
[CA1, CA3, somatosensory cortex (S)], as previously
observed (Santana et al., 2011; see also Fig. 3).
Alternatively, c-fos-expressing cells in the CA1 subfield
are GABAergic (Santana et al., 2011), an observation
discordant with a putative increase of the hippocampal
excitatory output to mPFC.

Despite the overall excitatory effect of PCP and
MK-801 on PFC pyramidal neurons (Jackson et al.,
2004; Jodo et al., 2005; Kargieman et al., 2007) and
the top-down control exerted by PFC on subcortical
structures (Miller and Cohen, 2001), it seems unlikely

Table 1. Effect of phencyclidine (PCP) on pyramidal cell
activity in the medial prefrontal cortex

Group Basal PCP (0.25mg/kg)

Firing rate (spikes/s) A 2.2±0.3 3.4±0.4*
E 2.1±0.3 6.0±0.7**
I 2.8±0.8 1.2±0.4**

Spikes in bursts (2min) A 177±36 238±35
E 117±25 386±61**
I 288±99 100±37*

Burst episodes (2min) A 72±12 101±14
E 54±11 169±24**
I 109±31 39±12*

n A 80 80
E 36 36
I 26 26

A, All neurons; E, excited neurons; I, inhibited neurons.
* p<0.05, ** p<0.01, vs. baseline.

mPFC CM/MD

NE NE

INH
43%

INH
41%

EXC
286%

EXC
424%

Fig. 2. Comparison of the effect of phencyclidine (PCP,
0.25mg/kg i.v.) on the discharge rate of pyramidal neurons
in medial prefrontal cortex (mPFC) and relay neurons of the
centromedial and dorsomedial nuclei of the thalamus
(CM/MD). Each colour sector corresponds to one of the
three neuronal responses to PCP (excitations, EXC;
inhibitions, INH, no effect, NE). The percentage inside each
sector shows the average magnitude of the effect; n=80 for
PFC and n=50 for CM/MD (one neuron per rat). Data
reproduced from Kargieman et al. (2007) and Santana et al.
(2011).
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that the increase in PFC activity can solely drive the
massive c-fos expression observed in cortical and thal-
amic areas as well as the marked increase in thalamic
discharge. Thalamic relay cells are subjected to direct
monosynaptic corticothalamic excitatory inputs plus
bisynaptic, reticular nucleus-mediated, feed-forward
inhibitions (Steriade, 2001; Jones, 2002). Nearly 70%
of excitatory synapses on Rt cells are from cortico-
thalamic fibres (Jones, 2002). Thus, under certain
conditions, the cortex can exert an inhibitory influence
over the thalamus via Rt-mediated inhibitions
(Steriade, 2001). This suggests that a PCP-mediated
activation of PFC should result in a more moderate
effect in thalamic neurons from the centromedial and
mediodorsal nuclei than that observed (Fig. 2).
Moreover, given the corticothalamic connectivity (see
earlier), a PFC-driven increase of thalamic activity
should have also activated c-fos expression in GABA
cells of the reticular nucleus.

A bottom-up (e.g. thalamocortical) increase of corti-
cal activity may also contribute to the overall activation
of cortical and thalamic regions. PCP did not increase
c-fos expression in the reticular nucleus (Fig. 3) nor in
basal ganglia such as the substantia nigra reticulata

or ventral pallidum, which send inhibitory afferents
to thalamic relay neurons. Alternatively, PCP mark-
edly increased c-fos expression in layers IV and VI of
S1, indicating the existence of an increased thalamo-
cortical (layers IV and VI) and corticothalamic
(layer VI) functional connectivity [see Shipp (2007)
for review of thalamocortical connectivity]. Likewise,
PCP increased c-fos in a narrow band of cells between
layers III and V in PFC (Kargieman et al., 2007) which
receive thalamic inputs (Kuroda et al., 1998), since the
rat PFC lacks layer IV. Interestingly, unlike in PFC
(Kargieman et al., 2007), GABAergic neurons in S1
and retrosplenial cortices expressed c-fos in response
to PCP treatment, which agrees with the dual projec-
tion of thalamocortical fibres to cortical glutamatergic
and GABAergic neurons (Sun et al., 2006) and the pre-
ferential thalamocortical inputs on fast-spiking cortical
interneurons (Hull et al., 2009).

Irrespective of the primary target area(s) affected
by PCP, its overall excitatory effects on thalamo-
cortical pathways is clearly indicative of a preferential
action on NMDA receptors located on inhibitory
GABAergic neurons. The reason(s) for this cellular
selectivity are unclear and may involve a different

(a1)

(a4)

(b1) (b2)

(b4) (b5)

(b3)

(b6)(a5) (a6)

(a3)(a2)

Fig. 3. Effect of phencyclidine (PCP) on c-fos expression in hippocampal and thalamic areas. Macroscopic dark-field images
from emulsion-dipped coronal sections at anteroposterior coordinate approximately –6.3mm from bregma (a1 and a4,
showing ventral hippocampus) and −3.6mm from bregma [a2–a6, showing mediodorsal nucleus of the thalamus (MD; a2 and
a5) and reticular nucleus of the thalamus (Rt; a3 and a6)]. Upper row correspond to saline- and lower row to phencyclidine
(PCP)-treated rats. Note the occurrence of a low number of c-fos positive cells in the ventral subiculum (VS)/cornu ammonis
(CA)1 area of the hippocampus and Rt of PCP treated rats and the high number of cells expressing it in MD. (b) High
magnification photomicrographs of VS (b1 and b4), MD (b2 and b5) and Rt (b3 and b6) showing the detection of c-fos mRNA
using 33P-labelled oligonucleotides (silver grains) in glutamatergic (vGluT1-positive; b1–b5) or GABAergic (GAD65/67-positive;
b3 and b6) neurons (digoxigenin-labelled oligonucleotides, dark precipitates). Red arrowheads mark some double-labelled
cells. Note the high number of cells expressing c-fos mRNA in MD of PCP-treated rats compared with VS/CA1 and Rt.
Open rectangles show the approximate location were photomicrographs were taken. Scale bars: (a) 200 μm; (b) 20 μm.
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subunit composition of the NMDA receptor (Monyer
et al., 1994; Wenzel et al., 1997; Karavanova et al.,
2007) which would confer different pharmacological
properties from other regions rich in excitatory neur-
ons. In support of this possibility, the competitive
NMDA receptor antagonist AP-V hyperpolarized Rt
cells, but not PFC cells, in vitro (Zhang et al., 2009).
An alternative explanation lies on the mechanism of
action of non-competitive NMDA receptor antagonists,
including PCP. These agents require the release of Mg2
+ ions to penetrate the NMDA channel. Hence, PCP
may preferentially block NMDA receptor inputs on
fast-spiking GABA neurons (e.g. cortical interneurons,
Rt neurons or basal ganglia projection neurons),
which are depolarized for more prolonged periods of
time than PFC pyramidal or thalamic relay neurons,
which fire at lower rates. Further work is required to
examine this possibility.

Brain oscillations: relevance to schizophrenia

Higher cognitive functions and executive functions
emerge from the coordinated activity of different
neuronal networks and brain areas. This is reflected
in an oscillatory activity, a characteristic feature of
cortical dynamics. Brain oscillations can be evidenced
through electroencephalographic (EEG) recordings
which detect the integrated activity of neuronal
networks surrounding the electrodes (Nunez and
Srinivasan, 2006). EEG oscillatory activity depends on
the synchrony at which local and distal networks
operate. Since the discovery of the EEG by Berger
(1929) and the first description of the most prominent
rhythm (α, 8–12Hz), multiple oscillatory activities
have been described: slow (<1Hz); δ (1–4Hz); θ
(4–7 Hz); β (12–30Hz); γ (30–80Hz) oscillations.
Brain oscillations are important in codifying neural

PFC

PFC

Pyr

Pyr

GABA

GABA

PCP

PCP

PCP

Relay
Glu

GABA

GABA

SNr, VP

Relay
Glu

GABA

GABA

SNr, VP

Thalamus

CM//MD Rt

Thalamus

CM//MD Rt

(a)

(b)

Fig. 4. Schematic representation of two potential sites of action of phencyclidine (PCP) on N-methyl-D-aspartate receptor
(NMDAR) in cortical and subcortical GABAergic neurons. (a) PCP blockade of NMDAR in fast-spiking cortical GABAergic
interneurons would reduce tonic GABAA-mediated inputs onto prefrontal cortex (PFC) pyramidal (Pyr) neurons. Given the
widespread projections of PFC pyramidal neurons to many subcortical areas (including the thalamus), the increase in
pyramidal discharge would result in an enhanced excitatory input onto thalamic neurons. (b) PCP blockade of NMDAR in
inhibitory inputs to glutamatergic thalamic nuclei [e.g. reticular nucleus (Rt), substantia nigra reticulata (SNR) or ventral
pallidum (VP)] would disinhibit thalamic relay neurons leading to increased excitatory thalamocortical inputs in various
cortical areas. The relative weight of options a and b in the overall effects of PCP may differ among cortical areas. CM/MD,
centromedial and dorsomedial nuclei of the thalamus; GABA, Modified from Santana et al. (2011).
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Table 2. Oscillatory activity in animal models of schizophrenia

Model Studied parameters Effects Reference

Pharmacological
NMDA hypofunction FC and sensorimotor cortex EEG power in conscious rats PCP and MK-801 : FC 1–3Hz power and :or ; 9–30Hz power

depending on dose
Sebban et al. (2002)

mPFC pyramidal neuron firing and low frequency
cortical oscillations power in anesthetized animals

PCP increases pyramidal firing and decreases low frequency
oscillations

Kargieman et al. (2007)
Kargieman et al.
(2012)

Hippocampal EEG in freely moving rats Ketamine and MK-801 : hippocampal γ power Antagonized by
pre-perfusion of muscimol into the medial septum or
supramammillary area.

Ma and Leung (2007)

Neocortical spontaneous γ oscillations in freely moving
rats

Ketamine and MK-801 : γ power Pinault (2008)

In vivo recordings from CA3 regions of mouse during a
paired-click auditory task

Ketamine ; θ frequency band in background activity and in
poststimulus evoked activity

Lazarewicz et al. (2010)

Interactions between high and low-frequency γ

oscillations in layers III and V of rat visual cortex in vitro
Ketamine, PCP, selective NR2B subunit-containing receptor
antagonism and reduced D-serine levels caused cross-layer phase
coupling of γ oscillations

Anver et al. (2011)

Oscillatory activity in hippocampus, dorsal striatum and
nucleus accumbens

Ketamine : high frequency oscillations power in all structures,
: γ oscillations in hippocampus and ; in nucleus accumbens

Hunt et al. (2011)

Subiculum stimulation, MUA and local field potential
recordings of mPFC in urethane-anaesthetized rats

Systemic and local microinjections of MK-801 in MD changed 2Hz
oscillation to a less regular δ rhythm ; paired-pulse facilitation,
; overall MUA

Kiss et al. (2011a, b)

Mediodorsal and centromedial thalamic single unit and
local field potential recordings in anesthetized rats

PCP increases overall neuronal firing and decreases low frequency
oscillations

Santana et al. (2011)

Effects of acute and chronic NMDA antagonism
administration on oscillatory hippocampal activity in
freely moving rats

Acute injection of MK-801 or ketamine : γ power in CA1 and DG,
shifted θ peak to higher frequencies and ; θ power in CA1 Chronic
ketamine administration ; θ and γ oscillations

Kittelberger et al. (2012)

Oscillatory activity (EEG) in frontal and occipital cortices : aberrant γ after systemic administration of nonselective NMDAR
antagonists and by NR2A-preferring antagonists

Kocsis (2012)

Mouse EEG during repeated auditory stimuli Ketamine and MK-801 ;high frequency evoked and total power,
: baseline high frequency power, ; high frequency intertrial
coherence

Saunders et al. (2012)

Oscillatory activity and neuron firing rate in PFC I freely
moving rats

MK-801 causes an overall : neuron firing and ; correlation between
spike rate and γ band.

Wood et al. (2012)

Serotonergic drugs mPFC pyramidal neuron single unit recordings and local
field potential recordings in choral hydrate anesthetized
rats

DOI caused an overall : pyramidal neuron firing and ; slow cortical
oscillations

Celada et al. (2008)

Oscillatory activity and neuron firing rate in PFC I freely
moving rats

DOI causes an overall ; neuron firing and ; correlation between spike
rate and γ band.

Wood et al. (2012)
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Dopaminergic drugs Neocortical spontaneous γ oscillations in freely moving
rats

d-Amphetamine and apomorphine : cortical γ power Pinault (2008)

Cannabinoid-1
receptor activation

Hippocampus, entorhinal cortex and mPFC recordings in
freely moving rats

CP-55940 ; θ power in the hippocampus and ; γ power in the
hippocampus and entorhinal cortex

Hajos et al. (2008)

Developmental
MAM mPFC single-unit and local field potential recordings in

anesthetized adult rats
Absent slow and fast field potential oscillations, more regular spike
firing activity

Goto and Grace (2006)

mPFC and ventral hippocampus local field potential
recordings in a latent inhibition paradigm (adult rats)

No significant alterations in spontaneous activity. MAM attenuates
effects on conditioned-stimuli evoked oscillatory activity.

Lodge et al. (2009)

Visual and motor cortex EEG recordings in behaving
adult rats

;visual cortex γ oscillations and : motor cortex high frequency
oscillations in MAM treated animals in response to NMDAR
antagonism

Phillips et al. (2012)

Neonatal ventral
hippocampal lesion

Spontaneous frontal and parietal EEG recordings in
prepuberal and adult rats

Prepuberal rats: : δ, θ and α power Adult rats: : δ and θ power Ahnaou et al. (2007)

Spontaneous frontal and parietal EEG recordings in
prepuberal and adult rats

Prepuberal rats: : δ, θ and α power Adult rats: : δ and θ power Ahnaou et al. (2007)

Frontal, parietal and occipital EEG recordings in behaving
adult rats

; parietal and occipital at 1–30Hz Valdes-Cruz et al.
(2012)

Genetic
PV-Cre/NR1f/f mice CA1 local field potential and unitary neuronal recordings

in freely behaving mice
; and altered θ oscillation, : γ oscillation and less modulated by θ

rhythm
Korotkova et al. (2010)

Somatosensory single unit and local field potential
recordings in anesthetized and awake mice

: baseline cortical γ band and ;sensitivity to NMDAR
antagonists-induced effects on γ oscillations

Carlen et al. (2012)

Df(16)A+/− mice Single unit and local field potential recordings in
behaving mice during working memory task

; phase locking of PFC neurons to hippocampal θ rhythm and
; coherence between PFC and hippocampal local field potentials

Sigurdsson et al. (2010)

ErbB4MHC−ErB4 −/−

mice
Rat, WT and KO mice hippocampal slices Mutation ; kainate-induced γ oscillations and avoids the potentiating

effect of NRG1 on these oscillations
Fisahn et al. (2009)

Dys1−/− mice EEG recordings in hippocampus during auditory
processing

; evoked high γ power and deficit suppressing late γ activity Carlson et al. (2011)

GCLM−/− mice Hippocampal slices in vitro recordings ; kainite induced β and γ oscillations Steullet et al. (2010)
DAT−/− mice Hippocampal and prelimbic PFC local field potential

during spontaneous activity and during the exploration
of a novel environment

: γ phase signalling Dzirasa et al. (2009)

NR1 KD Hippocampal and prelimbic PFC local field potential
during spontaneous activity and during the exploration
of a novel environment

; θ–γ phase coupling Dzirasa et al. (2009)

CA, Cornu ammonis; DG, dentate gyrus; DOI, 1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane); EEG, electroencephalogram; FC, frontal cortex; KD, knock down; KO, knock out;
MAM, methylazoxymethanol acetate; MUA, multi-unit activity; NMDAR, N-methyl-D-aspartate receptor; NRG1, neuregulin 1; PFC, prefrontal cortex; PCP, phencyclidine; WT,
wild-type.
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information and to allow for coordinated activity
between different neuronal networks in the temporal
plane: information is encoded by spiking activity, but
also by the time at which they are produced.

The generation of brain oscillations involves a bal-
ance between excitatory and inhibitory transmission
in the network, which depends on the individual
properties of the components. Hence, slow oscillations
result from the interaction of cortical, thalamo-cortical
and reticular nucleus oscillators (Crunelli and
Hughes, 2010), whereas δ oscillations depend upon
cortical and thalamocortical components (Petsche
et al., 1984; Leresche et al., 1990; Mccormick and
Pape, 1990; Steriade et al., 1993; Llinas and Steriade,
2006). Low frequency oscillations (slow and δ oscil-
lations) are involved in several brain functions per se,
including short- and long-term memory (Bodizs
et al., 2002; Marshall et al., 2006; Basar and Guntekin,
2008). Additionally, they are essential for organizing
higher frequency activities in sequences of complex
oscillations (Steriade, 2006).

The γ oscillations (30–80Hz) deserve special atten-
tion due to their implication in multiple cognitive
processes through the phylogenetic scale (Engel
and Singer, 2001): sensory and perceptual process-
ing; short and long-term memory; attention; executive
functions, among others. Parvalbumin positive
GABAergic interneurons are strongly involved in the
generation of γ oscillations. They are fast-spiking inter-
neurons, with special electrical properties, which are
able to control large populations of pyramidal neurons
via large networks connected by gap junctions (Traub
et al., 2000, 2001; Galarreta and Hestrin, 2001). These
properties make them excellent candidates to spread
fast oscillations through neuronal networks, although
other cells and neurotransmitter systems have been
also involved (Belforte et al., 2010; Korotkova et al.,
2010; Carlen et al., 2012).

Since brain oscillations mirror neuronal and net-
work dynamics, they may provide a valuable tool to
study the aetiology and pathophysiology of mental ill-
nesses such as schizophrenia. Moreover, the study of
brain oscillations can be a powerful translational tool,
enabling comparisons between patients, healthy indi-
viduals and animal models. EEG recordings have
been used to identify biomarkers, endophenotypes or
prognostic indicators in schizophrenia. Indeed, schizo-
phrenia symptoms may result from impaired con-
nectivity, communication and coordination between
brain regions (Hoffman and Mcglashan, 1993; Skelly
et al., 2008; Camchong et al., 2011). Brain oscillations
have also been examined in a variety of animal models
of schizophrenia (Table 2).

Recent studies show an increase of resting state γ
activity in schizophrenic patients compared to healthy
controls (Venables et al., 2009; Kikuchi et al., 2011;
Spencer, 2012). This disruption agrees with the
reported alterations on GABAergic neurotransmission
in schizophrenic patients (Lewis et al., 2005), especially
in fast-spiking interneurons, as well as deficits in
NMDA glutamatergic neurotransmission (Krystal et al.,
2003; Konradi and Heckers, 2003; Woo et al., 2008).
Likewise, abnormalities in cortico-subcortical com-
munications (e.g. thalamocortical) may be examined
via EEG sleep recordings. Slow wave sleep deficits
have been reported in schizophrenic patients, associ-
ated with negative symptoms. Specifically, schizo-
phrenia patients show decreased δ wave counts,
reductions in δ and θ power and alterations in the later-
ality of these measures compared with healthy controls
(Keshavan et al., 1998; Sekimoto et al., 2007).
Alterations in α activity during sleep have also been
correlated with positive and negative symptom scores
(Poulin et al., 2008). Likewise, enhanced slow wave,
δ, θ and β activity and decreased α activity in the rest-
ing state has been associated with schizophrenia
(Rockstroh et al., 2007; Bates et al., 2009; Begic et al.,
2011). Alterations in the δ band frequency have been
associated with negative symptoms of the illness
(Itoh et al., 2011).

Moreover, EEG patterns allow distinction between
patients with schizophrenia and other psychiatric dis-
orders (Rockstroh et al., 2007; Venables et al., 2009;
Begic et al., 2011) and between different groups of
schizophrenic patients (violent and non-violent schizo-
phrenic patients; Schug et al., 2011) and positive vs.
negative type schizophrenia (Begic et al., 2000, 2009).

Finally, different strategies have been used to model
schizophrenia in healthy subjects. One of them is
the administration of psychotomimetic drugs such as
NMDA antagonists (Krystal et al., 2003). Using this
approach, it has been shown that the administration
of subanaesthetic doses of ketamine to healthy subjects
augmented high frequency oscillations (40–85Hz) and
reduced low frequency oscillations (1–5 Hz) mimicking
some of the oscillatory alterations of schizophrenia
(Hong et al., 2010). Similar results have been reported
using other hallucinogenic drugs disrupting sero-
tonergic neurotransmission (Oughourl et al., 1971;
Riba et al., 2002).

Effects of psychotomimetic agents on low frequency
cortical oscillations

The cellular effects of PCP described earlier were
accompanied by a simultaneous and marked alteration
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Fig. 5. Reduction of low frequency cortical oscillations (LFCO) by phencyclidine (PCP) and
1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane; DOI). (a1): local field potential recording in basal conditions (left), after the
administration of PCP (0.25mg/kg i.v.; middle) and after the subsequent administration of clozapine (CLZ, 1 mg/kg i.v.). Note
the marked reduction of the magnitude of the LFCO by PCP and the reversal of this action by CLZ. (a–d): spectrograms
showing the effect of PCP (a2, b) and DOI (c, d) on LFCO, as well as the reversal of these actions by CLZ and haloperidol
(Hal). Note the marked loss of the power of LFCO by PCP and DOI, denoted by a reduction of the colour intensity (red) at
low frequencies. Ordinate range is 0–10Hz; abscissa is a 1-min period during each treatment. (e) and (f): bar diagrams
showing average effects of PCP (e) and DOI (f) on the power of LFCO as well as the reversal by CLZ and Hal; n=20 for PCP
and n=51 for DOI. Data taken from Kargieman et al. (2007) and Celada et al. (2008). * p<0.05 vs. basal; # p<0.05 vs. PCP or
DOI.
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of low frequency cortical oscillations (LFCO; 0.3–4Hz)
in mPFC and of δ waves in the thalamus (Kargieman
et al., 2007; Santana et al., 2011). PCP administration
dramatically reduced the power of LFCO, recorded
in parallel with neuronal discharge, irrespective of
whether the recorded pyramidal neuron was excited,
inhibited or unaffected by PCP. Figure 5 shows the
effect of PCP on LFCO in the mPFC of the anaes-
thetized rat. Interestingly, PCP also produced very
marked desynchronization of the neuronal discharge
from the active (or ‘up’) phases of LFCO. Spikes are
typically fired during the active phases of LFCO, corre-
sponding to ‘up’ or depolarized states recorded intra-
cellularly. The percentage of spikes fired in active
phases of the LFCO was 90±3% in baseline conditions.
PCP reduced this value to 59±11% (note that maximal
reduction is to 50%; i.e. a random distribution between
active and inactive phases; Kargieman et al., 2007).

In addition to NMDA receptor antagonists, sero-
tonergic hallucinogens are considered pharmacological
models of schizophrenia due to their ability to evoke
some psychotic symptoms, such as hallucinations
and perceptual disturbances. In addition, these agents
activate 5-HT2A receptors (Nichols, 2004) whereas

atypical antipsychotic drugs are antagonists of the
same receptors (Meltzer, 1999). 1-(2,5-Dimethoxy-4-
iodophenyl-2-aminopropane; DOI) is a partial
5-HT2A/2C agonist that evokes long-lasting alterations
in consciousness and perception (Nichols, 2004), an
effect mediated by activation of 5-HT2A receptors
(Schreiber et al., 1994; Martin-Ruiz et al., 2001).

The systemic administration of DOI (50–300 μg/kg
i.v.) produced a marked alteration of the discharge
of pyramidal neurons in mPFC, which was similar
to that produced by PCP (Fig. 6). Hence, DOI adminis-
tration increased the discharge rate of 39% of the
recorded neurons (to 481% of baseline), reduced that
of 27% (to 11% of baseline) and left unaffected 34%
of the recorded pyramidal neurons, producing an over-
all increase of 240% of the pyramidal discharge in
mPFC (Puig et al., 2003). In all instances, DOI pro-
duced a marked and concurrent reduction of LFCO
to 56% of baseline, an effect slightly less marked than
that evoked by PCP (Fig. 4). All these effects were
antagonized by the subsequent administration of the
selective 5-HT2A receptor antagonist M100907, indicat-
ing the exclusive participation of 5-HT2A receptors. The
inhibitory effect of DOI appears to depend on the acti-
vation of 5-HT2A receptors in GABAergic interneurons,
as it was reversed by the subsequent administration
of the GABAA receptor antagonist picrotoxinin (Puig
et al., 2003). Interestingly, this inhibitory effect appears
to increase with dose, as recently reported (Wood et al.,
2012).

Reversal by antipsychotic drugs: mechanisms
involved

Behavioural alterations induced by non-competitive
NMDA receptor antagonists and 5-HT2A agonists are
reversed by antipsychotic drugs, in particular by
second generation or atypical antipsychotic drugs
(Geyer et al., 2001). Given the similar disruption of
PFC activity produced by the two different models of
schizophrenia used (NMDA receptor antagonist and
5-HT2A receptor agonist) we examined whether PCP-
and DOI-induced alterations could be antagonized
by classical (haloperidol) and atypical (CLZ) anti-
psychotic drugs. As shown in Fig. 1, the administration
of CLZ completely reversed the increase in firing rate
produced by PCP in PFC pyramidal neurons and in
thalamic neurons (Kargieman et al., 2007; Santana
et al., 2011). Likewise, CLZ pre-treatment prevented
the increase in c-fos expression in all brain areas exam-
ined, including the PFC and thalamic nuclei (Fig. 1).

CLZ also reversed the fall in low frequency oscil-
lation produced by PCP in PFC and thalamic nuclei

PCP(a)

(b)

NE

M
ea

n 
po

w
er

NEEXC
286%

EXC
481%INH

43%
INH
11%

DOI

0.4

0.3

* *0.2

0.1

0.0
Basal PCP Basal DOI

Fig. 6. Comparison of the effects of phencyclidine (PCP,
9.25mg/kg i.v.) and 1-(2,5-dimethoxy-4-iodophenyl-2-
aminopropane; DOI, 0.05–0.3mg/kg i.v.) on the discharge
rate of pyramidal neurons (a) and on the power of low
frequency oscillations (b) in prefrontal cortex. (a) Note the
similar proportions of pyramidal neurons excited (EXC),
inhibited (INH) or unaffected (NE) by both treatments, as
shown by the sector angle. Figures inside each sector are the
average change vs. baseline in the discharge rate. (b) At the
doses used, the effect of PCP on the power of low frequency
oscillations was slightly more marked than that of DOI.
* p<0.05 vs. basal. Data from Puig et al. (2003), Kargieman
et al. (2007) and Celada et al. (2008).
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(Kargieman et al., 2007; Santana et al., 2011). It also
reversed the alteration induced by the serotonergic hal-
lucinogen DOI in PFC (Celada et al., 2008). Figure 5
shows representative examples of the reversal by
CLZ of the alterations in LFCO induced by PCP and
DOI as well as the average data from all recordings.
When examined, the administration of haloperidol
also reversed PCP and DOI effects. Hence, haloperidol
was equally able to reverse the effect of PCP and DOI
on LFCO (Fig. 5) as well as the effect of PCP on pyra-
midal neuron discharge in PFC.

The mechanisms involved in the reversal of
PCP and DOI actions are not fully elucidated. At
cellular level, the reversal by CLZ of PCP effects
may depend on an increased GABA input onto
pyramidal neurons, given the opposite effects of PCP
+CLZ on c-fos expression in GABAergic neurons
(increase vs. PCP alone) and pyramidal neurons
(decrease vs. PCP alone; Kargieman et al., 2007).
However, this possibility requires further experimental
testing.

The reversal by CLZ of PCP effects appears to
require the activation of 5-HT1A receptors. Hence,
PCP was equally effective in reducing LFCO in the
PFC of wild-type (WT) mice and of mice lacking
5-HT1A or 5-HT2A receptors [1A-knock out (KO)
and 2A-KO, respectively; Kargieman et al., 2012].
However, the subsequent administration of CLZ
reversed the effects of PCP in WT mice and in
2A-KO, but failed to do so in 1A-KO (Kargieman
et al., 2012), indicating the requirement of 5-HT1A

receptors (Fig. 7). On-going pharmacological studies
also support the involvement of 5-HT1A receptors
in the reversal of PCP effects on LFCO. Hence, the
selective 5-HT1A agonist BAY×3702 completely
reversed the fall in LFCO power produced by PCP in
rat PFC and the subsequent administration of CLZ
did not produce any additional effect (L. Lladó-
Pelfort, P. Celada, E. Troyano-Rodriguez and F.
Artigas, unpublished observations). These results can-
not be explained by the in vitro affinity of CLZ for
5-HT1A receptors. However, atypical antipsychotic
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drugs, including CLZ, behave as agonists at 5-HT1A

receptors in vivo to increase PFC DA release (Rollema
et al., 1997; Ichikawa et al., 2001; Diaz-Mataix et al.,
2005; Bortolozzi et al., 2010).

5-HT1A and 5-HT2A receptors are highly co-
expressed in PFC neurons (Amargos-Bosch et al.,
2004). Thus, 5-HT2A receptor blockade by CLZ might
alter the physiological balance between both receptors,
resulting in an increase of 5-HT1A receptor-mediated
neurotransmission. However, these results, together
with additional data using also 5-HT receptor KO
mice (Bortolozzi et al., 2010) do not support this
view, since CLZ reversed the effects of PCP on LFCO
in KO-2A mice whereas it did not in KO-1A mice.
Thus, the effect of CLZ may depend on some still
unknown pharmacological property, perhaps resulting
from its in vivo occupancy of 5-HT1A receptor (Chou
et al., 2003). Alternatively, the reversal by CLZ of the
effects of DOI may depend on the direct competition
of both drugs at PFC 5-HT2A receptors.

Given the almost exclusive high affinity of haloper-
idol for DA D2 receptors, the reversal of PCP and DOI
effects by haloperidol is likely dependent on the in vivo
blockade of such receptors which participate in the
excitatory–inhibitory balance in PFC (Tseng et al.,
2006).

Given the role of PFC in cognitive functions, the
normalization of its function by antipsychotic drugs
might be viewed as an electrophysiological signature
of potential pro-cognitive actions. However, the pro-
cognitive action of antipsychotic drugs is far from
being established and actually, many drugs show dele-
terious effects on cognition likely due to the blockade
of DA actions in PFC. In addition to cognitive pro-
cesses, the PFC participates in affective control and
higher brain functions such as sensory integration,
attention, decision-making, behavioural inhibition,
language etc., whose alterations contribute to psycho-
tic symptoms. Therefore, it is very likely that the anti-
psychotic reversal of PCP and DOI actions in PFC
are related to the antipsychotic effect rather than
to potential pro-cognitive actions of first and second
generation antipsychotic drugs.

Concluding remarks

Data obtained in recent years has revealed that psycho-
tomimetic agents markedly disrupt neuronal activity
in the PFC and anatomically-connected thalamic
areas, such as the centromedial and dorsomedial
nuclei. In parallel, these agents alter the power of
low frequency oscillations in PFC and in the thalamus,
when examined. Given the crucial role of these brain

networks in adapting behavioural responses to exter-
nal sensory inputs, among others, it is likely that the
observed abnormalities underlie, at least in part,
the psychotomimetic action of these agents. The link
with schizophrenia symptoms is strengthened by the
observation that antipsychotic agents reverse the dis-
ruption of thalamic and cortical activity evoked by
PCP and DOI. Overall, the alterations of thalamo-
cortical activity induced by psychotomimetic agents
can be successfully used to gain further insight into
the neurobiological basis of schizophrenia symptoms
and to examine the potential antipsychotic activity of
new drugs in development.
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