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Abstract

Different methods have been proposed to use modulated photoconductivity (MPC) measurements in order to extract information
about the density of states (DOS) within the gap of defective semiconductors. Depending on the frequency of the modulation, two
regimes have to be considered: the high frequency (HF) and the low frequency (LF) regimes. In this paper, we use computer-generated
data, obtained from the complete solution of the MPC equations, to test the different procedures proposed to treat the MPC data in both
regimes. We show that Brüggemann’s method provides an accurate reconstruction of the introduced DOS provided the capture coeffi-
cients are known, while in the LF limit of Kounavis’ method a factor of two is missing. We also test the accuracy of different procedures
proposed to extract the capture coefficients of the defects, which are necessary to get absolute DOS values in the methods that utilize the
HF regime. The LF–MPC method, on the other hand, has the advantage that the capture coefficients are not needed.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Amorphous and nanocrystalline semiconductors usually
exhibit a considerable density of localized energy levels
within the forbidden gap, associated with defect states.
These levels are generally the most efficient recombination
centers, thus controlling the electrical transport properties.
Among the methods developed to obtain the density of
states (DOS) within the gap of photoconductive semicon-
ductors, the modulated photoconductivity (MPC) tech-
nique attracted considerable attention due to its accuracy
and experimental simplicity [1–9]. In this method, a biased
sample is illuminated with a light flux partially modulated
with a pulsation x, while the modulus jracj and phase shift
U of the resulting ac photoconductivity are recorded.
Depending on the frequency of the modulation, two

regimes have to be considered: the high frequency (HF)
regime, where trapping and release processes dominate
the photoconductivity, and the low frequency (LF) regime,
where recombination dominates [3,10,11].

In this paper we will discuss different methods proposed
to extract the DOS from MPC measurements, both in the
HF and LF regimes. We will also test the accuracy of dif-
ferent procedures proposed to extract the capture coeffi-
cients of the defects, which are necessary to get absolute
DOS values.

2. The modulated photoconductivity in the different regimes

Let us consider a semiconductor having m species of
trapping states within its gap, each species with a density
Ni(E) and with capture coefficients ci

n (ci
pÞ for electrons

(holes). Writing ndc (pdc) the electron (hole) concentration
in the extended states generated by the dc contribution of
the light, it has been shown in previous works [1–5] that
in the HF regime, established when x� xi

t ¼ ci
nndcþ

0022-3093/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.jnoncrysol.2007.09.104

* Corresponding author. Tel.: +54 342 4559175; fax: +54 342 4550944.
E-mail address: jschmidt@intec.ceride.gov.ar (J.A. Schmidt).

www.elsevier.com/locate/jnoncrysol

Available online at www.sciencedirect.com

Journal of Non-Crystalline Solids 354 (2008) 2914–2917



Author's personal copy

ci
ppdc for all the species of states, and for the case that

electrons dominate the photoconductivity, the following
expressions provide the basis for a DOS spectroscopy

Xm

i¼1

ci
nN i Ei

xn

� �
ln

¼ � 2qGac

pkBT
sin Uð Þ

racj j
; ð1Þ

Ec � Ei
xn ¼ kBT ln

ci
nN c

x

� �
; ð2Þ

where ln is the electron mobility, q is the absolute value of
the electron charge, Gac is the ac generation rate, kB is
Boltzmann’s constant, T is the absolute temperature, and
Nc is the effective DOS at the conduction band edge. Note
that each species of states will be responding at a different
energy Ei

xn for the same frequency of the light excitation, so
a proper energy scaling could be difficult. However, usually
there is only one dominant level, and Eq. (2) simply trans-
forms into Ec � Exn ¼ kBT lnðcnN c

x Þ.
On the other hand, when the MPC experiment is per-

formed at low frequencies such that x� xi
t for all i, the

equations providing the basis for a DOS spectroscopy
would be [12–14]

Xm

i¼1

N i EFnð Þ ¼ � 2Gdc

kBT
tan Uð Þ

x
; ð3Þ

Ec � EFn ¼ kBT ln
qlnN c

rdc

� �
; ð4Þ

where EFn is the electron quasi-Fermi level, Gdc is the dc
generation rate, and rdc is the dc photoconductivity. If
we compare Eqs. (3) and (4) with Eqs. (1) and (2), the main
differences are that, (i) the total DOS at EFn can be directly
deduced from Eq. (3) whereas only the sum of the products
ci

nN i=ln is extracted from Eq. (1), and (ii) the energy scaling
needs the knowledge of ln in Eq. (4) and the knowledge of
cn in Eq. (2) provided that there is a dominant species of
states.

In a previous publication Kounavis [7] proposed a single
formulation to describe both the HF and LF regimes of the
MPC, the expressions being

Xm

i¼1

H ici
nN i Ei

xn

� �
ln

¼ � 2qGac

pkBT
sin Uð Þ

racj j
; ð5Þ

Ec � Ei
xn ¼ kBT ln

ci
nN c

x2 þ xi
t

� �2
h i1=2

0
B@

1
CA; ð6Þ

where H i ¼ 1� 2
p arctan

xi
t

x

� �
. It can be easily shown that,

for x� xi
t (HF–MPC), Hi tends to 1 and Eq. (5) reduces

to Eq. (1), while Eq. (6) reduces to Eq. (2). Thus, Kounavis’
formulas reduce to Brüggemann’s formulas in the high fre-
quency limit. On the other hand, for the case x� xi

t (LF–
MPC), a series expansion of Hi gives to the first order
H i ffi 2

p
x
xi

t
. Furthermore, if electrons dominate the conduc-

tivity we have xi
t ffi ci

nndc and jracj ffi qlnjnacj. Thus, Eq.
(5) reduces to

Xm

i¼1

Ni Ei
xn

� �
¼ � ndcGac

kBT nacj j
sin Uð Þ

x
: ð7Þ

In the LF regime the phase shift tends to zero, so
sin(U) ffi tan(U). Moreover, we can write ndc ¼ Gdcsn

dc and
jnacj ¼ Gacsn

ac. Since the occupation of the gap states is
defined by the dc illumination, we can expect sn

dc ffi sn
ac.

Thus, Eq. (7) reduces to Eq. (3) except for a factor of 2.
We will show in the following that this factor is necessary
for the correct reconstruction of the DOS.

3. Results and discussion

A numerical simulation called DEOST has been devel-
oped at LGEP, and it can be found on the website
www.lgep.supelec.fr/scm/. Independently, a similar code
has been developed at INTEC. In these simulation codes,
all the transport and defect parameters of a semiconductor
can be chosen, and the MPC can be calculated at any T, x
and Gdc. In order to illustrate the theory of the MPC and
the DOS reconstructions, we will use the DOS distribution
presented in Fig. 1, which is similar to hydrogenated amor-
phous silicon but with a flat distribution of deep defect
states. All the states belong to the same species and have
cn = cp = 2 � 10�8 cm3 s�1. This distribution leads to a
dark Fermi level located at 1.1 eV above Ev, while a mobil-
ity gap EG = 1.8 eV is assumed. The slightly n-type charac-
ter is further reinforced by assuming mobilities
ln = 10 cm2 V�1 s�1 and lp = 1 cm2 V�1 s�1. Choosing a
dc generation rate Gdc = 1017 cm�3 s�1, the solution of
the continuity and charge neutrality equations provides
the concentrations of electrons and holes as a function of
temperature shown in the inset of Fig. 1, implying that elec-
trons are the majority carriers in the whole explored tem-
perature range.

Assuming Gac = Gdc/20, pulsations in the range 0.1 6
x 6 5 � 105 s�1, and temperatures in the range
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Fig. 1. DOS distribution introduced in our calculations, typical for
hydrogenated amorphous silicon except for the flat deep defect distribu-
tions. The temperature dependence of the electrons and holes concentra-
tions are shown in the inset.
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100 K 6 T 6 350 K in 50 K steps, we have numerically
solved the system of equations that provides the modulus
and phase shift of the ac photocurrent. Then, we applied
the different methods to reconstruct the introduced DOS.
Fig. 2 presents the results, where the lines are the intro-
duced DOS, the crosses result from the application of
Brüggemann’s method [2], the squares from the low fre-
quency limit of Kounavis’ method [7] and the stars from
the LF–MPC method [12,13].

To set the energy scale in Brüggemann’s method [Eq.
(2)] and to get absolute DOS values [Eq. (1)], the correct
values of cn and ln have been used (not known a priori in
an experiment). To set the energy scale in Kounavis’
method [Eq. (6)] the correct values of cn and cp have been
used (cp is needed to calculate xt, although the approxima-
tion xt ffi cn � ndc could also have been used). The value of
xt is also needed to calculate H, while ln is used to get
absolute DOS values [Eq. (5)]. In the LF–MPC method,
the correct value of ln was used to get EFn [Eq. (4)], while
cn is not needed. When the pairs of data (x;U) are intro-
duced into Eq. (3) to get the total DOS, all the values of
tan(U) that depend linearly on x give the same value for
N(EFn). This can be used as a criterion to evaluate the
LF region: all the frequencies providing the same DOS
value belong to the low frequency region of the MPC spec-
trum. Note that in Fig. 2, each ‘star’ is in fact a group of up
to 20 data points, all of them giving the same DOS value.
From Fig. 2 it is also clear that Kounavis’ method under-
estimates the introduced DOS in the defect region by a fac-
tor of 2, what proves that the factor 2 appearing in Eq. (3)
is indeed correct. The LF–MPC formula provides the right
values for N(E), except for the highest temperature when
the electron quasi-Fermi level gets too close to the dark
Fermi level. Moreover, the LF–MPC method does not
require knowledge a priori of the values of the capture coef-
ficients, which is a drawback of Kounavis’ and Brügge-
mann’s methods. The determination of the capture
coefficients (or, equivalently, of the transition pulsation
xt, i.e., the pulsation determining the transition from the
LF to the HF regime) is a fundamental point in the formu-
lations of Brüggemann and Kounavis. One method, pro-

posed in Ref. [3], is based on plotting cos (U)/jIacj vs. x
and detecting the end of the plateau region at low pulsa-
tions. The application of this method is exemplified in
Fig. 3(a) for the same computer-generated data as before
(100 K 6 T 6 350 K, Gdc = 1017 cm�3 s�1). The results
are shown in Fig. 4 as circles, and can be compared to
the actual values (squares). Note that some of the values
are higher and others are lower than the actual ones, due
to uncertainties in the estimation of the end of the plateau
region. Nevertheless, all the values are within a factor of
1.75 from the actual ones.
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Fig. 2. Results of the application of the different methods (symbols) to
reconstruct the introduced DOS (lines).
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Fig. 3. Illustration of different methods to obtain the transition frequency
xt: plots of cos (U)/jIacj as a function of x in (a) and fits of Y vs. x
(Kounavis’ method) in (b).
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Fig. 4. Transition pulsations xt as a function of temperature, where the
actual values and the results of the different methods presented in Fig. 3
are shown.
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Another procedure to determine the transition pulsation
has been described by Kounavis in Refs. [7,15], and will be
briefly recalled here. Starting from Eq. (5), Kounavis
defines Y, the imaginary term of the MPC, by Y ¼
�lnqGac

sinðUÞ
jracj ffi

p
2

kBTHcnNðExnÞ. This term can be obtained
experimentally (provided ln is known), and contains the
information on the DOS. The weighting function H deter-
mines the individual contribution to the imaginary term of
every species of states. In the emission-limited regime that
takes place at x�xt one has H = 1 and the Y spectrum
presents a leveling off at a value that depends on the defect
density. Upon decreasing x, at x = xt the function H

decreases by a factor of 2 from unity. If x is further
decreased so that x�xt, H tends to zero linearly with x,
and the same happens to the Y term. Based on these facts,
Kounavis proposes in Refs. [7,15] to determine xt by mak-
ing a plot of Y vs. x and fitting this term with a ‘normal-
ized’ H function. This procedure is shown in Fig. 3(b),
where the symbols correspond to the Y terms obtained
from our computer-generated data, while the solid lines

are fits with the functions H fit ¼ C 1� 2
p arctan

xapp
t
x

� �h i
.

Here, C and xapp
t are the fit parameters, and a weighting

factor proportional to x�1 has been used. The results are
also shown in Fig. 4 as triangles. Although these values
exhibit the same trend as the actual ones, they deviate from
them in as much as a factor of 3.5, especially for the lowest
temperatures. Such an overestimation in xt would lead to
an underestimation of the DOS by approximately the same
factor.

As mentioned before, the LF–MPC method itself pro-
vides a criterion to evaluate the transition between the
HF and LF regimes: all the pairs of data (x;U) that pro-
vide the same value for N(EFn) when introduced into Eq.
(3) belong to the LF region. If we estimate xt as the value
of x that leads to a 10% departure from the constant DOS
value, we get the result shown as stars in Fig. 4. As can be
seen, the values present the same trend and are all within a
factor of 1.6 from the actual ones, what can be taken as an
acceptable precision for the estimation of the capture
coefficients.

4. Conclusion

We have analyzed three different methods to determine
the DOS within the gap of defective semiconductors from

MPC measurements. We have used computer-generated
data and a particular DOS distribution to show that in
the LF limit of Kounavis’ method a factor of two is miss-
ing. We have also shown that Brüggemann’s method (or
equivalently, Kounavis’ method in the HF limit) correctly
reproduce the introduced DOS provided the values of the
capture coefficients are known; while the LF–MPC
method does not require these values. We have tested
three procedures proposed to determine the capture coef-
ficients from MPC data, showing that, although not com-
pletely accurate, the method presented in this work –
based on the LF–MPC data – may provide a good estima-
tion for these values. However, a perfectly accurate
method to derive experimentally the capture coefficients
is still missing.

Acknowledgement

This work was partially supported by PICT No. 22-
20267 from ANPCyT, PEI No. 6329 from CONICET
and CAI + D No. 28-158 from UNL.

References

[1] H. Oheda, J. Appl. Phys. 52 (1981) 6693.
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