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Abstract
Using a probabilistic interpretation of resonant states and square-integrable real basis set
expansion techniques, we propose a formula useful to calculate the lifetime of a resonance.
Our approach does not require an estimation of the density of states. The method is illustrated
with calculations of s- and p-resonant state energies and lifetimes.

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the pioneering work of Gamow modeling the α decay
in radiative nuclei [1], resonant states have become of great
importance in quantum physics. Resonant states appear in
nuclear physics [1, 2], atomic and molecular physics [3, 4]
and, more recently, in nanophysics [5–7].

In a series of papers Hatano and collaborators [8–10]
presented a probabilistic interpretation of resonant states. In
these works, a resonance is defined as an eigenfunction of a
Hamiltonian with Siegert boundary conditions, that is, when
the potential goes to zero, the wave function is only an outgoing
wave [11]. Due to Siegert conditions, the problem is not
Hermitian; the eigenvalues are complex, the wave functions are
not square-integrable and the particle number around a central
volume exponentially decays in time because of momentum
leaks from the volume.

Many methods were developed in order to calculate the
complex eigenvalues of resonant states. The most widely
used methods are based in complex scaling transformations
that turn the resonance state into a square-integrable function
[12, 13]. In particular, a modification called exterior complex
scaling [14] was used recently in many photoionization
problems [15, 16].

However, due to its simplicity, there also exist several
techniques to calculate the real part of a resonance eigenvalue
using the Ritz-variational method with a square-integrable
real basis set. These methods, generally called stabilization
methods [17], use the abrupt change of a physical quantity
when a variable is ‘crossing’ a resonance. In particular

different authors used the variational energies [18, 19], the
von Neumann entropy [7] or properties such as the double-
orthogonality condition [20] to obtain the real part of the
energy. In order to calculate the imaginary part of the resonant
energy, all these methods use an approximation of the density
of states fitting the numerical data using a Lorentzian function
[17, 19, 21].

In this paper we use the formalism of Hatano [8–10] to
obtain an expression of the imaginary part of the energy useful
to calculate it only using a stabilization method, without an
extra fitting or approximation.

The paper is organized as follows. In section 2 we use the
Hatano formalism to obtain a relation between the real and
imaginary part of the energy and the density of probability
in the central region. In section 3 we apply the results of the
preceding section together with real basis set expansions to
calculate the complex energy of a resonance. Finally, section 4
contains the conclusions with a discussion of the most relevant
points of our findings.

2. Definition and properties of resonances

Here and elsewhere we use atomic units, � = 1; m = 1. A
general solution of the time-dependent Schrödinger equation

Hψ(�x, t) = i
∂

∂t
ψ(�x, t), (1)

obeys a continuity equation

∂ ρ(�x, t)

∂t
+ ∇ · �J(�x, t) = 0, (2)
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where ρ and J are the standard density and current of the
probability [22]

ρ(�x, t) = |ψ(�x, t)|2;
�J(�x, t) = 1

2i
[ψ∗(�x, t)∇ψ(�x, t) − ψ(�x, t)∇ψ∗(�x, t)]. (3)

Equation (2) could be written in integral form
∂

∂t

∫
�

ρ(�x, t) ddx = −
∫

∂�

�J(�x, t) · �dS, (4)

where d is the spatial dimension, � an arbitrary volume and
∂� its frontier. Following Hatano [8–10], we define N�, the
number of particles inside a volume �

N�(t) =
∫

�

ρ(�x, t) ddx . (5)

From the definition of J [22], equation (5) takes the form

∂

∂t
N�(t) = −Re

(∫
∂�(t)

ψ∗(�x, t) �pψ(�x, t) · d�S

)
. (6)

This equation, that expresses the particle-number conservation
inside the volume �, corresponds to equation (15) of reference
[9]. If the wave function goes to zero faster than r−(d−1) for
large values of r the right-hand side of equation (6) goes
to zero, expressing the conservation of the normalization,
as happens for bound states. Resonant eigenstates are not
Hermitian solutions of the Schrödinger equation and the wave
functions have exponential divergences, equation (6) describes
a flux of particles outside any volume �, even in the limit
� → R

d and the particle-number is not conserved.
Hatano suggested how to maintain the probabilistic

interpretation of the wave function for resonant states [8–10].
The resonance is interpreted as a metastable state, which is
localized inside a volume �0 at t = 0. Hatano defined a time-
dependent volume �(t) by the condition

d

dt
N�(t)(t) = 0. (7)

The reasonable initial condition for this equation is N�(0)(0) =
1. This condition together with equation (7) imply that
N�(t)(t) = 1 ∀t � 0. The expectation value of an operator Ô
is calculated inside the volume �(t) as

〈Ô〉�(t) ≡ 〈ψ |Ô|ψ〉�(t)

〈ψ |ψ〉�(t)
, (8)

which is well-defined for all times.
Equations (5)–(7) give an equation for ∂�(t)

Re

(〈
ψ

∣∣∣∣
(

∂�x

∂t
− �p

)∣∣∣∣ψ
〉
∂�(t)

)
= 0. (9)

In order to obtain solutions of equation (9), we have to
particularize the system. We restricted our study to solutions
of the time-dependent Schrödinger equation with fixed energy

ψ(�x, t) = e−iEt ψE (�x), (10)

where E and ψE (�x) are the eigenvalue and eigenfunction of
the time-independent Schrödinger equation. We assume one-
particle Hamiltonians with central potentials that tend to zero
at infinity. Then, for central potentials we can use the reduced
radial Schrödinger equation for l-waves

HluE,l(r) = E uE,l(r), (11)

where

Hl = −1

2

d2

dr2
+ l(l + 1)

2r2
+ V(r) and

ψE (�x) = uE,l(r)

r
Yl,m(�) , (12)

where Yl,m(�) are the spherical harmonics [22].
Resonant states obey non-Hermitian Siegert boundary

conditions [11], uE,l(r) ∼ eikr for r → ∞, where k = √
2E.

Siegert states are non normalizable, so they do not belong to the
Hilbert space and their complex eigenvalues E = E−i�/2 are
interpreted as energies E and inverse lifetimes � of metastable
resonant states.

By symmetry, the solution of equation (7) for the volume
�(t) is a sphere of radius R(t), �(t) = B(R(t)), with the
initial condition R0 = R(t = 0). In this case, equation (9)
gives the evolution of R(t)

Ṙ(t) = Im

(
∂ruE,l(r)

uE,l(r)

)∣∣∣∣
r=R(t)

. (13)

The right-hand side of this equation does not depend explicitly
on t and the formal solution is

t =
∫ R(t)

R(0)

dr

Im
(

∂ruE,l (r)
uE,l (r)

) . (14)

Even the resonant-state functions are not square-
integrable; the initial conditions for NB fix the arbitrary
normalization constant

NB(R0 )(0) =
∫

|ψ(�x, 0)|2 d3x =
∫ R0

0
|uE,l(r)|2 dr = 1 .

(15)

With this condition, the expression for NB(R(t))(t) takes
the form

NB(R(t))(t) = e−�t
∫ R(t)

0
dr|uE,l (r)|2 = 1 (16)

and the derivative with respect to t gives

� = |uE,l(R(t))|2∫ R(t)
0 dr|uE,l (r)|2

Ṙ(t) . (17)

Combining this equation with equation (13) we obtain

� = Im(u∗
E,l(R(t))∂ruE,l(r)|r=R(t))∫ R(t)

0 dr|uE,l (r)|2
. (18)

This simple expression for � is not convenient for numerical
calculation with real basis sets. With this in view, we write the
explicit expression for the asymptotic behavior of the wave
function

uE,l(r) = C eikr vl(k, r), (19)

where C is a normalization constant given by equation (15).
Equation (19) in equation (18) gives

� =
(

Im

{
i k + ∂rvl(k, r)

vl(k, r)

∣∣∣∣
r=R(t)

})
|uE,l(R(t))|2∫ R(t)

0 dr|uE,l (r)|2
.

(20)

2
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By definition k2 = 2E = 2E − i�, which gives

Im(i k) = Re(k) =
⎡
⎣
√
E2 +

(
�

2

)2

+ E

⎤
⎦

1/2

. (21)

Finally, using equation (21) in equation (20), we arrive at
the expression

� =

⎛
⎜⎝
⎡
⎣E +

√
E2 +

(
�

2

)2
⎤
⎦

1
2

+ Im

(
d
dr vl(k, r)

vl(k, r)

)∣∣∣∣∣
r=R(t)

⎞
⎟⎠

× |uE,l(R(t))|2∫ R(t)
0 dr|uE,l (r)|2

. (22)

For the important case treated in [8, 9] of potentials with
a finite support,

V(r) =
{

V (r) if r < r0

0 if r > r0
, (23)

we have an explicit expression of v for l-waves, valid for r > r0

vl(k, r) =
l∑

j=0

(−1) j (l + j)!

j!(l − j)!

1

(2ikr) j
. (24)

In particular, for s-waves l = 0, v0(k, r) = 1; then
equation (22) reduces to a linear relation for �2, which gives

� =
⎡
⎣2 E +

(
|uE,0(R(t))|2

2
∫ R(t)

0 dr|uE,0(r)|2

)2
⎤
⎦

1/2

× |uE,0(R(t))|2∫ R(t)
0 dr|uE,0(r)|2

. (25)

Equation (22) and, for l = 0, equation (25) relate �

with real magnitudes, E and
∣∣uE,l(R)

∣∣2. This fact makes these
equations useful tools to calculate � using square-integrable
real basis sets, as we show in the next section.

3. The Ritz-variational method and resonances:
numerical expansions

In this section we use equations (22) and (25) to calculate the
imaginary part of the energy of a resonant state, applying the
Ritz-variational method with real square-integrable basis sets.

We exploit three facts of the variational expansion.

(i) There are several accurate methods to calculate the real
part of the eigenvalue, or energy, E , of a resonant state.

(ii) The variational method gives good approximations to
the exact (non-normalizable) densities ρ(r) where the
resonant states are localized (see figure 1).

(iii) Equation (22) involves just real quantities that could be
evaluated with Ritz-variational wave functions.

Even equations (22) and (25) are valid for R � r0

because (see item (ii)) in the numerical calculations we take
R = R0 = r0 and then

∫ R0

0 dr
∣∣uE,l (r)

∣∣2 = 1.

3.1. l = 0

We begin with the simple case of s-waves, l = 0.
For a clear notation, we will omit the subindexes E and

l = 0, then u(r) for an arbitrary potential V (r) has the form

u(r) =
{

u<(r) if r < r0

u<(r0) eik(r−r0 ) if r > r0
. (26)

Then, in this case equation (25) takes the form

� =
[

2 E +
( |u<(r0)|2

2

)2
]1/2

|u<(r0)|2 . (27)

Equation (27) involves two real quantities, |u<(r0)|2 and E ,
both quantities are well-approximated by applying the Ritz
method using a real square-integrable basis set truncated at
order N, {�i}N

1 . In this approximation, the Hamiltonian Hl is
replaced by a N × N Hermitian matrix [Hl]i, j = 〈�i|Hl |� j〉
and we obtain N eigenvalues En and eigenvectors �a(n). The
corresponding orthonormal eigenfunctions are

ψ(N)
n (r) =

N∑
i=1

a(n)
i �i(r);

N∑
i=1

(
a(n)

i

)2 = 1 ; n = 1, . . . , N . (28)

In particular, we have used the double-orthogonality
method (DO) [20] in order to calculate the real part of the
resonant energy E (N) and the variational square-integrable
approximation for the resonant wave function u(N)(r). This
method assumes that the potential depends on a parameter λ,
and when λ is varied on an interval [λL, λR] a given eigenvalue
n0 crosses the resonant energy value at λn0 , as illustrated in
figure 2. The method uses the fact that in both sides of the
interval, λL and λR, the n0 eigenvalues and eigenvectors in the
left and in the right of the avoiding-crossing zone correspond
to different states of the quasi-continuum and the resonant
state is orthogonal to both of them. We define the double-
orthogonality function

Dn(λ) = |〈ψn(λL), ψn(λ)〉|2
+|〈ψn(λR), ψn(λ)〉|2, for λL < λ < λR. (29)

Because the eigenfunctions are normalized, 0 � Dn(λ) � 2.
For a given eigenvalue n0, we define the localization of the
resonance λn0 as the value of λ where Dn0 (λ) reaches its
minimum, that is, where the eigenfunction has a minimum
projection onto the quasi-continuum states, as shown in
figures 3 and 6. This method has the advantage over other
stabilization methods in that we only have to solve the
variational problem once. The price we pay is that λn is also
an output of the method and we cannot choose it arbitrarily.
The best approximation of the resonance is defined as

λn0 = min
λε[λL,λR]

Dn0 (λ); E (λn0 ) = En0 (λn0 ). (30)

Once we determine the optimal λn0 , its eigenfunction
ψ(N)

n0
(r) [20] together with the normalization condition

equation (15) give

3
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Figure 1. ρ(r) for a l = 0 resonant state; exact (black line) and Ritz-DO approximations with N = 100 (red line) of the potential from
equation (34). (a) Global view, (b) region 0 � r � r0 = 6, where the resonant state is localized and (c) the exterior region r � r0 = 6, where
the resonance diverges and the variational expansion is a stationary wave.

0 1 2 3 4
λ

-0.06

-0.04

-0.02

0
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E
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λ
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-0.02

0
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E
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(a) (b)

Figure 2. (a) The first 30 eigenvalues of the N = 100 Hamiltonian matrix of the l = 0 block of the potential equation (34) as a function of
the barrier height λ. (b) Same as (a) with exact (green line) and approximate (blue dots) energies of the resonant state.

u(N)(r) = ψ(N)
n0

(r)∫ r0

0

∣∣ψ(N)
n0 (r)

∣∣2 dr

=
∑N

i=1 a(N)
i �i(r)√∑N

i, j=1 a(N)
i a(N)

j Ii, j(r0)

, (31)

where

Ii, j(R) =
∫ R

0
�m(r)�n(r) dr. (32)

Then, from equation (27) we obtain for �(N)

�(N) =
(
ψ(N)

n0
(r0)
)2∑N

i, j=1 a(N)
i a(N)

j Ii, j(r0)

×
⎡
⎣
( (

ψ(N)
n0

(r0)
)2

2
∑N

i, j=1 a(N)
i a(N)

j Ii, j(r0)

)2

+ 2 E

⎤
⎦

1/2

. (33)

As a particular case, we calculated the resonant states for
a problem with an exact solution, the well+barrier potential
[23]

V(r) =
{−V0 if r < �

+λ if � < r < r0
, (34)

where all the parameters are positive. The exact wave functions
are different combinations of exponential functions in each
sector, with continuous logarithm derivatives at r = � and
r = r0. The exact energies for bound, virtual and resonant

0 2 4 6 8
λ

0

0.25

0.5

0.75

1

1.25

D
n

0 2 4 6 8
0

0.5

1

Figure 3. Dn for the l = 0 block of the potential equation (34) as a
function of the barrier height λ for N = 100 and n = 2, . . . , 30. The
minimum of each curve is defined as the localization of the resonant
state.
states are given as solutions of three different transcendental
algebraic equations, which are obtained by applying the
corresponding boundary condition at r = r0 [23].

The calculations were done as a function of the barrier
height λ, with fixed values of V0 = 0.15, � = 5 and r0 = 6.
A convenient orthonormal basis set is given by

�i(r) = 1√
(i + 1)(i + 2)

e−r/2L(2)
i (r); i = 1, . . . , N ,

(35)

where L(2)
i (r) is the Laguerre polynomial of degree i and order

2 [24].
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Figure 4. Exact (red line), N = 100 (turquoise dots) and N = 500
(black squares) values of � against the barrier height λ for the l = 0
block of the potential equation (34).

0 2 4
λ

-0.06

-0.04

-0.02

0

0.02

0.04

E
n

0 2 4

0

Figure 5. The first 30 eigenvalues of the N = 100 Hamiltonian
matrix of the l = 1 block of the potential equation (34) as a function
of the barrier height λ. The approximate energies of the resonant
state calculated with DO are also shown (blue dots).

In figure 2(a) we show the first 30 eigenvalues given by
the Ritz method with N = 100. In figure 2(b) we add the
exact resonant energy curve and the values calculated with the
DOn functions, which are shown in figure 3 for N = 100 and
n = 2, . . . , 30. Once the energy was obtained, the width � of
the resonance is calculated using equation (33). In figure 4 we
show �(λn) for two different sizes of the basis set: N = 100,
for n = 2, . . . , 30 and N = 500, for n = 2, . . . , 140. Our data
show an excellent agreement with the exact curve �(λ), that
is also included in the figure.

3.2. l = 1

From equation (24), the function vl(k, r) for p-waves takes the
form

v1(k, r0) = 1 + i

kr0
. (36)

In this case, it is convenient to re-write equation (22) as a
function of x ≡ Im(k):

x3 +
(

1

r0
+ |u(r0)|2

2

)
x2 +

(
E + 1

2r2
0

+ |u(r0)|2
2r0

)
x

+ E |u(r0)|2
2

= 0 . (37)

0.5 1 1.5
λ

0

0.25

0.5

0.75

1

1.25

D
n

0.5 1 1.5

Figure 6. Dn for the l = 1 block of the potential equation (34) as a
function of the barrier height λ for N = 100 and n = 2, . . . , 30. The
minimum of each curve is defined as the localization of the resonant
state.
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λ

0

0.0005

0.001

0.0015

Γ

0

0.0005

0.001

0.0015

Figure 7. Exact (red line), N = 100 (turquoise dots) and N = 500
(black squares) values of � against the barrier height λ for the l = 1
block of the potential equation (34).

The definition of resonance establishes that Im(k) > 0
and we have already proved for each case that we have studied
that equation (37) has a unique positive root. Finally � is
obtained from the definition of k as

� = −2 xp

√
2 E + x2

p , (38)

where xp is the positive root of equation (37).
We calculated the inverse lifetime � for a l = 1 resonant

state of the potential equation (34) as a function of the barrier
height λ, with fixed values of V0 = 0.3, � = 5 and r0 = 6.
In figure 5 we show the first 30 eigenvalues of the N = 100
p-block of the Hamiltonian matrix and the resonant energies
E calculated with the DO method. The curves Dn(λ) for
n = 2, . . . , 30 are shown in figure 6. Note the qualitative
differences between the DO curves for l = 0 and l = 1 in
figures 3 and 6 respectively. These differences are due to the
existence of a virtual state between the bound and the resonant
states for the l = 0 case, which is absent in the l = 1 case,
where the bound state is continued directly in a resonant state.

In figure 7 we show the exact curve � versus λ and the
approximate values obtained with two different basis set sizes:
N = 100, for n = 2, . . . , 40 and N = 500, for n = 2, . . . , 200.
As in the case with zero angular momentum, we obtain an
excellent agreement between exact and approximate results.
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4. Conclusions

In this work we used a probabilistic interpretation of resonant
(Siegert) states based on the conservation of the number
of particles inside a time-dependent volume [8–10]. The
advantage of the probabilistic interpretation of resonant states
is that it is possible to work with Siegert states in a similar
way to bound states, by calculating probabilities, expectation
values, etc.

In particular, we obtain the exact equation (22), which
reduces to equation (25) and equation (37) for l = 0 and
l = 1 respectively. These equations relate the inverse lifetime
with other real magnitudes, the energy and the density of a
resonance. In previous papers, once the energy of a resonance
has been obtained by applying a real algebra stabilization-like
method, the resonance width is calculated by performing a
fitting of the density of states ([19] and references therein,
[20]). In the present work equation (22) gives a value for �

with the same degree of accuracy that we obtain for the energy
of the resonance E .

We emphasize the simplicity of the calculations compared
to other methods that use complex algebra to study resonant
states. We present our results for potentials with finite support,
but equation (22) is valid in general, and the calculation of �

could be corrected by a systematic perturbative expansion.
An open question is how equation (22) could be

generalized for few-particle systems, where many channels
are present. We are working in this direction.
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