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Integrable Degenerate £-Models from 4d
Chern—Simons Theory

Joaquin Liniado® and Benoit Vicedo

Abstract. We present a general construction of integrable degenerate &-
models on a 2d manifold ¥ using the formalism of Costello and Ya-
mazaki based on 4d Chern-Simons theory on ¥ x CP'. We begin with a
physically motivated review of the mathematical results of Benini et al.
(Commun Math Phys 389(3):1417-1443, 2022. https://doi.org/10.1007/
$00220-021-04304-7) where a unifying 2d action was obtained from 4d
Chern—Simons theory which depends on a pair of 2d fields h and £ on
3 subject to a constraint and with £ depending rationally on the com-
plex coordinate on CP*. When the meromorphic 1-form w entering the
action of 4d Chern—Simons theory is required to have a double pole at
infinity, the constraint between h and £ was solved in Lacroix and Vicedo
(SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to ob-
tain integrable non-degenerate £-models. We extend the latter approach
to the most general setting of an arbitrary 1-form w and obtain integrable
degenerate £-models. To illustrate the procedure, we reproduce two well-
known examples of integrable degenerate £-models: the pseudo-dual of
the principal chiral model and the bi-Yang-Baxter o-model.

1. Introduction

Given the action for a 2d field theory, it is a difficult problem to decide whether
or not it is classically integrable. Indeed, proving a theory is integrable requires
showing, in particular, that the field equations of motion are equivalent to the
flatness equation for a 2d connection £ valued in some finite-dimensional Lie
algebra g and depending meromorphically on some auxiliary complex param-
eter. Unfortunately, there is no systematic procedure for finding such a Lax
connection when it exists.

In recent years, however, there has been tremendous progress towards
the problem of classifying 2d integrable field theories. In particular, Costello
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and Yamazaki proposed a general approach [3], based on earlier work in the
context of integrable spin chains [4-7], for constructing 2d integrable field
theories starting from 4d Chern—Simons theory. This approach, being rooted
in the Lagrangian formalism, provides an elegant way of computing the 2d
action for the integrable field theory as well as its Lax connection. It has been
extensively applied to reproduce many existing 2d integrable field theories and
also construct a wide variety of new ones [2,8-21]. See also [1,22-30] for further
developments in relation to 4d Chern—Simons theory.

It is important to note that establishing the complete integrability of a 2d
field theory also requires showing that the integrals of motion constructed out
of the Lax connection Poisson commute with one another, which necessitates
moving to the Hamiltonian formalism. A general approach for constructing
classical 2d integrable field theories directly in the Hamiltonian formalism was
proposed in [31], and further developed in [32,33], by starting from affine
Gaudin models. It was shown in [34] by performing a Hamiltonian analysis of
4d Chern—Simons theory (see also [9] for the Zs- and Z4-equivariant settings in
the context of the A-model) that the formalisms of [3] and [31] are intimately
related. In particular, all the 2d integrable field theories constructed from 4d
Chern—-Simons theory are integrable in this stronger sense.

The action of 4d Chern—Simons theory is specified by a choice of mero-
morphic 1-form w on CP! (one could also consider higher genus Riemann
surfaces [3] but in this article we focus on the Riemann sphere). Different 2d
integrable field theories arise from different choices of w and various other data
to be reviewed in Sect.2. The case when w has at most double poles was stud-
ied in detail in [8], where a very simple ‘unifying’ 2d action was derived for
all integrable field theories belonging to this class of meromorphic 1-forms. A
generalisation of this ‘unifying’ 2d action for arbitrary w was then obtained in
[1], where a different perspective on the passage from 4d Chern—Simons theory
to 2d integrable field theory was also advocated.

In order to write the ‘unifying’ 2d actions of [8] or [1] in terms of the field
of the 2d integrable field theory alone, one needs to solve a certain constraint
relating this field to the Lax connection. A very general class of solutions to
this constraint was constructed in [2] when w has arbitrary poles and zeroes
in the complex plane but a double pole at infinity. This technical assumption
was required in order to fix some of the gauge invariance of 4d Chern—Simons
theory and as a result remove any constant term from the Lax connection,
as we recall at the start of Sect.3. It was also shown in [2] that all of the
2d integrable field theories arising from such solutions of the constraint are
described by integrable non-degenerate £-models.

Non-degenerate £-models were introduced by Kliméik and Severa in [35—
37] as o-models providing a natural setting for describing a non-Abelian gen-
eralisation of T-duality, known as Poisson—Lie T-duality. Even though the
generic non-degenerate £-model is not integrable, it turns out that many in-
teresting examples were found to be integrable [38—41]. A simple condition was
also formulated on the data of the non-degenerate £-model which ensures it is
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integrable [42]. Of course, the data of the integrable non-degenerate £-models
constructed in [2] all satisfy this condition.

A generalisation of non-degenerate £-models, known as degenerate &-
models or dressing cosets, was also introduced by Kliméfk and Severa in [37).
Whereas the non-degenerate £-model can be described as a o-model on a
certain quotient space K \ D where K is an maximal isotropic subgroup of
a Lie group D, the degenerate £-model is a o-model on a double quotient
K\ D/ F where F is another isotropic subgroup of D. It was recently shown
in [43] that a certain integrable o-model that was constructed in [44] provides
an example of an integrable degenerate £-model. Very recently, conditions on
the degenerate £-model data ensuring its integrability, in the Hamiltonian
sense recalled above, were also given in [45] and a family of new integrable
degenerate £-models were constructed, including the pseudo-dual chiral model
and its multifield generalisations.

The purpose of this article is to extend the construction of [2] to the
most general setting of an arbitrary meromorphic 1-form w. In particular, we
drop the technical assumption made in [2] that w is required to have a double
pole at infinity. We show that the solutions of the constraint equation from [1]
which we construct by generalising the approach of [2] all give rise to integrable
degenerate £-models. Just as in [2], the Lie group D is determined by the pole
structure of w and the maximal isotropic subgroup K C D is determined by
the choice of boundary condition imposed on the Chern—Simons field at the
collection of poles of w. On the other hand, the isotropic subgroup F', which
is specific to the present case, is a remnant of the gauge symmetry of the 4d
Chern—Simons theory under the Lie group G and is given by the image of the
diagonal embedding G — D.

The plan of the paper is as follows.

In Sect.2, we review the alternative, less conventional approach of [1] for
extracting the action of a 2d integrable field theory from the 4d Chern—Simons
theory of Costello and Yamazaki [3]. One advantage of this approach is that
it makes the passage from 4d to 2d more direct, with the field i of the 2d
theory being introduced along surface defects in the 4d theory to ensure gauge
invariance.

In Sect.3, we generalise the approach of [2] for solving a constraint be-
tween the 2d field h and the 4d gauge field appearing in the construction of
[1]. More precisely, we do away with the technical requirement in [2] that the
1-form w in the 4d Chern—Simons action should have a double pole at infinity.
Starting from a general meromorphic 1-form w, the resulting 2d integrable field
theories are degenerate £-models.

In Sect.4, we give two detailed examples of the construction from Sect.3.
Namely, we apply the general formalism to recover the pseudo-dual of the prin-
cipal chiral model, or pseudo-chiral model for short, of Zakharov and Mikhailov
[46] and the bi-Yang-Baxter o-model proposed by Kliméik in [47].
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2. A Review on 4d Chern—Simons and 2d IFT

In this section, we begin by reviewing the correspondence between 4d Chern—
Simons theory and 2d integrable field theories, proposed by Costello and Ya-
mazaki in [3]. We will, however, follow the approach advocated in [1] which
puts special emphasis on the principle of gauge invariance. In this approach,
the 4d Chern—Simons field A is coupled to additional degrees of freedom, the
so-called edge modes, living on certain surface defects. This is to ensure the
full gauge invariance of the theory. The 2d integrable field theory is then seen
to emerge in a particular gauge by going partly on-shell. Although the main
ideas of [1] are intrinsically physical, the constructions rely heavily on methods
of homotopical analysis and the theory of groupoids. So the purpose of this
section is to review the key steps of the approach of [1] using a language more
familiar to theoretical physicists.

2.1. 4d Chern—Simons Theory

Let X := ¥ x CP! where ¥ denotes a 2d manifold which will eventually
correspond to the space-time of the 2d integrable field theory. We take 3 = R?2
or R x S! with coordinates (1, 7).

Let G be a real, simply connected Lie group with Lie algebra g. Let
g® := g ®r C be the complexification of g and let G¢ denote the correspond-
ing complex Lie group. We fix a non-degenerate, symmetric and ad-invariant
bilinear form (-,-) : g x g — R and denote by (-,-) : g© x g© — C its complex
linear extension to g©.

2.1.1. The Meromorphic 1-Form. The key ingredient entering the definition
of the 4d variant of Chern—Simons theory [3] is a choice of meromorphic 1-form
w on CP!.

We denote by Iz C CP! the set of poles of w and by n, the order of the
pole z € IIz. Let Iz’ := 12\ {00} be the subset of finite poles of w. The reason
for this notation will be justified shortly. Fixing a coordinate z on C c CP?,
we can write w explicitly as

Nge—1 EI Moo —1
w= ( Z Z m - Z Ezozp1> dz =: p(2)dz, (2.1)

zellz’ p=0 p=1

for some £7 € C which we call levels. We impose reality conditions on each = €

IIz and its corresponding levels by requiring that ¢(z) = ¢(z). In particular,
introducing the subset of real poles z, := z/ U {co0}, where z, := [Iz’ N R,
the associated levels are real, i.e. £; € R for z € z,. The remaining poles come
in complex conjugate pairs, and we define z. := {z € IIz|Sz > 0} so that
[z = z, U 2z, U Z.. For every x € z. U Z., we have nz = n, and E = E'g
for p=0,...,n, — 1. It is convenient to introduce the subset z := z, Ll z. of
independent poles, namely which are independent under complex conjugation.
Finally, we introduce the subset 2’ := z/ U z. C z of finite independent poles in

z. We let II := {id, t} denote the group Z, generated by the element t acting by
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complex conjugation on CP!. The notation Iz (resp. I12’) introduced above
then corresponds to the orbit of the set z (resp. z’) under II.

We will also be interested in the set of zeroes of w which can be similarly
decomposed as ¢, U €. U ¢, with ¢, C R the subset of real zeroes and ¢, C
{y € C|Sy > 0} the subset of complex zeroes with positive imaginary part.
Moreover, we introduce the set ¢ := ¢, U {. of independent zeroes and let
m, € Z>1 denote the order of the zero y € ¢. For y € ¢, w also has a zero of
order my := m,, at § € (.. The set of all zeroes of w is II¢ and the set of all
finite zeroes is II¢.

The total number of poles of w (counting multiplicities) is related to the
total number of zeroes of w (counting multiplicities) by

S o= > my+2 (2.2)

zellz yell¢

We will assume that the total number of poles of w (counting multiplicities)
is even, so that the total number of zeroes of w (counting multiplicities) also
is by (2.2).

We summarise the notations for the different subsets of poles and zeroes
of w introduced above in the tables below.

Subsets of poles of w

Iz All

Iz’ Finite

Zr Real

zl Finite and real

Zc Positive imaginary part
z Independent

z’ Finite and independent

Subsets of zeroes of w

I1¢ All

¢’ Finite

¢y Real

¢ Finite and real

¢e Positive imaginary part
¢ Independent

¢’ Finite and independent

Following [2], to account for the fact that poles and zeroes of w have
multiplicities, it will sometimes be convenient to use the notation [z] for the
set of pairs [z,p] with € z and p = 0,...,n, — 1, and similarly ({) for the
set of pairs (y,q) with y € ¢ and ¢ =0, ..., m, — 1. We will use other similar
notations, such as [[Iz] and (II¢) for the set of all poles and all zeroes of w
with multiplicities included, respectively.

Finally, we shall also often make use of the local coordinates £, := 2z —
at any finite pole z € 2’ or finite zero € ¢’ and the local coordinate at infinity
£ = 27V if 0o € z or 0o € ¢. The expansion of the meromorphic 1-form at
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each pole x € z can then be written uniformly as

Ngy—1
Low =Y L& PTNE,. (2.3)

p=0
For the point at infinity, we have used the fact that 2P~l'dz = —¢ P~ 1dé.,
for any p € Z and introduced the additional level £3° := —3 ., £f for

convenience.

2.1.2. The 4d Action and Space of Fields. Given a choice of meromorphic
1-form w as described in §2.1.1, the 4d Chern—Simons action for a g-valued
1-form A on X is given by [3]

Sua(A) = i/ w A CS(A), (2.4)
am [
where CS(A) := (4,dA + 3[A, A]) denotes the Chern—Simons 3-form.

Strictly speaking, the action (2.4) only makes sense when w has at most
simple poles, i.e. when n, = 1 for all € z. Indeed, when w has higher-order
poles, i.e. n, > 1 for some x € z, the 4-form w A CS(A) is not locally integrable
near the surface defects ¥, := ¥ x {z} with n, > 1 and therefore needs to
be suitably regularised [1, §3.1]. In what follows we will not need the precise
form of the regularised action, only its variation under gauge transformations
to be discussed shortly, so we refer to [1, §3.1], see also [48], for details of this
regularisation procedure. We only point out that the regularisation is ‘local’
in the sense that it consists in modifying the 4-form w A CS(A) only locally
in small neighbourhoods of the surface defects ¥ x {z} for each pole = € z of
w. We will keep denoting the action as S4q(A) in the presence of higher-order
poles in w.

Note that the dz-component of A drops out from the action (2.4) due
to the presence of the meromorphic 1-form w = ¢(z)dz. Another way to say
this is that (2.4) is trivially invariant under translations A — A + xdz for any
x € C(X,g) and we can fix this invariance by simply focussing on gauge
fields with no dz-component. This remains true when w has higher-order poles
[1]. From now on, we will therefore always focus on fields of the form

A=A dr+ A,do + Azdz. (2.5)

On the other hand, it is too restrictive to consider only smooth g-valued
1-forms A, namely (2.5) where the components A,, A, and A; are smooth
g-valued functions on X. Indeed, one can allow these component functions to
be singular at the zeroes of w provided that the Lagrangian w A CS(A), or its
regularised version in the case when w has higher-order poles, remains locally
integrable there. More precisely, let us fix a partition { = ¢, U {_ of the
independent zeroes of w such that Zy€C+ my = Zyec, my. In particular, if
all the zeroes of w are simple, which will be the case in all our examples, then
the latter condition means [II¢ | = |[II¢_|. We will take the space of fields of
4d Chern—Simons theory to consist of g-valued 1-forms as in (2.5) such that:

(i) Ay := A, £ A, has singularities at ¥ x ¢, and is smooth elsewhere,
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(i) A; is smooth everywhere,
(#4i) the 4-form w A CS(A) is locally integrable near 3 x (.

Condition (#i7) puts constraints on the type of singularities allowed in condition
(i) so that the action is well defined. On the other hand, condition (i) is
consistent with the gauge fixing condition A; = 0 which we shall impose
later on in Sect. 2.3 in order to describe integrable field theories, once we
have established the gauge invariance of 4d Chern—Simons theory in the next
section.

2.2. Gauge Invariance

Having defined the 4d Chern—Simons action in Sect. 2.1, the next step in the
approach of [1] is to study its gauge invariance. We therefore consider the
variation of the 4d Chern—Simons action under gauge transformations

Ar—9A:=gAg~t —dgg™! (2.6)

for g € C°(X,G) an arbitrary smooth G-valued function. Notice once again,
as in Sect. 2.1.2, that the dz-component of the term dgg~! will automatically
drop out from the action due to the presence of the 1-form w, so that the gauge
transformation (2.6) effectively acts on connections of the form (2.5).

In the case when w has only simple poles, and the action takes the form
(2.4), we easily see that

S1a(9A) = S4a(A) + %/ w A d(g~'dg, A)
T JXx

i _ U
+Z/ w A (g'dg,[g""dg, g7 "dg)) . (2.7)
T JX

The 4d Chern—Simons action is thus manifestly not gauge invariant. It is in-
structive to compare (2.7) with the gauge variation of the usual 3d Chern—
Simons action. In particular, the first additional term generated on the right-
hand side of (2.7) is not the integral of an exact differential precisely due to
the presence of the 1-form w. In fact, neither of the two additional terms in
(2.7) will vanish in general. Therefore, obtaining a better understanding of
these two terms is key to being able to promote 4d Chern—Simons theory to a
gauge invariant theory.

Before stating the general result from [1], it is helpful to first explain the
result in the simplest case when w has only simple poles. It can be shown, see
[3,8], that the first additional term on the right-hand side of (2.7) localises on
the surface defects X, = ¥ x {«}. Explicitly, if we suppose for simplicity that
all the poles are real, i.e. z = z,, then we have

i 1
— A d{gTldg, A) = —= ) & “ldg, A)ls .
i o h A ) =5 306 [ g,
In turn, the right-hand side of the above can be rewritten as a single integral
over ¥ as follows. The collection (Als,,).e» of the restrictions of A € Q(X, g)
to each surface defect 3, x € z defines a g-valued 1-form on the disjoint union
of surface defects Li,¢, ... Alternatively, this can also be thought of as defining
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a l-form on ¥ but valued in the direct product of Lie algebras 0 = []
Moreover, we have a map j* : Q1(X, g) — Q1(%,0) given by j° A4 = (4], )ve--
Likewise, the collection (g|s, )zecz of the restrictions of g € C*°(X,G) to the
surface defects defines a smooth function on ¥ valued in the direct product
Lie group D = [],, G, and we have a map 5 : C°(X,G) — C>*(%,D)
given by 7°g = (g|s,)scz. Defining the bilinear form ({-,-)s : 0 x 0 — R
as ((Uz)zez, (Va)eez)o = D pes €6 (Us,Ve), we may finally rewrite the first
additional term on the right-hand side of (2.7) as

° / w A digldg, A) = / (G°9) G g) 5 A, (28)

The second additional term in (2.7) may similarly be rewritten as a WZ-term
for an extension of the D-valued field j*g € C*°(X, D) to X x [0,1], see [3,8].

2.2.1. Defect Lie Algebra and Lie Group. When w has higher-order poles,
it was shown in [1] that the above rewriting of the gauge variation (2.7) of
the 4d Chern—Simons action goes through with the obvious modifications.
In particular, instead of just restricting the g-valued 1-form A on X to each
surface defect ¥, one should keep the first n, —1 orders in the Taylor expansion
of A near ¥,. Correspondingly, the direct product Lie algebra 0 and Lie group
D need to be replaced by the defect Lie algebra and Lie group [1,2].

Let 7, := Rle,]/(el=) for each real pole x € z, and 7, := Cle,]/(el*)
for each complex pole = € z.. We define the defect Lie algebra as the real Lie
algebra

=[JooreZ x [ ¢“®c T, (2.9)
rEz, TEZc
where g€ ®c 7, is regarded as a Lie algebra over R. The Lie algebra relations
of 0 are given explicitly as

[u®el, v 55] = Gpylu,v] @ T4

where 219 = ( for p+ g > n,. The truncated polynomial Lie algebras g ®g 7,
and g© ®c T, are sometimes referred to as Takiff algebras and we will refer to
the integer p as the Takiff degree of the element u ® €?. Note that

dimd = dimg »  n, +2dimg »  n, =dimg Y  n,. (2.10)
TEZy TEZ. xellz
Recall form Sect. 2.1.1 that we are assuming the total number of poles of w
(counting multiplicities) to be even, which implies by (2.10) that dim d is even.
We define a non-degenerate invariant symmetric bilinear form
{;Do:oxd—R (2.11a)

with respect to which all the factors in (2.9) are orthogonal, for any z,y € 2z,
we set

<<u®5§,v®sq>> Oy Uyt q{u,v), (2.11b)
where £7 = 0 for all p > n;, and for any z,y € z. we set

{(u@el v €g>>a = Oy (05, (u,v) + 05, (Tu, V). (2.11c)
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In the case when all poles are real and simple, i.e. z = 2z, and n, = 1 for
all z € z, the defect Lie algebra 0 reduces to the direct product Lie algebra
[I.c. ¢ considered above in the motivating example.

An important subalgebra of the defect Lie algebra 9 which will play a cen-
tral role in the description of degenerate £-models is the diagonal subalgebra.
To introduce it, we define the diagonal map

A:g— g*l*l co, ur— (U®ed) ez (2.12)

Note that at complex points x € z. the defect Lie algebra contains a copy of
the real Lie algebra g in Takiff degree 0 so that g®/#| is indeed a subalgebra of
0. The image of (2.12) then defines the diagonal subalgebra § :=im A C 0.

One can also introduce a real Lie group with Lie algebra 0 which we will
call the defect Lie group and denote by D. As a set this is given by the direct
product

D= H (Gx(garT))) x H (G x (°®c T))), (2.13)
rEZy TEZc
where 7] := ,R[e;]/(el=) for x € 2z, and T := ,Cle,]/(el=) for x € z..

However, the general definition of the Lie group structure on D, which can be
found in [49], is quite involved so we will not include it here to avoid clutter.
In practice, we will only require the group law on D when discussing specific
examples in Sect. 4, where the corresponding expressions will be explicitly
stated. Finally, note that we have the diagonal embedding A : G — G*|*l ¢ D
corresponding to (2.12) at the group level.

Just as in the above motivating example, the purpose of introducing the
defect Lie algebra is that we then have a map [1,2]

Ngy—1

§* Ql(X,g) — Ql(z,a), Ar— ( Z E(a&A)‘EI ®€§) (2.14)
p=0 : TEZ

where (3¢ A)|s, € Q'(%, g) denotes the pullback of ¢ A to each surface defect
Y,. In other words, j* sends a g-valued 1-form A on X to the first n, terms in
its Taylor expansion at each surface defect ¥, for x € z. Similarly, for smooth
G-valued functions on X we have a map

§* C®(X,G) — C(3, D)

Nnge—1
. 2l )
gr—3i'g= <glzmv > (987 (9e.997 M)y, ®55>

p=1 p: ’ €z

(2.15)

This definition differs from the one given in [1] which applies to matrix Lie
groups.

With the above definitions in place, we are now in a position to state one
of the main results of [1]. Namely, for an arbitrary meromorphic 1-form w as
in (2.1), the variation (2.7) of the (regularised) 4d Chern—Simons action under
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an arbitrary gauge transformation (2.6) can be expressed as

S1a(4) = Sia(4) — 5 [(G0)71AG"0). 5" A) - 31", (210)

where we have introduced the standard WZ-term for a field h € C* (%, D),

namely

e = -1 / (b R R (2.17)
X

where I := [0,1] and h € C* (S x I, D) is any smooth extension of h to
S x I with the property that h = h near ¥ x {0} C £ x I and h = id near
¥ x {1} € £ x I. Of course, the second term on the right-hand side in (2.16)
coincides with (2.8) when w has only simple poles. The virtue of the result
(2.16) is that it holds for any meromorphic 1-form w with poles of arbitrary
order.

2.2.2. Isotropy and Edge Modes. As already anticipated, it is now clear from
(2.16) that the 4d Chern—Simons action is not gauge invariant. However, gauge
invariance of the theory may still be achieved upon imposing boundary condi-
tions on both j* A and j*¢ at the surface defects, in order for the two additional
terms appearing in (2.16) to vanish.

Recall that a Lie subalgebra £ C 0 is said to be isotropic with respect to
(2.11) if {(x,y)» = 0 for every x,y € ¢. Given a subgroup K C D whose Lie
algebra € C 0 is isotropic with respect to (-, ))», we can impose the boundary
conditions

JFA€QNZ,8)  and  j*g€ C™(%,K) (2.18)
on both the field A and the gauge transformation parameter g, so that in par-
ticular (5°¢)~'d(5%g) € Q'(X,€). The action then becomes manifestly gauge
invariant since the last two terms on the right-hand side of (2.16) vanish due
to isotropy.

There are, however, two important related issues with the boundary con-
ditions in (2.18). Firstly, the condition imposed on A is a strict boundary
condition which equates 7* A, the restriction of A to the surface defects, with
a t-valued gauge field on ¥. But in a gauge theory one should only compare
gauge fields via gauge transformations and not via equalities. Secondly, the
condition imposed on ¢ restricts the set of allowed gauge transformations,
thereby partially breaking the gauge invariance we are trying to achieve. In
particular, the strict boundary condition imposed on A is preserved only by
these restricted gauge transformations. Therefore, strictly speaking, even upon
imposing boundary conditions, 4d Chern—Simons theory is not a fully gauge
invariant theory.

Now the role of gauge transformations is to identify physically indis-
tinguishable field configurations, by Kkilling would-be degrees of freedom. So
restricting the kind of gauge transformations we allow will resurrect some of
these degrees of freedom from the dead [50]. In particular, if we insist on estab-
lishing a fully gauge invariant theory then these resurrected degrees of freedom
must be included somehow.
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This brings us to the second main result of [1]. Both issues with the
boundary condition (2.18) can be resolved by introducing a new degree of
freedom living on the surface defects, namely a smooth D-valued field h €
C> (%, D) called the edge mode. It was shown in [1] that 4d Chern—Simons
theory with the boundary conditions (2.18) is equivalent to 4d Chern—Simons
theory coupled to the edge mode by introducing the extended action

1 . 1
S AN = Suld) = 5 [(ang Ay - s, (219)
b
together with the alternate boundary condition

hi*A) € QN2 ¥). (2.20)

That is, instead of imposing boundary conditions on A and g as in (2.18), we
only impose the boundary condition on A and only up to a gauge transforma-
tion by h.

One can verify, using (2.16), the Polyakov—Wiegmann identity [51] and
the invariance of the bilinear form, that both the extended action (2.19) and
the constraint (2.20) are invariant under the gauge transformation

A—9A, h— h(jg)"* (2.21)

with arbitrary g € C°°(X,G). Thus, we have defined a fully gauge invariant
theory, at the price of adding a new field.

Observe that if we restrict the edge mode h to take values in K then
we recover the original 4d Chern—Simons action together with the original
boundary conditions (2.18). More precisely, the extended action (2.19) enjoys
the additional symmetry

h— kh (2.22)

for arbitrary k& € C*°(X, K). The invariance of (2.19) under (2.22) can be
verified using the Polyakov—Wiegmann identity, the constraint (2.20) and the
isotropy of ¢. In other words, the degrees of freedom added can be described
by a smooth field on ¥ valued in the quotient K \ D.

2.3. 2d Integrable Field Theories

Although 4d Chern—Simons theory coupled to the edge mode as described
above is equivalent to the original 4d Chern—Simons theory with boundary
conditions (2.18), the advantage of the former is that it leads more naturally
to 2d integrable field theories. In particular, the field content of the latter
will correspond precisely to the edge mode degrees of freedom living on the
defect. Moreover, the Lax connection of the 2d integrable field theory will come
directly from the gauge field A of the 4d Chern—Simons theory in (2.5).

There are, however, two glaring issues with interpreting the gauge field
(2.5) as a Lax connection. The first is that A has a component along the dz
direction whereas a Lax connection should be a 1-form along ¥. The second
is that as it stands A is not meromorphic in the z-coordinate which we would
like to interpret as the spectral parameter of the Lax connection.

The first issue is easily resolved. Indeed, we can partially fix the gauge
invariance of (2.19) using the gauge fixing condition Az = 0 in order to get
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rid of the undesired dz-component. This is analogous to the axial gauge in
electrodynamics and Yang—Mills theories, where one of the component of the
gauge field is set to vanish. We will suggestively denote the gauge field A in
this gauge by the letter £. Note that there is a residual gauge symmetry (2.6)
by g € O (X, Q) satisfying d;g9~! = 0.

The second issue is more problematic. In order to resolve it, we will have
to go partly on-shell, which we turn to next.

2.3.1. Solving the Bulk Equations of Motion. The action (2.19) defines a four-
dimensional theory due to the presence of the ‘bulk’ term Syq(L) for the ‘bulk’
field £ = L.d7 + L,do. To obtain a two-dimensional theory, we will therefore
restrict to solutions of the bulk equations of motion. Specifically, varying the
action (2.19) with respect to both £ and h, subject to the constraint (2.20),
we find the bulk and boundary field equations of motion [1]

0:L=0 on X x (CP'\¢), (2.23a)
ds(* L)+ 3 57°L,5°L] =0 on %, (2.23b)

where ds: denotes the de Rham differential on X.

The bulk equation of motion (2.23a) expresses the fact that the compo-
nents of £ = £,d7 + L,do are holomorphic along CP! away from the set ¢ of
zeroes of w. However, recall from condition (4) in §2.1.2 that we allow the light-
cone components L = L, £+ L, of the gauge field to have singularities at the
subset of poles ¢, so long as the Lagrangian w A CS(L£) remained integrable
along each surface ¥ x {y} for y € {. We can therefore take the components
of L to be of the form

my—1 y7q) Moo —1 ( e
[ee) —+ c
E E Gyt + E LoV + L, (2.24a)
ye¢’ ¢=0

for u = 7,0, where the coefficient functions £j, € C*°(%, g), E,(Ly’q) e C>*(%,g)
for (y,q) € (¢,) and E,(;J’q) € C=(%,g%) for (y,q) € (¢.) are related by

LWD = ¢, L) (2.24b)

with €, = +1 for y € ¢.. Note that (2.24b) ensures that the light-cone compo-
nent £ only has poles in ¢, and not in ¢, as required by condition (i) from
Sect. 2.1.2. To see why singularities of the form (2.24) are allowed by condition
(4i7), consider the case when w has only simple poles so that the action takes
the form (2.4). The cubic term in the Chern—Simons 3-form drops out since £
only has legs along do and d7 so that the bulk Lagrangian reads

wACS(L) =wA ((Ly,0L_) —(L_,0L1)) Ado" Ado™. (2.25a)

It is then easy to see that this 4-form is locally finite near the surface ¥ x {y}
for each y € . Notice, in particular, that the condition (2.24b) is used here
to guarantee that the set of poles of L4 are disjoint so that, for instance,
the d-functions at the set ¢_ arising from d£_ are multiplied by poles in ¢ 4
coming from £ . Moreover, note that the singularities of the form (2.24a) are
also consistent with the cubic term in the Lagrangian before moving to the
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gauge A; = 0, i.e. when A; is nonzero but smooth as in condition (i¢) of 2.1.2,
namely

wA (A $[AA]) = —2w A (A, [AL, Ay AdzZ Adot Ado™. (2.25b)

The above remains true also when w has higher-order poles since the regular-
isation procedure, to make sense of the action in that case, only modifies the
Lagrangian locally near the surface defects ¥ x {«} for each = € z.

Gauge fields £ of the form (2.24a) satisfying the condition (2.24b) were
referred to in [1,2] as being admissible. More precisely, (2.24b) is the most nat-
ural solution of the admissibility conditions given there, cf. [1, Example 5.4]
and [2, § 3.5 & § 4.2]. The observation we made above is that the admissibil-
ity condition can be traced back to the 4d Chern—Simons Lagrangian as the
requirement that it be locally integrable. In fact, this new perspective on ad-
missible solutions of the bulk equations of motion (2.23a) leads to the following
observation which will be useful later.

Remark 2.1. The rational expression (2.24a), with poles of order m, at each
y € ¢, is not the most general one for which the bulk action is locally integrable.
Indeed, one could take poles of order m, + 1 at each y € ¢ while maintaining
the local integrability of the expression (2.25a) and also of (2.25b) before fixing
the gauge A; = 0. This is because both of the top forms in (2.25) are locally
integrable near a simple pole of the component [1, Lemma 2.1]. Note that this
is precisely why the 4d Chern—Simons action (2.4) was well defined in the case
when w has only simple poles. The reason we have kept the strength of the
poles in (2.24a) as they are is to ensure that the 2d action we end up with is
integrable, as we will see shortly.

Upon restricting the gauge field £ to be a solution of the bulk equation
of motion (2.23a) as in (2.24a), the bulk four-dimensional term in the action
(2.19) disappears and we are left with the two-dimensional action

1 _ - 1
Saa(C ) = =5 [ (7 1ah 5 L)o — 31V (2.26)
b
The equation of motion of this action is the boundary equation of motion
(2.23b). It was shown in [1, Proposition 5.6] that for admissible solutions of
the bulk equations of motion, the flatness equation (2.23b) for j*L lifts to a

flatness equation for £ itself, namely
dC+3[£,L£]=0 onX. (2.27)

Here, we can make use of the observation in Remark 2.1 by noting that the
argument in the proof of [1, Proposition 5.6] still applies if we increase the order
of one of the poles of £ with components (2.24a) by 1. In other words, although
the requirement that the action be well defined allows us to increase the order
of all the poles in £ by 1, the requirement that the boundary equations of
motion (2.23b) lift to the flatness of £ in (2.27), which ultimately ensures
integrability, only enables us to increase the order of one of the poles in £ by 1
while keeping the strength of all the other poles the same. We will see another
proof of this later in §3.3.
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Finally, recall that after removing the dz-component of the gauge field
the gauge symmetry (2.21) was restricted to those g € C*°(X, G) such that
0:99~ " = 0. And to preserve the pole structure of the meromorphic gauge field
L in (2.24a) we can restrict to g € C*°(3,G) which are independent of the
coordinate on CP?. It follows from (2.15) that for such gauge transformation
parameters we have j*g = A(g), where recall that A : G — G*I*I ¢ D is the
diagonal embedding.

2.3.2. The 2d Action. The two-dimensional action (2.26) which we obtained
from (2.19) by solving the bulk equations of motion in Sect. 2.3.1 should, of
course, be supplemented by the boundary condition given in (2.20). In other
words, the fields £ and h on which the action (2.26) depends are not indepen-
dent but instead are related by the constraint

"GUL) € QN(S.8). (2.28)

The final step for obtaining a two-dimensional integrable field theory is there-
fore to solve the constraint (2.28) to find an expression for £ in terms of h.

Indeed, suppose that we can find a unique solution £ = L(h) to the
constraint (2.28). In order to respect the gauge invariance (2.21) and (2.22)
we further assume that this solution is such that

3 L(khA(g)™) =29 (5L (h)) (2.29)

for every g € C*(E,G) and k € C(3, K). Note that the existence and
uniqueness of such a solution depend on the choice of Lagrangian subalgebra
£ C 0. One of the main results of [2] was to explicitly construct such solutions.
The resulting models were shown to coincide with integrable non-degenerate
E-models. In the remainder of this article, we will generalise the construction
of [2] to obtain a more general class of solutions to (2.28) leading to the class
of integrable degenerate £-models.

Given any solution of the boundary condition (2.28) satisfying the equiv-
ariance property (2.29), the action (2.26) reduces to a two-dimensional action
for the edge mode field h € C*° (X, D) alone given by

Saalh) == [ (7 ah g Lo — 3130, (2.30)

By virtue of the property (2.29), this action is invariant under the transfor-
mations

h — khA(g)™! (2.31)

for any k € C*°(X, K) and g € C*° (X, G). Moreover, the equations of motion
(2.27) which arose from the boundary equations of motion of the original 4d
Chern—Simons action now read

dL(h) + 3[L(R),L(R)] =0. (2.32)

In other words, the two-dimensional action (2.30) has an associated Lax con-
nection £(h) and therefore describes a two-dimensional integrable field theory.
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3. Obtaining Degenerate £-Models

The purpose of this section is to complete the passage from 4d Chern—Simons
theory to 2d integrable field theories. In particular, we will show how to ob-
tain integrable degenerate £-models. Since the details of this section are quite
technical, the reader interested in applying the construction may wish, on first
read, to skip to Sect. 4 where we present various examples of the procedure in
detail. They may then refer back to the present section for further details of
the construction. Before presenting these details, and in order to facilitate the
reading of this section, we begin by giving a brief outline of the main strategy.

As recalled in Sect. 2.3.2, the very last step in the approach of [1] for
passing from 4d Chern—Simons theory to 2d integrable field theories consists in
finding a solution of the constraint Eq. (2.28) which satisfies the transformation
property (2.29). Such solutions were constructed in [2] under the assumption
that w has a double pole at infinity. This technical assumption was used to fix
the gauge symmetry under F'. Specifically, under the assumption that n., = 2,
the component of the edge mode h € C*° (X, D) at infinity is a field on 3 valued
in the semi-direct product G x g. The latter can be brought to the identity by
using the F' symmetry and the component of the K symmetry associated with
the point at infinity, see [2, §3.6] for details. With the gauge symmetry under
F fixed in this way, the component at infinity of the constraint (2.28) forces
the constant term in the Lax connection to vanish (note that since w initially
has a pole at infinity, the Lax connection cannot have poles there). Therefore,
the Lax connections considered in [2] are of the special form

my—1 ,q)
- EC: 2} q+1 (3.1)
ye¢’ g

Moreover, the property (2.29) that the solution £ = L(h) is required to satisfy
boils down to 3*L(kh) = 7°L(h). And indeed, the solutions constructed in [2]
were shown to have this property and the resulting 2d integrable field theories
were shown to coincide with integrable non-degenerate £-models.

The main purpose of this section is to generalise the results of [2] to the
case of a generic 1-form w, as defined in Sect. 2.1.1. The key idea behind the
approach of [2] for solving (2.28) is to construct an involution £ : @ — 9 on
the defect Lie algebra with the property that

jz‘CT :5(jz£t7)a (32)

where we wrote j*L = j,L.dr + j,L,do in components. More precisely, the
property (3.2) was the one imposed in [2] but it will have to be adapted in the
present case, see (3.29). The property (3.2) was then used in [2] as the starting
point for solving the constraint (2.28).

In order to build such an involution & : 0 — 0 satisfying (3.2), observe
that the relationship between £, and L, is in fact very simple to describe in
terms of the coefficients of these rational functions (3.1). Indeed, recall that
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these are related by (2.24b), namely £7 W =€y LY where ey = %1 for each
y € €. The idea of [2] is then to build two 1somorphlsms

] Tt
0+ Rip (89 —— g©) (3.3)

from a certain space of rational functions Ry, (gC)H, where the components
(3.1) of the Lax connection live, to the defect Lie algebra d by Taylor expanding
at each x € z and to a vector space g(C/) by extracting the coefficients at each
pole y € ¢'.

If we do not fix the gauge symmetry by F, as was done in [2], then the
components of the Lax connection still have a constant term compared to (3.1)
and can in general also have a pole at infinity, cf. (2.24). In this section we
will adapt the construction of [2] summarised above to this case, in particular
defining suitable generalisations of the above isomorphisms (3.3) in §3.2 and

Sect. 3.3. These will then be used in §3.4 to build an involution &€ : 0 =9
which is symmetric with respect to the bilinear form on 0 introduced in §2.2.1.
Finally, we will use the latter in §3.5 to construct solutions of the constraint
(2.28) satisfying (2.29) and thereby obtain the action of integrable degenerate
E-models.

3.1. The Real Vector Space Ryy¢ (gc)n

Given a complex vector space V we let Rr¢ (V') denote the space of V-valued
rational functions with poles at each y € II¢ of order at most m,, the order of
the zero y of w. It will also be useful to define the subspace Ry, (V) C R (V)
of V-valued rational functions without constant term.

If V is equipped with an anti-linear involution 7 : V' — V then we can
define an action of IT on V by letting t € II act as 7. This then also lifts to an
action of IT on Ry¢ (V). We can also define an action of IT on Ry (V') by letting
t € IT act as the pullback by complex conjugation s : 2z — 2. We let Ry¢ (V)1
denote the real vector space of rational functions in Ry¢ (V') on which these two
actions coincide. We will also make use of the subspace Rﬁc(\/)H C Ry (V)
of such rational functions without constant term.

In what follows, bi-Yang-Baxterwe will either take V = g€ or V =
C>(%,g%), where the action of IT on the latter is induced from the action
of IT on g®. Explicitly, an element f € Rne (gc)n is a IT-equivariant g-valued
rational function of the form

Moo —1

=2 Z q+1+ D SR B

yell¢’ ¢=0

where f¢ € g, f¥9 € g for all (y,q) € (¢,) with ¢ = 0,...,m, — 1, and
f@9 € g€ for all (y,q) € (¢.) with ¢ =0,...,m, — 1 and f&D = 7 f¥:9),

The dimension of the real vector space Rii¢ (gC)H is given by

dim Ry (65)" = dimg( 3 my+ 1). (3.5)

y€ell¢
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The term dimg ZyEHC m, comes from counting the degrees of freedom in
the pole parts at each y € TI¢ of a generic rational function (3.4), see in
particular the second equality in (3.12) later. The additional dim g comes from
the constant term f€ in (3.4). An alternative way of counting the dimension
of R (gc)n is to consider instead the isomorphic space Rri¢ (gc)nw which
consists of IT-equivariant g®-valued meromorphic 1-forms with poles in Iz. Tts
dimension is then given by

dim R (g°)" = dimg( S .- 1), (3.6)

z€llz

where the term dimg ) ng comes from counting the degrees of freedom

zcllz
in the pole parts of fw for f € Rpe (gC)H at each x € Ilz and the additional
—dim g accounts for the fact that the sum of the residues of a meromorphic
1-form vanishes. Of course, the two expressions (3.5) and (3.6) coincide by
virtue of (2.2).

A Tl-equivariant g-valued rational function f € Ry (gC)H takes the form

-1

ZZ

yell¢’ q=0

f(v,q Moo —1

o T Z flooa) zatt, (3.7)

Note that the only difference with (3.4) is that the ‘constant’ term f¢ € g is

missing in (3.7). The constant rational functions in Ryy¢ (gc)n form a subspace
isomorphic to g and we have a direct sum decomposition

Ric (65)" = g+ Riye (6°)" (3.8)

given explicitly by writing a function f € R (gC)H as in (3.4), with the first

two sums defining the component in Ry, (gC)H, cf. (3.7), and the constant
term f¢ € g corresponding to the component in g.

It is useful to adjoin another copy of g to the space R (g‘c)n by consid-

ering the direct sum Riy¢ (gC)HEBg. It is important to note that this additional
copy of g is distinct from the copy of g already present in (3.8), representing
the constant term in the rational function. It follows from comparing (2.10)
with (3.6) that

dim (Rng @)@ g) — dimo. (3.9)

We define the symmetric bilinear form
1 I
(Do s (Bre (69" @ 9) x (Rue (6)" @9) — R (3.10a)
given for any f,g € Rr¢ (gC)H and u,v € g by

(), (9w 1= > resa(f, g)w + (u, 9% + (f€, ). (3.10b)

xellz
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By a slight abuse of notation, we will often denote the restriction of (3.10)
to the subspace Riie (gc)n also as (-, )w. That is, we will write {(f, g)o =

((£,0), (g, 0)), for any f,g € R (a°)"

Lemma 3.1. The bilinear form (3.10) is non-degenerate. Its restriction to R

(g(c)n is degenerate and its restriction to Ri‘[c (g(c)n s also mon-degenerate.

Proof. Let us first show that the restriction to R (gC)H is degenerate. Con-

sider a constant function f = f¢ € Ry (gC)H. Then, for any g € Rne (gc)n
the poles of the 1-form (f, g)w are contained in 1z so it follows that {(f, g). =
0.

Consider now the restriction of the bilinear form (3.10) to Ry, (gC)H.

We show that this is non-degenerate. For every f,g € R’HC (gc)n we have

<<fag>>w = Z resw<f7g>w'

z€llz

Since f is not constant, it has poles at some of the zeroes of w. By choosing
g to also have a pole at one of these same zeroes, we can ensure that some of
the poles of the 1-form (f, g)w lie outside the subset 11z, namely in TI¢. It is
then possible to choose g such that (f, g)),, # 0.

It is clear from the form of the additional two terms in (3.10b) that the
bilinear form on the whole of R (gc)n @ g is itself also non-degenerate. [
Cyn

3.2. The Isomorphism 7 : Ryy¢ (g =, g®gl©

A rational function f € Ry (gC)H, as in (3.4), is uniquely determined by the

coefficients f¥9) € g for (y,q) € (¢,) and f»9 € g€ for (y,q) € (¢.) at
each of its real and complex poles, along with the constant term f°¢ € g. It is
therefore convenient to introduce the vector space in which the coefficients of
such rational functions live. Explicitly, we associate with the zeroes of w the

real vector space

g©) = H g x H a® (3.11)
(v,9)€(Cy) (y,0)€(Ce)
where g€ is regarded as a real vector space. Its dimension is
dimg© = dimg Y~ m, +2dimg »  m, =dimg »_ m,. (3.12)
yeC, yeCe y€ll¢
We now have an obvious isomorphism
)H

me : R (69" — g @ ¢'©,

f= (fc’ (f(ym)(yyq)e(()) (3.13)

. . N m . .
which takes a rational function in Ry (¢°) and returns its constant term in
g and the coefficients at each of its poles as an element of g(¢).
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We also extend this map to an isomorphism m¢ : Ry (gc)n Gg —
g @ g©) @ g by letting it act trivially on the additional copy of g introduced in
Sect. 3.1.

We define the symmetric bilinear form, cf. [2, (4.16)],

(s Nawgrag: (808 @g) x (gog® @g) — R, (3.14a)

given for any U = (UWD), ey, V = (VD) ey € 99 and x, X,y Y’ € g
by

{((x U, X/>7 (v, V, y/)>>g@g(4)@g

My —1

2
= Z Z T %(ap7q<u(y7p)7\/(y,q)>) + (X,y’) + (X/,y>,
ye¢  p,g=0 [Ty |
pt+g>my—1
(3.14b)
— 1 p+q+1—my . .
where ay, 4 := W@ 1y (&) for p,q=0,...,m, is symmet-

ric under the exchange of p and ¢. Here, we wrote w = 1, (&,)&,""d¢, in the

local coordinate &, at y € ¢ where 1,(&,)|, # 0 using the fact that w has

a zero of order m, at y. We also denote by II, C II the stabiliser subgroup

of y under the action of IT on CP', and |II,| is its order. Explicitly, we have

III,| = 2 for any real point y € ¢, and [II,| = 1 for any complex point y € (..
The following is an immediate generalisation of [2, Lemma 4.3].

Lemma 3.2. For any f,g9 € Ru¢ (gC)H and u,v € g we have

<<7TC (.fv U), ¢ (g’ V)>>g@g(5>®g = <<(f’ U), (gv V)>>w'

Proof. The first term in the bilinear form (3.10b) can be rewritten as

<<fag>>w = Z resx<f,g>w=— Z resy fv Z |H ‘ resy fv > )

zellz yell¢ ye(
(3.15)

where in the second equality we used the residue theorem and the fact that
the poles of the meromorphic 1-form (f, g)w belong to the set Iz UII¢. The
right-hand side of (3.15) can be evaluated more explicitly as follows:

my—l
Uahe == 3 o R(res, (1077 vyle o),
ye¢ p=0
-5 o Lan e, (10,00 )
ye¢ p,g=0 7Y

In the first equality, we used the fact that gw is regular at y € ¢ so that
the only contribution to the residue is from the pole term f(y’p)§y_p_1 at y
in f and we wrote w locally in the coordinate &,. In the second equality we
took the residue and used the fact that the poles of g at  # y in the ex-

pression agy (wy(ﬁy)&;nygﬂy with p = 0,...,m, — 1 vanish since v, (£,)&,™
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has a zero of order m, at y. Finally, we note that %85 (Y (&))" 1)’ =

y
m gjrq+17m1’zby(§y) if p+ ¢ > my — 1 and is zero otherwise, from
1Y%, g

which the result now follows. O

3.3. The Isomorphism j, : R (g%)™! =gt

Let us introduce a linear map

LR (69" — o,

Nnge—1 1
fr— ( > z)!(ang)\x@@ag) , (3.16)
p=0 rEZ
which takes a rational function with poles at the zeroes of w and returns the
first n, terms in its Taylor expansion at each pole x € z of w in the local
coordinate &,, where &, = z —z if x € 2’ and &, = 27! if oo € z. The
linear map (3.16) cannot be an isomorphism on dimensional grounds by (3.9).
However, we will show in Proposition 3.4 that it is injective. Before doing so,
we will show that (3.16) maps the bilinear form (3.10), or rather its restriction

to Re (gc)n, to the bilinear form (2.11) on .

Lemma 3.3. For any f,g € Ru¢ (gC)H, we have (1,790 = ([, 9)w-

Proof. Let f,g € Rne (gC)H. First note that by using the reality conditions at
all of the poles of w we may rewrite the bilinear form (3.10b) more explicitly
as a sum over the independent poles, namely

Z res;(f, g) Z \H | R(res, (f, g)w). (3.17)

z€llz r€EZ

Recall that II, C IT denotes the stabiliser subgroup of = € z.
Recall the explicit expression (2.1) for the meromorphic 1-form, and in
particular its expansion (2.3) at each pole x € z. We then have

ngy—1 g Noo—1 Vis
-3 Ew(Reval,) s X Tl

€z’ p=0 p=0

-2 55 (G L)
-2 S (OO SO ) = (555000

xr€z q,r=0

where in the second last step we changed variable from p to r = p — ¢ and
used the convention that £ = 0 for p > n,. The last equality is by definition
(2.11) of the bilinear form on ® and of the map j, in (3.16). O

Any v € g defines a constant function on Ry (gc)n. Explicitly, in the

notation of (3.4) we have f° = v and f®%9 = 0 for every (y,q) € (II). By
abuse of notation we will denote this rational function also as v. Its image
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under 7, is the element j,v = Av € f of the diagonal subalgebra f = Ag C 0.
Moreover, any element of f can be represented in this way. Let

v:= 4. (Rie (89)"). (3.18)

Proposition 3.4. The linear map j, in (3.16) is an isomorphism onto its image
-, In particular, we have the direct sum decomposition - =+ v.

Proof. We will first show that j, (an (gC)H) C §+. To see this, let f €
Rne (gc)n and Av € f be arbitrary. Then by Lemma 3.3 we have

(3:f, AV = (3.f,5:V)0 = (f:v)e =0,

where the last step follows by the residue theorem since (f,v)w is a meromor-
phic 1-form with poles contained in the subset I1z.

It remains to show that the map 7, is injective. The result will then follow
by virtue of (3.6) which can be rewritten as dim Ryy¢ (gc)n =dimd —dimf=
dim f* using (2.10). Equivalently, with the help of the bijection (3.13) it is
enough to show that j, o wgl : g @ g'© — 9 is injective. The coefficients of
the expansions to order n, at all the poles x € I1z are given by

Moo —1

1 _ [z.0]  f(y.0) [z.p] (00.0)

p(a’;f)\z o Z ¢ (y7q)f o Z ¢ (007q)f o
(v,q)€(TIC") g=-1

for all [z,p] € [T1z], where we have incorporated the constant term f(>~1 :=

f¢ into the (—1)* term of the second sum and introduced the coefficients

ep] ._ (P14 (=1)P el . (9T gt1-p
C (wa) "~ ( P )(a: — y)pratl’ c (00,q) " P r
(3.19)

for all [z,p] € [IIz] and (y,q) € (II{) where ¢ = 0,...,m, — 1 for all y €
¢\{oo} and ¢ = —1,...,ms — 1 for y = co. The expressions in (3.19) are the
components of what is known as a confluent Cauchy—Vandermonde matrix,
see for instance [52, Definition 13]. By combining (3.12) and (2.2), we find
dim (g @ g(C)) = dim 0 —dim g. The matrix specified by the components (3.19)
is of dimension dim 0 x dim (g @ g(C)) so removing dim g columns (by removing
the highest-order term in the expansion at any of the poles z € I1z) we obtain
a square confluent Cauchy—Vandermonde matrix. The result now follows form
the fact that a square confluent Cauchy—Vandermonde matrix is invertible [52,
Corollary 19].

The last part follows from applying the injective linear map j, to the
direct sum decomposition (3.8). O

Even though we will not explicitly need it in order to construct the action
for the Lax connection of the degenerate £-model in §3.5, it is useful to try to

extend the injective linear map (3.16) to an isomorphism Rry¢ (gC)H Dy =
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This will be useful in constructing the £-operator £ : 9 — 0 on all of 0 in Sect.
3.4. Explicitly, we want to construct an isomorphism

~ . II =]
9. =3.®p,: Ruc (a%) @g—0, (3.20a)

where p, : g — 0 is a linear map whose image is complementary to f* in .
We will now give a general procedure for constructing such a linear map by
requiring that its image f := im p, be isotropic and perpendicular to v, i.e.
such that

o=f"+f  fc(f+ot, (3.20D)
and with the property that, for any x,y € g,
{px, Ay)o = (x,y). (3.20¢)

For simplicity, we will suppose in the following argument that w does
not have a pole at infinity. The construction could also be adapted to that
case. Recall that m., denotes the order of the zero of w at infinity. We let
P : C — C be a generic polynomial of order mq, + 1, which therefore contains
Moo + 2 arbitrary coefficients in C. If x € g then x P is a g-valued polynomial.

Notice, however, that x P does not lie in Ry (gC)H since rational functions

in R (gC)H7 which are of the form (3.4), contain a polynomial of order at
most My (and not me, + 1). Nevertheless, by a slight abuse of notation we

will write
Nge—1 1

j.(xP)= ( > —(x(92 P)l.) ®a§> €
p=0 p: rEZ

for the Taylor expansion of x P at each z € z up to order n, — 1, cf. (3.16).

We then define the linear map

P :g_>D7 X’—>jz(XP). (321)

By construction f = im p, is a complement to - = imj, in 0 since x P ¢
R (gC)H. Next, we will argue how to fix the coefficients of the polynomial
P by imposing the second property in (3.20b) and the property (3.20c).

We will first show how to ensure that j,(x P) € v*. Suppose first that

Moo = 0, i.e. that w does not vanish at infinity. Then, any g € R/Hc (gc)n,
specifically without constant term, has a zero of order at least 1 at infinity so
that the 1-form (x P, g)w is regular at infinity. In particular, all of its poles
lie in IIz. By the same computation as in the proof of Lemma 3.3, one shows
that (7,(xP),J,90> = (xP,g))w = 0 where the last step is by the residue
theorem. Hence, j, (x P) € v where in this case P is an arbitrary polynomial
of degree 1, i.e. with two arbitrary coefficients.

Suppose now that ms, > 0. Then, we can write any g € Rhc (gC)H as
g = ¢ + goo Where go is a gC-valued polynomial of order m., with no con-
stant term, which therefore contains m, arbitrary coefficients, and ¢’ contains
no polynomial term. Consider the equation (7, (x P),j,g)» = 0. By the ex-
act same reasoning as above, we deduce ((j,(xP),7,9' )» = 0, whereas the
condition ((7,(xP),J,g00))o = 0 imposes a triangular system of mq, linear
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equations on the coefficients of the polynomial P. By solving these equations,
we can then ensure that j,(xP) € v’ where P is a polynomial of degree
Meo + 1 but with only two free coefficients.

The two remaining coefficients in the polynomial P can be fixed by requir-
ing that f is isotropic, which amounts to imposing the condition (p_x, p,y)s =
0 for any x,y € g, and the additional property (3.20c).

Note that the linear map (3.21) could be naturally incorporated into the
linear map (3.16) by extending the space of rational functions Ripe (g@)n to
include the polynomial functions of the form x P for x € g. In other words, if we
define the space fing (gC)H = R (gC)H @ g consisting of rational functions
of the form (3.4) but with the pole at infinity of order mq, + 1 rather than mq,
then the isomorphism (3.20a) can equally be described as an isomorphism

3. Rue (89" =0,

defined in exactly the same way as (3.16), namely by Taylor expanding in the
local coordinate &, at each z € z up to the order n, — 1. This discussion relates
back to the observation made in Remark 2.1 and in the paragraph after (2.27),
namely that the g-valued gauge field £, which after going on-shell was valued

in R (gC)H, could in fact be taken to live in the larger space ﬁnc (gc)n just
defined.

The key property of the isomorphism (3.20a), generalising that of
Lemma 3.3 and which we shall use to construct the £-operator in the next
section, is the following.

Lemma 3.5. For any f,g € Rue (gc)n and u,v € g we have

(7 (f,1),3-(9, V) = ((f; 1), (9, V)
Proof. We have

<<-/]\z(f7 U),:]\z(g,V)» = <<sz7.7 g>> +<<pzu ng>>b +<<jzf7pzv>>a
= {f:9)w + {p2u, Ag)o + (AFS, Vo
= {fs ) + (u,g%) + (f,v) = ((f,u), (9, V) )w-

where in the first step we used the isotropy of f; In the second line we have used
Lemma 3.3 for the first term and the fact that f 1 v for the last two terms. The

very last step is by definition (3.10b) of the bilinear form on Ryy¢ (gC)HEB g. O
3.4. The £-Operator

We now wish to define an operator £ : 9 — 0 which is symmetric with respect
to the bilinear form (2.11) on 9. To do so, we will first construct an operator

2]

E:gag9ag S geg@ay (3.22)
which is symmetric with respect to the bilinear form (3.14) on g @ g¢) @ g.
This may then be transferred to using the isomorphism 7, in (3.20a) and
the isomorphism ¢ : Rpe (g ) ©g— g®g©) @ g from Sect. 3.2.
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Recall from Sect. 2.1.2 that we assumed we were given a partition ¢ =
¢, U¢_ of the set of zeroes of w such that Zy€<+ my = ,cc My The latter
condition means, in particular, that the vector space g(¢) introduced in (3.11)
splits into a direct sum

g© = g€ } g€ (3.23)

of two subspaces with dim g(¢+) = dim g(¢-). In Sect. 2.3.1, we then introduced
signs €, = %1 for each y € ¢ which we used to impose the condition (2.24b) on
the components of the gauge field. Given this data, we introduce the involution

Egng@aog Sgagdag,
(fca (f(yﬂ))(y,q)e(()’ U) — (U, (eyf(y7q))(y7q)€(()a fc) . (324)

In other words, we leave the elements of g(¢+) fixed, we change the sign of those

in g«-) and we flip the two additional copies of g. One easily checks that the

involution (3.24) is symmetric with respect to the bilinear form (3.14).
Following [2], consider the isomorphism

Ci=j,m; ' igeg® =it (3.25)

We use this to transfer (3.22) to an operator on d. Explicitly, we have the
following.

Lemma 3.6. The operator £ := CEC™! : 0 —=> 0 is an involution and is sym-
metric with respect to the bilinear form (2.11) on 0.

Proof. The involution property is immediate from that of E.
By combining Lemmas 3.2 and 3.5, we have ((CU,CV)), = (U, V) s50¢) aq
for any U,V € g ® g(©) @ g. Therefore, for any x,y € 9 we deduce

((x Eyla = (%, CEC7 Mo = (C71% EC Y gag 0
= (£C71%.C7 YD gagwr0g = (CECT % y)o = (Ex,y)a.

Hence, £ is also symmetric, as required. O

Lemma 3.7. The restriction of the symmetric bilinear form {(-,€-)» : 0x0 — R
to f C 0 is non-degenerate.

Proof. Let v € | and suppose that (u,Ev), = 0 for all u € §. Then, v € f+
which is a contradiction since £f = f is by definition a complement of f+
in 0. O

3.5. Solving the Constraint Between £ and h

Having introduced all of the necessary ingredients in the previous sections,
we are finally in a position to complete the final step of the construction of
2d integrable field theories from 4d Chern—Simons theory. Recall from Sect.
2.3.2 that in order to write down the final 2d action as in (2.30) we need to
have a solution £ = L(h) of the constraint (2.28) satisfying the transformation
property (2.29). We will now show how to construct solutions which give rise
to integrable degenerate E-models.
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Let vy denote the eigenspaces of £ restricted to v with eigenvalues +1.
These are the images of the subspaces g(¢+) under the isomorphism C defined in
(3.25). Equivalently, we can describe v as the image of the spaces R/HCi (gC)H

of Tl-equivariant g€-valued rational functions with poles in II¢ . (see the start
of Sect. 3.1), namely

. m
vx =g, (Rne, (6) ) (3.26)
We have dimv; = dimv_ = 1dimd — dimg. Following [43,45], define the
projection operators VVhi : 0 — 0 by, see in particular [45, (3.23)],
ker W& = Ady-1 8,  imWE=fdo.. (3.27)
The constraint (2.28) explicitly says By := Ad(j,L+) — Oxhh™! €
C®°(%,t), which can be rewritten as j, L+ = Adj,-1 B+ + h~10.+h. Applying
the operator WhjE to both sides, and using the fact that Ad,-: B4 is valued in
ker Whi, we get
Wit (5. Ly) = WiE(h ™ 04h). (3.28)
On the other hand, in terms of light-cone components the condition (2.24b) is
equivalent to the statement that cgij*‘” =0foranyy € ¢z and g =0,...,my—
1. We can rewrite this in terms of the E-operator (3.24) as & (w¢ (Ly — L)) =
+7me(L+—LY). Applying the isomorphism C from (3.25) on both sides and us-
ing the definition of the £-operator in Lemma 3.6 we then obtain the equivalent
condition
E(JLr —ALY) = +(j. Lo — ALY) (3.29)
which implies that j,L£1 — AL € vy. Since ALS € § it follows that 7, L4 €
im W;F so that the left-hand side of (3.28) just becomes 5, L. In other words,
we arrive at the following solution
3. Li(h) = WiE(h™10Lh) (3.30)

of the constraint (2.28).
It remains to show that this solution satisfies the desired transformation
property (2.29). For this we need the following lemma.

Lemma 3.8. For any g € C*(X,G) and k € C (X, K) we have
W/;l;LA(g)_l = Ada(g) OWﬁt o Ada(g)-1 -
Proof. The projection operator WliA(g),l : 0 — 0 is defined by

ket Wi a1 = Adagg) Adp1 &, im Wi\ = f@os

where in the first equality we have used the fact that Ad,-1 € = ¢ since k is
valued in K. The statement now follows using the fact that v is invariant under
the adjoint action of the diagonal subgroup F' = im A. O

The property (2.29) now easily follows using Lemma 3.8, namely we have
jz['i(khA(g)il) = WﬁA(g)—l (A(g)hilkilai(khA(g)il))
= Ada(y) oWiE (Ady-1 (k71 01k) + h 101 h
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—Ag) "1 9:A(g))
= A(g) (Wi (h™'0xh))Ag) ™" — 0=A(g)A(g) ™!

= A0) (Jz‘c:t(h))a

where in the third equality we have used the fact that Ad, -1 (k~*01k) is valued
in Adj,—1 ¢ = ker W and A(g)'9+A(g) is valued in f.

Substituting the solution (3.30) into the 2d action (2.30) we get the de-
generate £-model action [45, (3.22)]

Saalh) = 5 [ ({0 10-h, Wy (00,0

— (h~18,h, V[f,;(ffla_h)»)da+ Ado~ — %IWZW . (331

This model can be defined for more general Lie algebras 0 and £-operators
than the ones considered in this article. In general, the action (3.31) does not
describe a 2d integrable field theory. However, in the present case where 0
is the defect Lie algebra (2.9) and the E-operator is as defined in Sect. 3.4,
namely when the data originate from 4d Chern—Simons theory as reviewed in
Sect. 2.3, the action (3.31) describes an integrable field theory by construction.
In particular, since the right-hand side of (3.30) takes values in f ® vy C -
and j, : Rre (g‘c)n =, fJ- is an isomorphism by Proposition 3.4, we can apply
its inverse to both sides to obtain the Lax connection. Namely, denoting this
inverse by p : f+ =N Rne (gC)H we have
Li(h) = p(WiE(h"0xh)), (3.32)
which provides a Lax connection for the integrable degenerate £-model (3.31).
Although it is immediate by construction that (3.32) satisfies the flat-
ness equation (2.32), it is instructive to show this explicitly. We will need the

following lemma which is an immediate generalisation of [2, Lemma 4.6 & Re-
mark 4.7]. Recall the definition of the real vector spaces vy in (3.26).

Lemma 3.9. For any uy € @& vy we have plus,u_] = [pus,pu_].

Proof. Let ux € §@® vy which we can write as ux = j,f+ for some fi €
R, (gC)H. Then, we have

[pu+,pu_] = [f-i-’f—] :pjz[f+7f—] :p[jzf+7jzf—] :p[U+,U_].

To see the second step, first observe that [f}, f-] € R (g@)n by virtue of
the fact that the poles of fi, which lie in ¢, are disjoint from those of f_,
which lie in ¢_. Therefore, 5, has a well-defined action on [f;, f_] and we can
insert the identity in the form id = pj, out front. In the third step, we then
used the fact that the linear map j,, defined by taking the truncated Taylor
expansions at the points = € z is in fact a morphism of Lie algebras. g

The equations of motion of the degenerate £-model (3.31) take the form
of a flatness equation [45, (2.8)]

O (W, (h7'0_h)) — 0 (W;F (W' 04h)) + [W,F (R 04 h), W, (h™'0_h)] =0
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in 9. Applying the linear map p : - =N Rme (gc)n to both sides and using
Lemma 3.9 on the commutator term, we obtain the desired flatness equation
(2.32) for the Lax connection with light-cone components (3.32).

Remark 3.10. The action of the non-degenerate £-model [45, (2.5)] can be
written in exactly the same form as in (3.31) but where the projectors W, are
now defined by the conditions [45, (2.6)]

ker WiF = Adj,-1 6,  imW;F =0y

instead of (3.27). Of course, this action for the non-degenerate £-model is
equivalent to the one derived in [2] (see [2, §2.2]). The action in the form (3.31)
can be derived directly in exactly the same way as above. Explicitly, assuming
that w has a double pole at infinity, as in [2], one first fixes the F' symmetry by
setting the edge mode at infinity equal to the identity. As recalled at the start
of this section, this then removes the constant term in both components of
the Lax connection. The exact same procedure as above then applies, with the
absence of constant terms in the Lax connection reducing (3.29) to £(§,L4) =
+(j,L4) which was the condition used in [2]. In particular, this condition now
implies that 7,L1 € by.

4. Examples

In Sects. 2 and 3, we presented a general construction of integrable degenerate
E-models from 4d Chern-Simons theory, with the final 2d action given in
(3.31). In practice, starting from a choice of meromorphic 1-form w one should
build the associated defect Lie algebra 0, identify its non-degenerate bilinear
form ({-,-))» and work out the Lie group structure of the defect Lie group D.

The real vector space of rational functions Rhc (gC)H, as defined in §3.1, may
then be used to explicitly construct the subspaces v4 of 0. By making a choice
of isotropic Lie subalgebra ¢ C 0, one is then able to explicitly construct
the projectors W;= defined by (3.27) in terms of which the action (3.31) is
expressed. In this section, we apply this procedure to explicitly construct the
pseudo-chiral model and the bi-Yang-Baxter model.

4.1. Pseudo-Chiral Model

The first example we consider is that of a meromorphic 1-form with a 4t order
pole at the origin and two simple zeroes at +a with a > 0, namely

The defect Lie algebra (2.9) for this choice of meromorphic 1-form is given by

2 =g®@R[]/(eh). (4.1)
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We denote the elements of 0 by u? := u ® P with p = 0,1, 2,3. The bilinear
form (2.11) on the defect Lie algebra reads

a*{u,v) if p+q=3
(uP v = ¢ —(u,v) if pt+g=1 (4.2)
0 otherwise .

Next, let us describe the Lie group structure on the defect Lie group D
with Lie algebra (4.1). It is given by the third-order jet bundle J2G of the
Lie group G, which in the right trivialisation is isomorphic to G x g X g X g.
That is, a general element h € D =2 G X g X g X g can be expressed as a tuple
h = (g,u,v,w), with g € G and u,v,w € g. The group product and inverse on
D are then given by! [49]

1
(ga u, Vv, W)(§7Xa Y Z) = <gg7 u-+ Ang, v+ Adgy + 5[“7 Ang],
2 1 1
x w+ Adgz + g[u,Adgy] + g[v,Adgx} + E[U’ [u,Adgx]]> ,
(g, u,v, w) = <g_17 fAdglu, fAdglv, fAdg_lw + %Adg_l[u7 v]) .

To specify the kernels of the operators Whi, as in (3.27), we need to make
a choice of Lagrangian subalegbra € C 0. A natural choice in the present case
is

t=g®e’R[e]/(h), (4.3)

which is easily seen to be Lagrangian. One additional nice feature of this choice

of t is that it is an ideal in 0 and thus, for any h € D we have Ad,:lﬁ =t
Hence,

ket Wit = g @ 2RIe)/(s%) = {y2 +2* v,z € g} (4.4)

On the other hand, specifying the image of W,f requires identifying the diago-

nal subalgebra f = im A and the subspaces vy defined in (3.26). Starting with

f, the diagonal embedding for the defect Lie algebra (4.1) is simply w — w?,

so that
f=imA = {w"|w e g}. (4.5)
To describe v we begin by identifying the spaces of rational functions Rhci

(gC)H corresponding to the meromorphic 1-form (4.1). By partitioning the set
of zeroes TI¢ = ¢ = {a,—a} of w as I, = ¢, = {£a}, we find

e, 69" = {

so that expanding such rational functions to 4*" order at the origin gives

€ g} , (4.6)

X
zZFa

1The multiplication law and the inverse differ from [2,49] by a normalisation convention.
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. I XO X1 X2 X3
U+=Jz(lnc+(9(c)):{—a—ag—ag—a4 XEQ}, (4.7)

. o XO Xl X2 3
“Zb(hiﬁ)Z{a‘ﬁ @‘&x€@~ (48)

Then im WhjE = f @ vy. With the explicit expressions for the image and kernel
of the projectors, we may proceed with the computation of Whi(h’lﬁih).

In order to simplify the discussion, we start by fixing both the K-symmetry
and the F-symmetry. First, we note that the Lie group K with Lie algebra £
is identified with the subgroup {id} x {0} x g x g of G x g x g x g. On the
other hand, the Lie group F' with Lie algebra § is identified with the subgroup
G x {0} x {0} x {0}. Fixing both of these gauge symmetries implies that our
physical degree of freedom will be described by a representative of the class of
h € C*(%, D) in the double coset K\D/F. By a slight abuse of notation, we
will also denote it by h = (id, u,0,0). We then have

1 1
h=tdh = du! — §[u,du]2 + E[U, [u, du]]®. (4.9)

In order to find the explicit action of W}f on h~ 194 h, we decompose the latter
with respect to the direct sum decomposition 0 = ker W,;—L +im W,it Focussing
first on h='d, h, we look for w,x,y,z € g such that

0 1 2 3
~1 2, .3 o_X X X X
which will then give
0 1 2 3
1 oo XX X x
Wir (W 0ph) =wd = = S5 = T — o

Explicitly decomposing the oT-component of (4.9) as in (4.10), we find

8+U2 6+U3

W, (h™to,h) = 04ut + o (4.11a)
By a completely analogous argument, we get
i o_u?2  o_u?
W, (h™'0_h) = 0_u' — + (4.11b)

Using the expression for the bilinear form (4.2), we then obtain

(WiE(h=0Lh), h 1 0xh) = +a(d4u,d_u) + “;@7 [Biu,0_u]).  (4.12)

Finally, we compute the Wess-Zumino term (2.17). Since the Cartan 3-
form is cubic in ﬁ_ldﬁ, with % € C*>®(X x I, D), and the latter has no term
of Takiff degree 0 by (4.9), or its analogue for h= (id, 1, 0,0), it follows from
the explicit form (4.2) of the bilinear form on 9 that only the term cubic in du
can contribute, so that

2

wzpy 2 L a?(dd, [da, da)) = & [ (u, [du, du]) . .
R L Ry RO (413)
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The 2d action (3.31) of the integrable degenerate £-model corresponding
to the meromorphic 1-form (4.1), the choice of Lagrangian subalgebra ¢ C 0
in (4.3) and the split ¢, = {£a} of the zeroes of w, is therefore the o-model
with target space K \ D/F = g and action given by
a2

S[U]:/Z(a<a+u,a,u>+ ; <u,[a+u,a,u]>)damda— (4.14)

for u € C* (%, g), which is the pseudo-chiral model of Zakharov and Mikhailov
[53].

4.1.1. Lax Connection. Having found the action of the 2d integrable field the-
ory, we now proceed with the computation of its Lax connection. Its light-cone
components are given by (3.32) where p : f+ — Rne (gC)H is the inverse of
j, and
fr=fov, oo (4.15)
with f, vy and v_ given in (4.5), (4.7) and (4.8), respectively. Hence, the action
of p on an element of - decomposed with respect to (4.15) is simply
O 343 0 1 3 3 %
P <W0 Yoyt Ly > LY
a z—a z+a
(4.16)

The action of p on Wi (h~'0.4h) given in (4.11) can now be computed to give
the light-cone components of the Lax connection (3.32), namely we find

2

a
Ly =
z

Fa

O+u F ad+u. (4.17)
The zero curvature equation for this Lax connection is equivalent to
8.0_u— %[8+u,3_u] -0, (4.18)

which corresponds to the equation of motion of u for the action (4.14), thus
proving the Lax integrability of the model.

4.2. Bi-Yang-Baxter o-Model

The second example we consider is the bi-Yang-Baxter o-model [54,55]. Fol-
lowing the conventions used in [8,56], we take the meromorphic 1-form

_ 16Kz
Clz—24)(z —2-)(z — 24)(2 — 2-)
where K € R. The four simple poles z,z2+ € C and the coefficient {( € R are

related to the two real deformation parameters n and 7 of the model by

%+ : 2+ 2p+if) 2 —p?

¢* = (1 + W) (1 + (’7_”)2) : (4.21)

w dz (4.19)

4
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Note also that w has two simple zeroes, at 0 and co. The defect Lie algebra
(2.9) for this choice of meromorphic 1-form is given by

0= (g" 2 Clel/(e)) x (8" ® CIE]/(2)) = ¢° x g, (4.22)

where we recall that each factor is treated as a real vector space. Therefore,
elements of 0 are given by tuples (u,v) € 0 with u,v € g©. The bilinear form
(2.11c) on the defect Lie algebra reads

((u,v), (8,9))s = 2ES(u, 1) + £ S(v,¥). (4.23)

The defect Lie group D with Lie algebra 9 is simply G€ x G, a general element
of which is a tuple (h, h) with h,h € GC.

To specify the kernels of the projection operators defined by (3.27) we
need to choose a Lagrangian subalgebra ¢ C 9. Following [8], we take two
skew-symmetric solutions R, R € End g to the modified Yang-Baxter equation
with ¢ =i in terms of which we define the Lie subalgebra

t=grx g5 ={(R—)x (R-i)y)|xy € g} (4.24)

which is seen to be Lagrangian with respect to the bilinear form (4.23). To
simplify the discussion we will gauge fix the K-symmetry. Let K = GrxGg C
G® x G® be the Lie group with Lie algebra ¢ = gr x g5 Following [8], we
assume that the direct sum decomposition g& x g& = € 4 (g x g) lifts to the
group level, that is, G& x G® = K(G x G) so that a natural parametrisation
of the quotient K \ (G® x G©) is then given by G x G. In this way, our
physical degrees of freedom will be described by a representative of the class
of h € C®(%,GC x G%) in the coset K\(G x G®) which we denote by (g, §)
with g, g € C*(X, G). Hence, from (3.27) we have

ker WE o) = Adg g 8m x 0 = { ((Ry = DAd, ', (R; —)AQ; ') [xy € 8} |
) (4.25)

where we have defined R, = Ad;1 o Ro Adgy, and similarly for Rj.
On the other hand, the images of W(jg: g) are given in terms of the subalge-

bra f = im A and the subspaces vy defined in (3.26). The diagonal embedding
for the defect Lie algebra (4.22) is simply a +— (a,a), so that

f={(@,a)la€cg}. (4.26)
To determine vy, we must first identify the space of rational functions Rhci

(gC)H corresponding to the meromorphic 1-form (4.19). Fixing the partition
of the set of zeroes II{ = ¢ = {0,00} of w to be II{, = ¢, = {oo} and
II¢_ =¢_ = {0} we have

e, (QC)HZ{bz|b€g} , R (g(c)n: {Zbeg}. (4.27)

Expanding such rational functions at the set of independent poles z = {z;, 2 }
of w yields
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oy = 4. (Rixg, (6%)") = {(bz4,b%,) [be g}, (4.28)

b =34, (R/HL (gC)H) - {(Z 2) Ibe g} . (4.29)

We then have im W=

(9.9
tion of W(jg: 4 (%, j) where we defined jy := g 10+g and ji := §71043.

In order to find the explicit action of Wé )

latter with respect to the direct sum decomposition 0 = ker W(jg: ) +im W(ﬂg: 3

y = f@ vy and we may now proceed with the computa-
on (j+,j+), we decompose the

Explicitly, focussing first on (54, 7+), we look for a,b,x,y € g such that
(J+,J+) = (a,a) + (bzy,bZy) + ((Rg —)Ad, 'x, (Rg — i)Ad§1Y) - (4.30)

To match the notation from [8] it is convenient to introduce

T (4.31)

=TT r 1w

in terms of which the solution to (4.30) can be conveniently written as
a=j+(p—IR, )y =7+ (1 N5\ g
= I+ T\ Pl |y =g T LTS )y
¢ -1 n -1 7
b=2Ji,  Adgx=3Ji Adgy=-—g /4

In particular, given that W"g‘ 3) is a projector, its action on (4.30) is given by
the first two terms on the right-hand side, namely we have

o ) n . B o
Wi (e Jr) = (J+ - §(Rg —i)J, 7 + 5(Rg — 1)J+) . (4.32)

Similarly, to compute the action of W(_g g) on (j—,7-) we look again for a, b, x,y
€ g but this time such that

- b b . .

o) = @y (22 )+ (R = DAdy (B~ DAGG YY) . (433
Zy 24
Doing so, we find
- - . . e

Wiggpimsio) = (3o + B8, =D i = DB =022 ) . @3)

Using the expression for the bilinear form (4.23), we then obtain
(Wig 5 (s Je), Uiy J) Do = £2K (i — I, ) (4.35)

where we used the fact that (j_ —j_, J+) = (j+ — J+, J—) which follows from
the skew-symmetry of R and R.

On the other hand, it is immediate to verify that the Wess-Zumino term
vanishes identically. We thus find that the 2d action (3.31) is given by

Slo.d) = K [ Gy =09 do na (4.36)

matching the action of the bi-Yang-Baxter o-model as written in [56, (2.2)].
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4.2.1. Lax Connection. The Lax connection is given by (3.32), which for this
specific example becomes

L+((9,9)) = (W, 5 (e, J5)) 5 (4.37)
where p : f+ =N Rne (gC)H is the inverse of 7, with
ft=foo, o (4.38)

with f, b4 and v_ given in (4.26), (4.28) and (4.29), respectively, so that the
action of p on an element in f* decompose with respect to (4.38) is simply

c c C
p((a,a)+(bz+,b2+)+ (~>> =a+bz+-—. (4.39)
Z4 Ry z
Therefore, decomposing Wi g)(ji,ji) with respect to (4.38) we find
£+ = B+ + gZJ+ s ﬁf = Bf + gz_lJ, (440)
where we have defined
By =ji + (p F gRg> Ji, (4.41)

with p defined in (4.20). The expressions for the components of the Lax con-
nection coincide, up to a conventional sign, with [56, (2.18)].

5. Outlook

In this work, we have shown that the 4d Chern—Simons action introduced by
Costello and Yamazaki in [3] with the most general meromorphic 1-form w
gives rise, when passing to 2d following the approach of [1,2], to the actions of
integrable versions of degenerate £-models, or dressing cosets, introduced by
Kliméik and Severa [35].

Notably, this article resolves one of the open problems mentioned in [2],
namely removing the assumption that the meromorphic 1-form w should have
a double pole at infinity, thus allowing it to be completely arbitrary. There are,
however, a number of other interesting problems that remain open which apply
to the degenerate setting as well. We summarise them here for completeness.

The first is related to the Hamiltonian description of the integrable de-
generate £-models constructed in the present work. Indeed, as recalled in the
introduction, establishing the complete integrability of a 2d field theory re-
quires moving to the Hamiltonian formalism and showing that the Poisson
bracket of the spatial component of the Lax connection with itself takes the
non-ultralocal r/s-form [57,58] with twist function. This, in turn, is equiva-
lent to recasting the 2d field theory in question as a classical dihedral affine
Gaudin model, see [31] and also [32,33]. And although we have not shown this
explicitly here, it follows indirectly from [34] where a Hamiltonian analysis
of 4d Chern—Simons theory was performed and it was shown that the Pois-
son bracket of L, i.e. the spatial component of the gauge field in the gauge
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A; = 0, with itself is precisely of the required form with the twist function
©(z) determined by the meromorphic 1-form w = p(z)dz.

It would, nevertheless, be interesting to perform the Hamiltonian anal-
ysis of the integrable degenerate £-models constructed here to directly show
that the spatial component of their Lax connection has a Poisson bracket with
itself of the expected r/s-form with twist function determined by w. In partic-
ular, sufficient conditions on the £&-model data ensuring its integrability in the
Hamiltonian sense were given in [59]. These are analogous to the sufficient con-
ditions on the £-model data given in [42], see also [2] and Lemma 3.9, ensuring
the existence of a Lax connection. It would therefore be interesting to check
that the integrable degenerate £-models constructed from 4d Chern—Simons
satisfy the sufficient conditions of [59].

The second interesting open direction is to determine the relationship
between 4d Chern—Simons and the usual 3d Chern—Simons theory. Indeed, it
was shown in [60] (see also [61]) that the non-degenerate £&-model on S! x R
can be obtained from 3d Chern—Simons theory for the Lie group D on @ x R,
with @ a disc, by imposing twisted self-dual boundary conditions on the gauge
field A of the form

* Alg@xr) = EAlg@xmr) (5.1)

on the boundary 0 (@ x R) = S! x R. It was further shown in [60] that the
o-model on K\ D can be obtained from 3d Chern—Simons theory on a hollowed
out cylinder @ x R, with @ an annulus, by imposing twisted self-dual boundary
conditions on the gauge field as in (5.1) at the outer boundary and imposing
at the inner boundary ¥;,, a condition of the form

A Einn 6 Ql(Einnv E)7 (52)

with € C 0 a Lagrangian subalgebra. Given the similarities between the bound-
ary conditions considered in the present 4d Chern—Simons context, in partic-
ular (3.2) as in [2] or (3.29) as considered here together with (2.28), and the
boundary conditions (5.1) and (5.2) considered in the 3d Chern—Simons set-
ting, it would be interesting to understanding whether there is any deeper
connection between these two theories.

Finally, there is at least one other interesting direction in which to gen-
eralise the whole construction, which is to try and describe from a 4d Chern—
Simons perspective the class of 2d integrable field theories whose Lax connec-
tions are equivariant under the action of a cyclic group Zr for some T' € Z>.
Such 2d integrable field theories should, on general grounds, arise from 4d
Chern-Simons theory on a certain orbifold quotient of ¥ x CP! by Zr. That
is, one should start from 4d Chern—Simons theory on ¥ x CP! but impose that
the gauge field A be equivariant with respect to actions of the cyclic group on
CP! and on g. Such a setting has already been considered in [9] in relation
to a specific 2d integrable field theory, namely the A-model. More generally, it
would be interesting to extend the results of [1] to the equivariant setting and
use this to construct integrable (non-)degenerate £-models with equivariant
Lax connections along the lines of [2] and the present paper for general w.
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