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Abstract We prove that the representation dimension of a cluster-concealed algebra
B is three. We compute its representation dimension by showing an explicit Auslan-
der generator for the cluster-tilted algebra.
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1 Introduction

The concept of representation dimension for artin algebras was introduced by
Auslander [3], motivated by the connection of arbitrary artin algebras with repre-
sentation finite artin algebras. He expected this notion to give a reasonable way of
measuring how far an artin algebra is from being of representation finite type. The
representation dimension is a Morita-invariant of artin algebras and characterizes
artin algebras of finite representation type. It was shown by Auslander in [3] that an
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algebra A is representation-finite if and only if rep.dimA ≤ 2. Later, Iyama proved
in [14] that the representation dimension of an artin algebra is always finite, using a
relationship with quasihereditary algebras. The interest in representation dimension
revived when Igusa and Todorov showed that the representation dimension is
related to the finitistic dimension conjecture. They proved that if an artin algebra
has representation dimension at most three, then its finitistic dimension is finite
[13]. Recently, Rouquier showed in [17] an exterior algebra with representation
dimension 4. In fact, he has constructed examples of algebras with arbitrarily large
representation dimensions.

On the other hand, Cluster algebras were introduced by Fomin and Zelevinsky
[18]. Later, Marsh-Reineke-Zelevinsky found that there is a deep connection be-
tween cluster algebras and quiver representations. Buan et al. [6] defined the cluster
category and developed a tilting theory using a special class of objects, namely
the cluster tilting objects. In [7], Buan-Marsh-Reiten introduced the cluster-tilted
algebras as endomorphism algebras EndC(T) of a cluster-tilting object T in a cluster
category C. These algebras are connected to tilted algebras, which are the algebras of
the form EndH(T) for a tilting module T over a hereditary algebra H. This last fact
motivates us to investigate the relationship between the module theory of cluster-
tilted algebras and the module theory of hereditary algebras.

A cluster concealed algebra is given by B = EndC(T̃) where T̃ is a cluster tilting
object induced by a preprojective tilting H-module. The aim of this paper is to
compute the representation dimension of cluster-concealed algebras by showing
an explicit Auslander generator. In order to do this, tilting and torsion theory of
hereditary algebras became very useful tools. Also the concept of slice and local
slice, the last one defined in [1], became a key tool to find Auslander generators
for cluster-concealed algebras. The notions of covariantly finite categories [5] are
very useful for the proof, together with their relationship with torsion pairs in tilted
algebras [4].

In Section 2, we give some notations and preliminary concepts needed for proving
our main result. In Section 3, we present our main theorem and some previous results
required for proving it.

2 Preliminaries

Through this paper we are going to use the following notation. A will denote a finite
dimensional algebra over an algebraically closed field and mod A the category of all
finitely generated right A-modules. By indA we will denote the full subcategory of
indecomposable modules in mod A and we represent the subcategory generated by
a module M by addM.

We will denote by H a finite dimensional hereditary algebra and by Db (H)

the bounded derived category of mod H. We will denote by [ ] the shift functor.
We will identify the objects concentrated in degree zero with the corresponding
H-modules.
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2.1 Tilting Theory

We start this section by giving the definition of tilting module. For more details on
tilting modules see [12]. Let A be an algebra and T an A-module. T is said to be a
tilting module in mod A if it satisfies the following conditions

(a) pdT ≤ 1.
(b) Ext1

A(T, T) = 0.
(c) AA admits a copresentation 0 → A → ĄT0 → T1 → 0 with T0 and T1 in addT.

If a module satisfies condition (b), we say that the module is exceptional. Equiv-
alently, we say that T is a tilting module if pdT ≤ 1, is exceptional and has n
non-isomorphic indecomposable direct summands, where n is the number of non-
isomorphic simple modules.

Remark 2.1 We recall that for a hereditary algebra H, an H-module T is said to
be a tilting module if T is exceptional and at least n of its indecomposable direct
summands are non-isomorphic.

A tilting module is said to be basic if all its direct summands are non-isomorphic.
The endomorphism ring of a tilting module over a hereditary algebra is said to be a
tilted algebra. In particular, hereditary algebras are tilted algebras.

We recall that a path from X to Y is a sequence X = X0 → X1 → ... → Xt = Y
with t > 0 of non-zero non-isomorphisms between indecomposable modules. Given
X, Y ∈ indA, we say that X is a predecessor of Y or that Y is a successor of X,
provided that there exists a path from X to Y. A tilting module T is convex if, for
a given pair of indecomposable summands of T, X Y in add T, any path from X to
Y contains only indecomposable modules in add T. Following [2], we say that a set
�T in mod A is a complete slice if T = ⊕

M∈�T
M is a convex tilting module with

EndAT hereditary. For the original definition of complete slice, we refer the reader
to [15, 16]. Tilted algebras are characterized by the existence of a complete slice in
its module category.

For a given tilting module T in mod H there exists two full disjoint subcategories
of mod H, namely

F(T) = {X ∈ modH such that HomH(T, X) = 0}

T (T) = {X ∈ modH such that Ext1
H(T, X) = 0}

the free torsion class and the torsion class, respectively.
Furthermore, if T is a convex tilting module, then modH = F(T)

⋃T (T). We
have that, in this case, F(T) is closed under predecessors and T (T) is closed under
successors.
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2.2 Cluster Categories and Cluster Tilted Algebras

For the convenience of the reader, we start this section recalling some definitions
and results of cluster categories from [6]. Let C be the cluster category associated
to H given by Db (H)/F, where F is the composition functor τ−1

D [1]. We represent
by X̃ the class of an object X of Db (H) in the cluster category. We recall that
HomC(X̃, Ỹ) = ⊕

i∈Z
HomDb (H)(X, FiY). We also recall that S = indH

⋃
H[1] is a

fundamental domain of C. If X and Y are objects in the fundamental domain, then
we have that HomDb (H)(X, FiY) = 0 for all i �= 0, 1. Moreover, any indecomposable
object in C is of the form X̃ with X ∈ S.

We say that T̃ in C is a tilting object if Ext1
C(T̃, T̃) = 0 and T̃ has a maximal num-

ber of non-isomorphic direct summands. A tilting object in C has finite summands.
There exists the following nice correspondence between tilting modules and basic

tilting objects.

Theorem [6, Theorem 3.3.]

(a) Let T be a basic tilting object in C = Db (H)/F, where H is a hereditary algebra
with n simple modules.

(i) T is induced by a basic tilting module over a hereditary algebra H′, derived
equivalent to H.

(ii) T has n indecomposable direct summands.

(b) Any basic tilting module over a hereditary algebra H induces a basic tilting object
for C = Db (H)/F.

In [7], Buan, Marsh and Reiten introduced the cluster-tilted algebras as follows.
Let T̃ be a tilting object over the cluster category C. We recall that B is a cluster tilted
algebra if B = EndC(T̃). It is also known that, if T̃ is a tilting object in C, the functor
HomC(T̃, ) induces an equivalence of categories between C/add(τ T̃) and mod B.
We will call this equivalence the [BMR]-equivalence.

Thus using the above equivalence, we can compute HomB(X ′, Y ′) in terms of the
cluster category C as follows:

HomB(HomC(T̃, X̃), HomC(T̃, Ỹ)) � HomC(X̃, Ỹ)/add(τ T̃),

where X ′ = HomC(T̃, X̃) and Y ′ = HomC(T̃, Ỹ) are B-modules.

Remark 2.2 Suppose X ′ = HomC(T̃, X̃) and Y ′ = HomC(T̃, Ỹ). If for every f :
X̃ → Ỹ, f factors through add(τ T̃) in C then we have that HomB(X ′, Y ′) = 0.

2.3 Covariantly and Contravariantly Finite Subcategories

In this section, we recall some facts on approximation morphisms, and covariantly
and contravariantly finite categories from [5] (also see [4]).

First we begin by recalling the notion of approximations. Let X be a full sub-
category of mod A closed under direct summands and isomorphisms. We say that
Y is covariantly finite over X if there exists a morphism g : Y → X, with X ∈ X ,

such that HomA(g, X ′) : HomA(X, X ′) → HomA(Y, X ′) is surjective for all X ′ ∈ X .
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Dually we say that an A-module Y is contravariantly finite over X if there exists
a morphism f : X → Y, with X ∈ X , such that HomA(X ′, f ) : HomA(X ′, X) →
HomA(X ′, Y) is surjective for all X ′ ∈ X . Furthermore, we say that the morphism
f : X → Y is a right X -approximation of Y and that the morphism g : Y → X is
a left X -approximation of Y. A morphism f : B → C is right minimal if g : B →
B is an endomorphism, and if f = fg then g is an automorphism. A right X -
approximation f : X → Y of Y is minimal if f is right minimal. Two right minimal
X -approximations are isomorphic. Moreover, by [5, Proposition 3.9], an A-module
Y is covariantly finite over X if and only if there exists a left X -approximation of Y.

The category X is called covariantly finite in mod A if every A-module Y has a left
minimal X -approximation. Contravariantly finite subcategories are defined dually
but we will not use them.

Recall from [4] that Gen(T) = T (T) is covariantly finite.

2.4 Representation Dimension

We recall that an A-module M is a generator for mod A if for each X ∈ mod
A there exists an epimorphism M′ → X with M′ ∈ add(M). Observe that A is
a generator for mod A. Dually, we say that an A-module M is a cogenerator if
for each Y ∈ mod A there exists a monomorphism Y → M′ with M′ ∈ add(M).
Note that DA is a cogenerator for mod A. In particular, any module M containing
every indecomposable projective and every indecomposable injective module as a
summand is a generator-cogenerator module for mod A.

The original definition of representation dimension (we will denote it by rep.dim)
of an artin algebra A is due to Auslander. For more details on this topic, we
refer the reader to [3]. The following is a useful characterization of representation
dimension, in the case that A is a non semisimple algebra, also due to Auslander.
The representation dimension of an artin algebra is given by

rep.dimA = inf {gl.dim EndA(M) | M is a generator-cogenerator for modA}.
A module M that reaches the minimum in the above definition is called

an Auslander generator and gl.dim EndA(M) = rep.dimA if M is an Auslander
generator.

The representation dimension can also be defined in a functorial way, which will
be more convenient for us. The next definition (see [2, 10, 11, 17]) will be very useful
for the rest of this work.

Definition 2.3 The representation dimension rep.dimA is the smallest integer i ≥
2 such that there is a module M ∈ modA with the property that, given any A-
module X,
(a) there is an exact sequence

0 → Mi−1 → Mi−2 → ... → M1 f→ X → 0

with M j ∈ add(M) such that the sequence

0 → HomA(M, Mi−1) → ... → HomA(M, M1) → HomA(M, X) → 0

is exact.
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(b) there is a exact sequence

0 → X
g→ M′

1 → M′
2 → ... → M′

i−1 → 0

with M′
j ∈ add(M) such that the sequence

0 → HomA(M′
i−1, M) → ... → HomA(M′

1, M) → HomA(X, M) → 0

is exact.

Following [10], we say that the module M has the i − 1-resolution property and that
the sequence 0 → Mi−1 → Mi−2 → ... → M1 → X → 0 is an addM-approximation
of X of length i − 1. Observe, that f : M1 → X is a right add(M)-approximation of
X and g : X → M′

1 is a left add(M)-approximation of X.

Remark 2.4 Either condition (a) or (b) imply that gl.dim EndA(M) ≤ i ([11, Lemma
2.2]). Then, if M ∈ modA and i ≥ 2, the following statements are equivalent.

• M satisfies (a) and (b) of the definition.
• M satisfies (a) and M contains an injective cogenerator as a direct summand.
• M satisfies (b) and M contains a projective generator as a direct summand.

3 Representation Dimension for Cluster Concealed Algebras

In this section we will present our main result. Let T̃ be a tilting object in a cluster
category C and let B = EndC(T̃) be the associated cluster-tilted algebra. As we are
interested in computing the representation dimension of cluster concealed algebras,
we will assume through this section that T̃ is induced by a preprojective tilting
module T on mod H. Then T̃ will be a tilting object in the transjective component
of C. We will consider H, and thus B, of infinite representation type. Then, without
loss of generality, we may choose T and τT without projective summands.

For a given complete slice � on a component of the hereditary algebra H, we
can always construct a convex tilting module of the form U = ⊕

E∈� E. We will not
distinguish between the complete slice � and the convex tilting module U . We are
going to identify both by �. Let � be a complete slice on a preprojective component
of the hereditary algebra H, such that � ⊂ T (T). Thus, T (�) ⊂ T (T). Note that this
condition implies that � does not have projective summands.

Let �′ = HomC(T̃, �̃), be the image of �̃ by the [BMR]-equivalence [7], which is
a local slice in mod B [1].

Using the [BMR]-equivalence and the fact that (F(�),T (�)) is a split torsion
theory and ind H ∪ H[1] is a fundamental domain for C , we get a partition of the
indecomposable modules in mod B as follows. Let Y be an indecomposable module
in mod B, then Y belongs to one of the following classes.

(1) Y � HomC(T̃, Q̃) with Q = P[1] where P is a projective indecomposable in
mod H.

(2) Y � HomC(T̃, G̃) with G ∈ F(�) ⊂ mod H.
(3) Y � HomC(T̃, X̃) with X ∈ T (�) ⊂ mod H.

Observe that if Y is indecomposable also Q, X or G are indecomposable.
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In the class (1), we have a finite number of non-isomorphic indecomposable B-
modules Y, since the number of non-isomorphic indecomposable projective modules
in mod H is finite. In the class (2), we also have a finite number of indecomposables
B-modules. In fact, since we choose � in the preprojective component of mod H,
we have that F(�) has only a finite number of non isomorphic indecomposable H-
modules.

Consider the B-modules, Q′ = HomC(T̃, τ H̃) and G = ⊕
G HomC(T̃, G̃) with G

non-isomorphic indecomposable modules in F(�).
We will prove that the B-module M′ = �′ ⊕ G ⊕ Q′ is an Auslander generator

for mod B. Through this section we will establish that M′ satisfy condition (a) of
Definition 2.3 for i = 3 and is a generator-cogenerator in mod B. Then by Remark
2.4 M′ will be an Auslander generator.

First we begin by proving that M′ satisfies the first part of (a), that is, we are going
to show that there exists a short exact sequence

0 → M′
2 → M′

1 → X ′ → 0

for every X ′ ∈ mod B, with M′
2 and M′

1 ∈ add(M′).
Clearly, M′ trivially approximates the modules in classes (1) and (2).
Hence we only need to prove the existence of such a sequence for the modules in

class (3). We will show that there exists a short exact sequence 0 → K → E → X →
0 in mod H with K, E ∈ add(�) that induces an exact sequence in mod B

0 → K′ → E′ → X ′ → 0

with E′, K′ ∈ add(�′) for every X ′ in class (3). Furthermore, we will prove that this
induced sequence is an add(M′)-approximation sequence for any X ′ in class (3). We
start by showing the existence of the exact sequence 0 → K′ → E′ → X ′ → 0.

Let X ′ be in class (3). Then we have that X ′ = HomC(T̃, X̃) with X ∈ T (�) ⊂
modH.

Now, since X ∈ T (�) = Gen(�) there exists an epimorphism

f : E → X → 0

which is a right add(�)-approximation of X. Since H is hereditary and X ∈ Gen(�)

by [2, Proposition p.432], we have that K = Ker f ∈ add(�) and hence that the short
exact sequence

0 → K → E → X → 0

is an add(�)-resolution of length two for X in mod H. This short exact sequence
induces a triangle in Db (H)

K → E → X → K[1]
which induces a triangle in the cluster category C

K̃ → Ẽ → X̃ → τ K̃ (∗1)

We will prove that the image of this triangle by the functor HomC(T̃, ) induces the
desired sequence in mod B. Before proving that, we establish the following technical
result.
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Lemma 3.1 Let � be a convex tilting module without projective summands and let E
be a module in add(�) and X ∈ T (�). Then HomC(X̃, τ Ẽ) = HomDb (H)(X, E[1]).

Proof Recall that � does not have projective summands. Since E ∈ add(�), E is not
a projective module and thus τ E ∈ mod H.

Since X and τ E are H-modules, then

HomC(X̃, τ Ẽ) = HomDb (H)(X, τ E) ⊕ HomDb (H)(X, E[1])
and all the other summands are zero. We shall prove that HomDb (H)(X, τ E) is zero.

Since X and τ E are H-modules, we have that

HomDb (H)(X, τ E) = HomH(X, τ E).

On the other hand, since E ∈ add(�), we have that τ E ∈ F(�). By hypothesis, we
have that X ∈ T (�). Hence HomDb (H)(X, τ E) = HomH(X, τ E) = 0 since (F ,T ) is
a torsion pair. Then the result follows. �

We are now in a position to prove that the modules in class (3) are generated by
modules in add(�′). The following proposition shows that M′ satisfies the first part
of Definition 2.3(a).

Proposition 3.2 Let T be a preprojective tilting module over mod H. Let � be a
complete slice on the preprojective component of �(modH) such that � is contained
on T (T). Then

(i) The class (3) is generated by �′ in mod B.
(ii) There exists a short exact sequence of the form 0 → K′ → E′ → X ′ → 0 with

E′, K′ ∈ add(�′) for every X ′ ∈ (3).

Proof Let X ′ = HomC(T̃, X̃) ∈ (3). We may assume that X /∈ add(�), otherwise
there is nothing to prove. We have a triangle K̃ → Ẽ → X̃ → τ K̃ in C, with K, E
in add(�), and the functor HomC(T̃, ) induces an equivalence between C/add(τ T̃)

and modB.
Applying this functor to the triangle, we obtain a long exact sequence in mod B as

follows

... → HomC(T̃, τ−1 X̃) → HomC(T̃, K̃) → HomC(T̃, Ẽ) →

→ HomC(T̃, X̃) → HomC(T̃, τ K̃) → ... (∗)

We want to construct an epimorphism from a module in add(�′) to X ′ ∈ (3). We
have that �′ = HomC(T̃, �̃) and that E is an add(�)-approximation of X. Consider
E′ = HomC(T̃, Ẽ) and f ′ = HomC(T̃, f̃ ). We will prove that f ′ : E′ → X ′ is an
epimorphism. In fact, we shall see that HomB(HomC(T̃, X̃), HomC(T̃, τ K̃)) = 0.

To do this it is enough, by Remark 2.2, to show that any morphism h : X̃ → τ K̃ in
C factors through add(τ T̃).

Since K ∈ add(�), by Lemma 3.1, it follows that h ∈ HomDb (H)(X, K[1]). Since
FτT = T[1] in C, it is enough to show that h factors through T[1] in Db (H).
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Without loss of generality we may assume that there exists H′ hereditary, de-
rived equivalent to H, such that X, T[1] and K[1] are H′-modules. In fact, take
H′ = EndHτ−1�. It follows that T[1] can be identified with a tilting H′-module and
T (T[1]) with a full subcategory of modH′.

Moreover, since K is in add(�), K[1] will be a injective H′-module. Since X ∈
mod H, we have that

0 = HomDb (H)(τ
−1T[1], X) � HomDb (H′)(τ

−1T[1], X) = HomH′(τ−1T[1], X)

since τ−1T[1] and X are H′-modules. Then we get that X ∈ F(τ−1T[1]) ⊆ mod H′.
Now, since X ∈ F(τ−1T[1]) = Cogen(T[1]) ⊂ mod H′, there exists a monomor-
phism g : X → T ′ with T ′ ∈ add(T[1]). Since K[1] is an injective H′ module
HomH′(g, K[1]) : HomH′(T ′, K[1]) → HomH′(X, K[1]) is surjective. Then there ex-
ists k : T ′ → K[1] such that kg = h, it is, we have the following commutative diagram

X
h−→ K[1]
↘ ↑

T ′

that is, h factors through add(T[1]). It follows that h̃ : X̃ → τ K̃ factors through
add(τ T̃).

Therefore we have a long exact sequence

HomC(T̃, Ẽ)
f ′

−→ HomC(T̃, X̃) −→ HomC(T̃, τ K̃) −→ ...

↘ ↗
0

and it follows that f ′ : HomC(T̃, Ẽ) → HomC(T̃, X̃) is an epimorphism with E′ =
HomC(T̃, Ẽ) ∈ add(�′). This finishes the proof of (i).

It only remains to show that the morphism HomC(T̃, τ−1 X̃) → HomC(T̃, K̃)

vanishes. To prove that, we note that τ−1� is a complete slice contained in T (T)

and τ−1 X ∈ T (τ−1�). By (i) it follows that any h ∈ HomC(τ−1 X̃, K̃) factors through
add(τ T̃) in C. Then we get that 0 → K′ → E′ → X ′ → 0 is an exact sequence. �

Now we show an example which illustrates the situation in the above proposition,
we consider a hereditary algebra H, a preprojective tilting module T, a complete
slice �, and the algebra H′ = EndHτ−1�.

Example 3.3 Let H be the hereditary algebra D̃5 given by the quiver

1

��������� 5

3 �� 4

���������

���������

2

���������
6
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The preprojective component of �(modH) is the following

Consider T = τ−2 P5 ⊕ τ−3 P6 ⊕ τ−2 P3 ⊕ τ−2 P1 ⊕ τ−2 P2 ⊕ τ−4 P5. We have that
T is a preprojective tilting H-module. Let � = τ−3 P3 ⊕ τ−4 P4 ⊕ τ−3 P1 ⊕ τ−3 P2 ⊕
τ−5 P5 ⊕ τ−5 P6. We observe that � is a complete slice contained in T (T). In this
example we can observe that the indecomposable modules on class (2) are obtained
from the indecomposable modules which are predecessors of the slice �. The
modules in class (3) are those obtained from the successors of �. Finally, we have
the modules of class (3) which are obtained of the projective’s shifts.

For example, if we choose X = τ−4 P3 we have the following add(�)-resolution
of X

0 →
2 2

5
5

3 3

→
2 2

5
6

3 3

⊕
1 2

3
3

2 2

⊕
2 1

3
3

2 2

→
3 3

6
7

4 4

→ 0

where K = τ−3 P3 and E = τ−4 P4 ⊕ τ−3 P1 ⊕ τ−3 P2.
Another example, this time we choose a preinjective module X̃ = Ĩ1 we have the

following add(�)-resolution of X

0 → (�1)
3 → �5 ⊕ �6 ⊕ (�4)

2 ⊕ �3 → I1 → 0.

Consider H′ the hereditary algebra EndH(τ−1�), then H′ is derived equivalent to
H, and the objects in the derived category of H, T[1] and �[1] can be identified with
H′-modules. In fact, let X ∈ T (τ−1�) then X can be identified with an H′-module.

We will prove now that M′ satisfies the second part of (a). We know that M′
trivially approximates the modules in the classes (1) and (2), so it is enough to
prove that

0 → HomB(N′, K′) → HomB(N′, E′) → HomB(N′, X ′) → 0

is exact for any N′ ∈add(M′), X ′ ∈ (3).
Since HomB(M′, ) is left exact, we only need to prove that any morphism h′ :

M′
1 → X ′ with M′

1 ∈ add(M′) factors trough E′, that is there exists k′ : M′
1 → E′ such

that h′ = f ′k′ or equivalently that the morphism

HomB(M′, E′)
HomB(M′, f ′)−→ HomB(M′, X ′)

is an epimorphism.
In order to do this, we need the next technical result.



Representation Dimension of Cluster-Concealed Algebras 1011

Lemma 3.4 Let H be a hereditary algebra and � be a complete slice. Then. for any
indecomposable H-module G in F(�) and any indecomposable H-module X in
T (�), we have that

HomC(G̃, X̃) = HomH(G, X).

Proof We can assume that G̃ and X̃ are in the fundamental domain of C. Therefore,
by [6], HomC(G̃, X̃) = HomDb (H)(G, X) ⊕ HomDb (H)(G, F(X)). We shall prove
that HomDb (H)(G, F(X)) = 0.

If X is an injective H-module, then τ−1 X = P[1] with P a indecomposable
projective module in modH, then F(X) = τ−1 X[1] = P[2] and

HomDb (H)(G, F(X)) = HomDb (H)(G, P[2]) = Ext2
H(G, P) = 0,

since H is hereditary. Otherwise if X is not an injective H-module , τ−1 X ∈ modH.
Then

HomDb (H)(G, τ−1 X[1]) = Ext1
H(G, τ−1 X) � DHomH(τ−1 X, τG),

where the last isomorphism is given by the Auslander-Reiten formula.
We may assume that G is not a projective H-module, since otherwise

Ext1
H(G, τ−1 X) = 0. Then we have that τG ∈ F(�) and τ−1 X ∈ T (�) since

T (�) is closed under successors and F(�) is closed under predecessors. There-
fore, HomH(τ−1 X, τG) = 0. Thus, HomDb (H)(G, τ−1 X[1]) = 0 and HomC(G̃, X̃) =
HomDb (H)(G, X) = HomH(G, X) since G and X are H-modules.

�

Now, we are a in position to prove that f ′ : E′ → X ′ is an add(M′)-approximation
of X ′.

Proposition 3.5 Let M′ be the B-module, M′ = �′ ⊕ Q′ ⊕ G, where G , Q′ and �′ are
considered as before. Then the map HomB(N′, f ′) : HomB(N′, E′) → HomB(N′, X ′)
is an epimorphism for every module X ′ ∈ (3), every N′ ∈ add(M′) and where E′ is the
add(�′)-approximation constructed before.

Proof Let X ′ ∈ (3). Again as in Proposition 3.2, we may assume that X ′ =
HomC(T̃, X) /∈ add(�′) since otherwise there is nothing to prove. Then X ∈
T (τ−1�).

Let N′ be an indecomposable direct summand of M′.
We will prove that the result holds for N′ in the following two cases:

(i) N′ ∈ add(�′ ⊕ G)

(ii) N′ ∈ add(Q′)

Then the Proposition follows for M′ by the additivity of the functor HomB(N′, ).
Assume that N′ = HomC(T̃, Ñ) ∈ add(�′ ⊕ G). Using the [BMR]-equivalence,
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we have that Ñ is induced by an indecomposable H-module N ∈ F(τ−1�). We are
going to show that there exists a commutative diagram

N′
↙ ↓

E′ → X ′

for every non-zero map h′ : N′ → X ′. That is, there exists a k′ : N′ → E′ in modB
such that f ′k′ = h′.

Consider h′ : N′ → X ′. Hence,

h′ ∈ HomB(N′, X ′)=HomB(HomC(T̃, Ñ), HomC(T̃, X̃)) � HomC(Ñ, X̃)/add(τ T̃).

Then there exists h̃ ∈ HomC(Ñ, X̃) such that h′ = HomC(T̃, h̃). Since h′ �= 0, we may
assume that h̃ does not factor through add(τ T̃) in C. Let us compute HomC(Ñ, X̃)

HomC(Ñ, X̃) = HomDb (H)(N, X) ⊕ HomDb (H)(N, F X)

Since N ∈ F(τ−1�) and X ∈ T (τ−1�), by Lemma 3.4, we infer that HomC(Ñ, X̃) =
HomH(N, X) and h̃ : N → X can be identified to a morphism in mod H.

Hence, h′ = HomC(T̃, h̃) with h̃ ∈ HomH(N, X). Since f : E → X is an add(�)-
approximation of X ∈ modH and � is a complete slice in mod H, any morphism
from N to X, factorize through E since T (�) is covariantly finite, see [4]. Then,
there exists k : N → E such that the following diagram commutes

N
↙ ↓

E → X

that is, f k = h. This diagram induces the following commutative diagram in C

Ñ
↙ ↓

Ẽ → X̃

Applying to the above diagram HomC(T̃, ) we obtain a diagram as follows

HomC(T̃, Ñ)

↙ ↓
HomC(T̃, Ẽ) → HomC(T̃, X̃)

Taking k′ = HomC(T̃, k̃), we have that f ′k′ = HomC(T̃, f̃ k̃) = HomC(T̃, h̃) = h′.
Then, h′ : N′ → X ′ factors through E′. Observe that k′ �= 0, otherwise h̃ would
factorize by add(τ T̃). This finishes the proof of the first case.

It only remains to prove that, if we have a map from a B-module Q′ =
HomC(T̃, Q̃) to any module X ′ ∈ (3), this map factors through E′. It follows from
the previous case by replacing H with H′ = EndHτ H. Then Q = P[1] ∼= τ P in C is
identified with the projective H′-module τ P. It follows that τ P ∈ FH′(�) and, if X in
not an injective H-module, then X ∈modH′ and X ∈ TH′(�). By (i), it follows that
HomB(τ P, f ′) is an epimorphism as desired.

In the case that X is an injective H-module, then F X ∈add H[2]. So
HomC(Q̃, X̃) =HomDb (H)(P([1], X)⊕HomDb (H)(P[1], F X) = 0 Then, there is

nothing to prove in this case. This finishes the proof of the proposition. �
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By Proposition 3.5 there exists an add(M′)-resolution of length at most two, for
every module in mod B. Note that we have proved that M′ satisfies the condition (a)
of Definition 2.3 for i = 3, which implies that gl.dim EndB(M′) ≤ 3. We now proceed
to state and prove our main result.

Theorem 3.6 Let B be a cluster-concealed algebra of inf inite representation type.
Then rep.dimB = 3.

Proof Let M′ be the module of the above proposition. Observe that if I is an injective
module in mod B, then I = HomC(T̃, τ 2T̃). Since τT does not have projective
summands and F(T) ⊂ F(�), then τ 2T ∈ F(�). Therefore any indecomposable
injective module in mod B is a direct summand of G. The same occurs for any
indecomposable projective P ∈mod B. In fact, P = HomB(T̃, T̃) and again T lies
in F(�). It follows that add(G) contains every indecomposable projective and every
indecomposable injective module. Then G is a generator-cogenerator for mod B, and
hence M is a generator-cogenerator for mod B. Finally, applying Proposition 3.5, we
have that gl.dim EndB(M′) ≤ 3 getting that rep.dimB ≤ 3. �

We give now an application of our main theorem. Let A be a basic connected
finite dimensional algebra. A is said to be of minimal infinite type if it is of infinite
representation type and for each vertex e in the quiver of A, we have that A/AeA is
of finite type. Recall that, for any cluster-tilted algebra B with a vertex e in the quiver
of B, we have that B/BeB is again a cluster-tilted algebra (see [8] Section 2).

Recall that all minimal cluster-tilted algebras of infinite representation type
are endomorphisms algebras of preprojective tilting modules over tame hereditary
algebras (see [9]). So, as an immediate consequence of Theorem 3.6, we have the
following corollary.

Corollary 3.7 Let B be a minimal cluster-tilted algebra of inf inite representation type.
Then rep.dimB = 3.

Finally, we give an example showing that the given proof can not be extended to
a tilting module T having regular indecomposable summands.

Example 3.8 Let H be the hereditary algebra of the Example 3.3. Consider the
tilting module T = τ−2 P5 ⊕ τ−3 P6 ⊕ τ−2 P4 ⊕ τ−2 P1 ⊕ τ−2 P2 ⊕ S3. Observe that the
simple module associated to the vertex 3 is a regular module over mod H.

Let B =EndC(T̃). The algebra B is given by the quiver

3
α

��������� β

���������

1

γ ��������� 2

δ���������

4

λ ���������

μ���������

ε

��

5 6

with the relations εα = εβ = γ ε = δε = 0 and αγ = βδ.
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Now, we are going to show that the existence of the exact sequence 0 → K′ →
E′ → X ′ → 0 in mod B depends on the module X ′. We note that, since one of the
summands of T is regular, no preprojective complete slice can be entirely contained
in T (T). Therefore, any choice of � will not satisfy the hypothesis of Proposition 3.2.
So, the conclusion of the proposition does not follow. In fact, the conclusion is false
in some cases. For example, if we choose � = τ−3 H, then �′ = HomC(T̃, �̃) is given
by the following direct sum of indecomposable B-modules indicated by their vector
dimension

�′ = �′
1 ⊕ �′

2 ⊕ �′
3 ⊕ �′

4 ⊕ �′
5 ⊕ �′

6 =

=
1

0 1
2

1 1

⊕
1

1 0
2

1 1

⊕
1

1 1
3

2 2

⊕
1

0 0
2

1 1

⊕
1

0 0
1

0 1

⊕
1

0 0
1

1 0

.

Consider X = I3 the indecomposable injective H-module associated to the vertex
3. Then there is an exact sequence

0 → �5
2 ⊕ �6

2 ⊕ �4 ⊕ �3 → �1
3 ⊕ �2

3 → I3 → 0

in mod H which is an add(�)-resolution of I3.
The induced sequence

0 → �′
5

2 ⊕ �′
6

2 ⊕ �′
4 ⊕ �′

3 → �′
1

3 ⊕ �′
2

3 → I′
3 → 0

is not exact. In fact this sequence is given by

0 −→
6

1 1
9

5 5

−→
6

3 3
12

6 6

−→
1

2 2
3

1 1

−→ 0

which is not exact.
Finally, we observe that, for this particular choice of � = τ−3 H, the induced

sequence is not exact for every B-module X ′ in (3). This example shows that the
hypothesis of Proposition 3.2 cannot be omitted.
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