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REPRESENTATION DIMENSION OF CLUSTER-CONCEALED

ALGEBRAS

ALFREDO GONZÁLEZ CHAIO AND SONIA TREPODE

Abstract. We are going to show that the representation dimension of a
cluster-concealed algebra B is 3. We compute its representation dimension
by showing an explicit Auslander generator for the cluster-tilted algebra.

1. Introduction

Auslander [3] introduced the concept of representation dimension for artin
algebras, motivated by the connection of arbitrary artin algebras with repre-
sentation finite artin algebras. He expected this notion to give a reasonable
way of measuring how far an artin algebra is from being of representation fi-
nite type. The representation dimension is a Morita-invariant of artin algebras
and characterizes the artin algebras of finite representation type. It was shown
by Auslander in [3] that an algebra A is representation-finite if and only if
rep.dimA ≤ 2. Later, Iyama proved in [14] that the representation dimension
of an artin algebra is always finite, using a relationship with quasihereditary
algebras. The interest in representation dimension revived when Igusa and
Todorov showed that the representation dimension is related to the finitistic
dimension conjecture. They proved that if an artin algebra has representation
dimension at most three, then its finitistic dimension is finite [13]. Recently,
Rouquier showed in [18] an exterior algebra with representation dimension 4.
In fact, he has constructed examples of algebras with arbitrarily large represen-
tation dimensions.

On the other hand, Cluster algebras were introduced by Fomin-Zelevinsky
[19]. Later, Marsh-Reineke-Zelevinsky [15] found that there is a deep connec-
tion between cluster algebras and quiver representations. Buan-Marsh-Reineke-
Reiten-Todorov [6] defined the cluster category and developed a tilting theory
using a especial class of objects, namely the cluster tilting objects. In [8],
Buan-Marsh-Reiten introduced the cluster-tilted algebras as the endomorphism
algebras EndC(T )

op of a cluster-tilting object T in a cluster category C. These
algebras are connected to tilted algebras, which are the algebras of the form
EndH(T )op for a tilting module T over a hereditary algebra H. This motivates
us to investigate the relationship between the module theory of cluster-tilted
algebras and the module theory of hereditary algebras.

Key words and phrases. Auslander generator, Cluster-concealed, Cluster-tilted algebra,
Representation dimension.
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A cluster concealed algebra is given by B = EndC(T̃ )
op where T is a cluster

tilting object induced by a postprojective tilting H-module. The objective
of this paper is to compute the representation dimension of cluster-concealed
algebras by showing an explicit Auslander generator. In order to do this, tilting
and torsion theory of hereditary algebras became very useful tools. Also the
concept of slices and local slices, the last ones defined in [1], became a key
tool to find Auslander generators for cluster-concealed algebras. The notions of
covariantly and contravariantly finite categories[5] are very useful for the proof,
together with their relationship with torsion pairs in tilted algebras [4].

In section 2, we give some notations and preliminary concepts needed for
proving our main result. In section 3, we present our main theorem and the
previous results required for proving it.

2. preliminaries

Through this paper we are going to use the following notation. A denotes a
finite dimensional algebra over an algebraically closed field and mod A repre-
sents the category of all finitely generated right A-modules. H denotes a finite
dimensional hereditary algebra and we denote the bounded derived category of
H by Db(H) and by [ ] the shift functor. We will often identify the objects
concentrated in degree zero with the corresponding H-module.

2.1. Tilting theory. We start this section by giving the definition of tilting
module. For more details on tilting modules see [12]. Let A be an algebra and
T an A-module. T is said to be a tilting module in modA if it satisfies the
following conditions

(a) pdT ≤ 1.
(b) Ext1A(T, T ) = 0.
(c) 0 → A → T0 → T1 → 0 with T0 and T1 in addT .

If a module satisfies condition (b), we say that the module is exceptional,
or equivalently, we say that T is a tilting module if pdT ≤ 1, is rigid and has
n non-isomorphic indecomposable direct summands, where n is the number of
non-isomorphic simple modules.

Remark 2.1. We recall that for a hereditary algebra H, an H-module T is said
to be a tilting module if T is rigid and has n non-isomorphic indecomposable
direct summands.

A tilting module is said to be basic if all of its direct summands are non-
isomorphic. The endomorphism ring of a tilting module over a hereditary alge-
bra is said to be a tilted algebra. In particular, hereditary algebras are tilted
algebras.

We recall that a path fromX to Y is a sequence of indecommposable modules
and non-zero morphisms X = X0 → X1 → ... → Xt = Y . Given X,Y ∈ indA,
we say that X is a predecessor of Y or that Y is a successor of X, provided
that there exists a path from X to Y . A tilting module T is convex if, for a
given pair of indecomposable summands of T , X Y in add T , any path from
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X to Y contains only indecomposable modules in add T . Following [2], we say
that a set ΣT in mod A is a complete slice if T =

⊕
M∈ΣT

M is a convex
tilting module with EndAT hereditary. For the original definition of complete
slices, we refer to [16], [17]. Tilted algebras are characterized by the existence
of a complete slice in its module category.

For a given tilting module in modH there exist two full disjoint subcategories
of modH, namely

F(T ) = {X ∈ modH such that HomH(T,X) = 0}

T (T ) = {X ∈ modH such that Ext1H(T,X) = 0}

The free torsion class and torsion class respectively.

Furthermore, if T is a convex tilting, then modH = F(T )
⋃

T (T ). We have
that, in this case, F(T ) is closed under predecessors and T (T ) is closed under
successors.

2.2. Cluster categories and cluster tilted Algebras. For the convenience
of the reader, we start this section recalling some definitions and results of
cluster categories from [6]. Let C be the cluster category associated to H and
given by Db(H)/F , where F is the composition functor τ−1

D
[1]. We represent

by X̃ the class of an object X of Db(H) in the cluster category. We recall

that HomC(X̃, Ỹ ) =
⊕

i∈ZHomDb(H)(X,F iY ). We recall that S = indH
⋃

H[1]
is the fundamental domain of C. If X and Y are objects in the fundamental
domain, then we have that HomDb(H)(X,F iY ) = 0 for all i 6= 0, 1. Moreover,

any object in C is of the form X̃ with X ∈ S.

For C, we say that T̃ in C is a tilting object if Ext1
C
(T̃ , T̃ ) = 0 and T̃ has

a maximal number of non-isomorphic direct summands. A tilting object in C
has finite summands.

There exists the following nice correspondence between tilting modules and
basic tilting objects.

Theorem [6, Theorem 3.3.]

(a) Let T be a basic tilting object in C = Db(H)/F , where H is a hereditary
algebra with n simple modules.
(i) T is induced by a basic tilting module over a hereditary algebra H ′,

derived equivalent to H.
(ii) T has n indecomposable direct summands.

(b) Any basic tilting module over a hereditary algebra H induces a basic
tilting object for C = Db(H)/F .

In [8], Buan, Marsh and Reiten introduced the cluster-tilted algebra. Let T̃
be a tilting object over the cluster category C, we recall that B is the cluster

tilted algebra if B = EndC(T̃ ). It is also shown in [8] that, if T̃ is a tilting

object in C, the functor HomC(T̃ , ) induces an equivalence of categories between

C/add(τ T̃ ) and modB.
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Thus using the equivalence above, we can compute the HomB(X
′, Y ′) in

terms of the cluster category C.

HomB(HomC(T̃ , X̃),HomC(T̃ , Ỹ )) ≃ HomC(X̃, Ỹ )/add(τ T̃ ),

where X ′ = HomC(T̃ , X̃) and Y ′ = HomC(T̃ , Ỹ ) are B-modules.

Remark 2.2. Note that, if X ′ = HomC(T̃ , X̃) and Y ′ = HomC(T̃ , Ỹ ) , then

we have that HomB(X
′, Y ′) = 0 if for every f : X̃ → Ỹ , f factors through

add(τ T̃ ) in C.

2.3. Covariantly and contravariantly categories. In this section, we recall
some facts on approximation morphisms and covariantly and contrava-riantly
finite categories from [5], also see [4].

First we begin by recalling the notion of approximations. Let X be a full
subcategory of modA closed under direct summands and isomorphisms. We
say that an A-module Y is contravariantly finite over X if there exists a mor-
phism f : X → Y , with X ∈ X , such that HomA(X

′, f) : HomA(X
′,X) →

HomA(X
′, Y ) is surjective for all X ′ ∈ X . We say that Y is covariantly fi-

nite over X if there exists a morphism g : Y → X, with X ∈ X , such that
HomA(g,X

′) : HomA(X,X ′) → HomA(Y,X
′) is surjective for all X ′ ∈ X . Fur-

thermore, we say that the morphism f : X → Y is a right X -approximation
of Y and that the morphism g : Y → X is a left X -approximation of Y . A
morphism f : B → C is right minimal if g : B → B an endomorphism, and
f = fg then g is an automorphism. A right X -approximation f : X → Y of
Y is minimal if f is right minimal. Two right minimal X -approximation are
isomorphic.

Moreover, by [5, Proposition 3.9], an A-module Y is contravariantly finite
over X if and only if there exists a right X -approximation of Y and an A-module
Y is covariantly finite over X if and only if there exists a left X -approximation
of Y .

The category X is called covariantly (contravariantly) finite in modA if every
A-module Y has a left (right) minimal X -approximation.

Recall from [4] that Gen(T ) = T (T ) is covariantly finite and F(T ) =Cogen(τT )
is contravariantly finite.

2.4. Representation dimension. We recall that an A-module M is a genera-
tor for modA if for each X ∈ modA, there exists an epimorphism M ′ → X with
M ′ ∈add(M). Observe that A is a generator for modA. Dually, we say that an
A-module M is a cogenerator if for each Y ∈ modA there exists a monomor-
phism Y → M ′ withM ′ ∈add(M). Note that DA is a cogenerator for modA. In
particular, any module M containing every indecomposable projective and ev-
ery indecomposable injective module as a summand is a generator-cogenerator
module for modA.

The original definition of representation dimension (we will note it by rep.dim)
of an artin algebra A is due to Auslander. For more facts on this topic, we refer
the reader to [3]. The following is a nice characterization of representation di-
mension, in the case that A is a non semisimple algebra, also due to Auslander.
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This characterization is given as follows

rep.dimA = inf {gl.dim EndA(M)/M is a generator-cogenerator for modA}

A module M that reaches the minimum is called an Auslander generator

and gl.dim EndA(M) = rep.dimA if M is an Auslander generator.
The representation dimension can also be defined in a functorial way, which

will result us more convenient. The next definition (see [2],[11],[18]) will be very
useful for the rest of this work.

Definition 2.3. The representation dimension rep.dimA is the smallest integer
i ≥ 2 such that there is a module M ∈ modA with the property that, given any
A-module X

(a) , there is an exact sequence of

0 → M−i+2 → M−i+3 → ... → M0 f
→ X → 0

with M j ∈ add(M) such that the sequence

0 → HomA(M,M−i+2) → ... → HomA(M,M0) → HomA(M,X) → 0

is exact.
(b) there is a exact sequence

0 → X
g
→ M ′

0 → M ′
1 → ... → M ′

i−2 → 0

with M ′
j ∈ add(M) such that the sequence

0 → HomA(M
′
−i+2,M) → ... → HomA(M

′
0,M) → HomA(X,M) → 0

is exact.

following [11], we say the module M has the i-resolution property and that
the sequence 0 → M−i+2 → M−i+3 → ... → M0 → L → 0 is an addM -
approximation of L of length i. Note, that f : M0 → X is a right add(M)-
approximation of X and g : X → M ′

0 is a left add(M)-approximation of X.

Remark 2.4. Note that either condition (a) or (b) implies that gl.dim EndA(M)
≤ i+1. Then, if M ∈ modA and i ≥ 2, the following statements are equivalent

• M satisfies (a) and (b) of the definition.
• M satisfies (a) and M contains an injective cogenerator as a direct
summand.

• M satisfies (b) and M contains a projective generator as a direct sum-
mand.

We have rep.dimA =rep.dimAop.
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3. Representation dimension for cluster concealed algebras

In this section we present our main result. Let T̃ be a tilting object in a
cluster category C and let be B =EndC(T̃ ), the associated cluster-tilted alge-
bra. To simplify some proofs we choose without lose of generality T and τT
without projective summands. As we are interested in compute the represen-
tation dimension of cluster concealed algebras, through this section T will be
a postprojective tilting module on modH and T̃ denotes the class of T on the
cluster category C. Recall that T̃ is a tilting object in C. We consider H, and
thus B, of infinite representation type.

We consider a complete slice Σ on the postprojective component of the hered-
itary algebra H, such that Σ ∈ T (T ). Note that this condition implies Σ does
not have projective summands. We can construct a convex tilting module of
the form U =

⊕
E∈ΣE, and we denote T (Σ) to the category T (U) and F(Σ) to

F(U). Since Σ ∈ T (T ) also U ∈ T (T ) and thus we have T (Σ) ⊂ T (T ). Then

we have Σ′ = HomC(T̃ , Σ̃), the image of Σ̃ by the BMR-equivalence [8], which
is a local slice in modB [1].

Using the BMR-equivalence, we can describe the indecomposable modules in
modB as follows. Let Y be an indecomposable in modB, then we have one of
the following cases

(1) Y ≃ HomC(T̃ , Q) with Q = P̃ [1] with P projective indecomposable in
modH.

(2) Y ≃ HomC(T̃ , G̃) with G ∈ F(Σ) ⊂ modH.

(3) Y ≃ HomC(T̃ , X̃) with X ∈ T (Σ) ⊂ modH.

Observe that if Y is indecomposable also Q,X or G is indecomposable. Since
we choose Σ in the postprojective component of modH, we have that F(Σ) has
only a finite number of non isomorphic indecomposable H-modules, then we
only have a finite number of isomorphism classes of indecomposable B-modules
Y satisfying the second case. As well as in the first case, because we only have
a finite number of indecomposable projective H-modules. This implies we can

consider the following modules, Q′ = HomC(T̃ , H̃[1]) and G =
⊕

GHomC(T̃ , G)
with G indecomposable in F(Σ), in modB.

We want to determine an Auslander generator for modB, this is a module
M with the properties of Definition 2.3, so we want a module which provides
add(M)-approximations for every one of the modules in the previous cases.
Since by the Remark 2.4, a module M satisfies Definition 2.3 if satisfies con-
dition (a) and contains a cogenerator as a direct summand, we will focuses on
find modules that satisfies condition (a). If we let M ′ to be the module G ⊕Q′,
clearly, M ′ approximates trivially the modules of the first and second case.

Hence we will concentrate from now on, in the modules of the third case. For
a given complete slice Γ we consider the set DΓ defined as

DΓ = {Y ∈ modB such that Y = HomC(T̃ , X̃) with X ∈ T (Γ)},

that is the modules in DΣ are the ones of the third case. Our objective now
is to approximate the modules of DΣ by Σ′.
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Let Y ∈ DΣ, then we have Y = HomC(T̃ , X̃) with X ∈ T (Σ) ⊂ modH.
Now, X ∈ T (Σ) = Gen(Σ) then there exist an epimorphism f

f : E → X → 0

a right add(Σ)-approximation of X. Recall that a complete slice on a tilted
algebra induces a convex tilting module, then since H is hereditary and X ∈
Gen(Σ) by [2, Proposition :)], we have that K = Kerf ∈ add(Σ) and hence
that the exact short sequence

0 → K → E → X → 0

is an add(Σ)-resolution of length two for X. We want to construct a similar
exact sequence in modB for Y . The idea is to prove that the image of this
sequence in C induces such a sequence in modB.

This short exact sequence induces a triangle in Db(H)

K → E → X → K[1]

which induces a triangle in the cluster category C by taking the respective
quotient classes

K̃ → Ẽ → X̃ → τK̃ (∗1)

Our objective is to study the image of this triangle in mod B by the functor
HomC(T̃ , )

Lemma 3.1. Let E be a module in add(Σ) and X ∈ T (Σ). Then HomC(X̃, τẼ) =
HomDb(H)(X,E[1]).

Proof. Recall that Σ do not have projective summands, hence, since E is in
add(Σ), E is not projective and thus τE is in modH.

HomC(X̃, τẼ) =
⊕

i∈Z

HomDb(H)(X,F iτE).

since X and τE are H-modules, thus X̃ and τẼ are in the fundamental
domain of C therefore

HomC(X̃, τẼ) = HomD(X, τE) ⊕HomD(X,E[1])

where all the others summands are zero.
We are going to see that also HomDb(H)(X, τE) is zero.

Now HomDb(H)(X, τE) = HomH(X, τE) , since X and τE are H modules.

Moreover, since E ∈ add(Σ) we have that τE ∈ F(Σ) and X ∈ T (Σ).
Hence HomDb(H)(X, τE) = HomH(X, τE) = 0 because (F ,T ) is a torsion

pair. �
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we are in conditions to show that the modules in DΣ are generated by modules
in add(Σ′).

Proposition 3.2. Let T be a postprojective tilting module over modH. Let Σ
be a complete slice on the postprojective component of modH such that Σ is
contained on T (T ). Then

(i) DΣ ⊂ Gen(Σ′) in modB.
(ii) Moreover, consider τ−1Σ, wich is also a complete slice, there exist a

short exact sequence of the form

0 → K ′ → E′ → Y → 0

with E′,K ′ ∈ add(Σ′) for every Y ∈ Dτ−1Σ.

Proof. Let Y ∈ DΣ, recall we have a triangle K̃ → Ẽ → X̃ → τK̃ in C
and recall the functor HomC(T̃ , ) induces an equivalence between C/add(τ T̃ )

and modB.
Now, applying this functor to the last triangle, we obtain a long exact se-

quence in modB

... → HomC(T̃ , X̃[−1]) → HomC(T̃ , K̃) → HomC(T̃ , Ẽ) →

→ HomC(T̃ , X̃) → HomC(T̃ , τK̃) → ... (∗)

We want to construct an epimorphism from add(Σ′) to Y ∈ DΣ, we know

that Σ′ = HomC(T̃ , Σ̃) and E is an add(Σ)-approximation. Consider E′ =

HomC(T̃ , Ẽ) and f∗ = HomC(T̃ , f̃). We are going to prove that f∗ : E′ → Y is
an epimorphism. In order to do this, it suffices to see that
HomB(HomC(T̃ , X̃),HomC(T̃ , τK̃)) = 0.

Since HomB(HomC(T̃ , X̃),HomC(T̃ , τK̃)) ≃ HomC(X̃, τK̃)/add(τ T̃ ), then

consider h : X̃ → τK̃ in C, then by remark 2.2, if h factorize by add(τ T̃ ),

we have that HomB(HomC(T̃ , X̃),HomC(T̃ , τK̃)) = 0.
By lemma 3.1, sinceK ∈ add(Σ) we can assume that h ∈ HomDb(H)(X,K[1]).

Since we need to prove that h factorizes by add(τ T̃ ) we are going to consider
FτT = T [1], then is enough to show that h factorizes by T [1] in Db(H).

We can assume without lose of generality that there exist H ′ hereditary,
derived equivalent to H such that X,T [1] and K[1] are H ′ modules, in fact, we
can choose H ′ =EndH(τ

−1Σ).
Then T [1] results a tilting module over H ′ and we may consider the category

T (T [1]) which is a full subcategory of modH ′.
Under the hypothesis taken, we know that K ∈ add(Σ) ⊂ T (Σ) ⊂ T (T ).

Then we have K[1] ∈ T (T [1]) and since X is in modH we also have 0 =
HomDb(H)(T [1],X) ≃ HomDb(H′)(T [1],X) = HomH′(T [1],X) because T [1] and

X are H ′-modules. Thus we have shown that X ∈ F(T [1]).
Therefore if h : X → K[1] we observe that, since T (T [1]) is covariantly finite

[4] and T (T [1]) =GEN(T [1]), there exist a left minimal T (T [1])-approximation
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ofX g : X → T ′ with T ′ ∈ add(T [1]) such that HomH′(g,K[1]) : HomH′(T ′,K[1]) →
HomH′(X,K[1]) is surjective. Hence there exist k : T ′ → K[1] such that kg = h.

We have the following commutative diagram:

X
h

−→ K[1]
ց ↑

T ′

it is, h should factorizes by add(T [1]), thus h : X̃ → τK̃ factorizes by

add(τ T̃ ).
Therefore we have that the long exact sequence in (∗) factors through zero

HomC(T̃ , Ẽ)
f∗

−→ HomC(T̃ , X̃) −→ HomC(T̃ , τK̃) −→ ...
ց ր

0

and so f∗ : HomC(T̃ , Ẽ) → HomC(T̃ , X̃) is an epimorphisms with E′ =

HomC(T̃ , Ẽ) ∈ add(Σ′).
This finishes the proof of (i).

Only remains to see that HomC(T̃ , X̃[−1]) → HomC(T̃ , K̃) is zero also. Then,
as we did before, we want to see that

HomB(HomC(T̃ , X̃[−1]),HomC(T̃ , K̃)) = 0, then we are going to prove that

any h ∈ HomC(X̃[−1], K̃) factors through add(τ T̃ ). Observe that X̃[−1] =

τ−1X̃ then we have that

HomC(τ
−1X̃, K̃) = HomDb(H)(τ

−1X,K)⊕HomDb(H)(τ
−1X, τ−1K[1])

where HomDb(H)(τ
−1X,K) ≃ HomDb(H)(X, τK) = HomH(X, τK) = 0 be-

cause X ∈ T (Σ) and τK ∈ F(Σ).

Therefore HomC(τ
−1X̃, K̃) = HomDb(H)(τ

−1X, τ−1K[1]) ≃ HomDb(H)(X,K[1]),

then we know by (i) that any h in HomC(τ
−1X̃, K̃) will factor through add(τ T̃ )

in C and we have

0 → HomC(T̃ , K̃) → HomC(T̃ , Ẽ) → HomC(T̃ , X̃) → 0

�

Therefore, if we let M be the B-module M ′ ⊕ Σ′ our last proposition shows
that we have M generates all modules in modB because add(Σ′) is contained
in add(M). More over, our next lemma will prove that the epimorphism cons-
tructed before is an add(Σ′)-approximation of the modules in DΣ.

Lemma 3.3. Let E′ = HomC(T̃ , Ẽ). Then, if Y ∈ DΣ the epimorphism f∗ :
E′ → Y , constructed before, is an add(Σ′)-approximation of Y .

Proof. Let U ′ be an indecomposable module in add(Σ′). We want to show that,
HomB(U

′, E′) → HomB(U
′, Y ) → 0 is exact, that is, if 0 6= h ∈ HomB(U

′, Y )
there exists k ∈ HomB(U

′, Y ) such that f∗k = h.



10 GONZÁLEZ CHAIO AND TREPODE

Using the [BMR]-equivalence we can assume there exists X ∈ T (T ), U ∈

add(Σ) such that U ′ = HomC(T̃ , Ũ) and Y = HomC(T̃ , X̃). Hence we can write,

h ∈ HomB(U
′, Y ) = HomB(HomC(T̃ , Ũ ),HomC(T̃ , X̃)) ≃ HomC(Ũ , X̃)/add(τ T̃ ),

then there exist h′ ∈ HomC(Ũ , X̃) such that h = HomC(T̃ , h
′). Since h 6= 0

we can assume that h′ don’t factorize by the add(τ T̃ ) in C. Let’s compute

HomC(Ũ , X̃)

HomC(Ũ , X̃) = HomDb(H)(U,X) ⊕HomDb(H)(U,FX)

Since U andX are taken in the fundamental domain, even more U is postprojective(U
is not contained in any oriented cycle), we know that at most one of the last
terms is different from zero, [8].

Observe that HomDb(H)(U,FX) = HomDb(H)(U, τ
−1X[1]) = Ext1H(U, τ−1X) =

DHomH(τ−1X, τU), and HomH(τ−1X, τU) = 0 because τ−1X ∈ T (Σ) and
U ∈ F(Σ).

Then we have only one case, h′ ∈ HomDb(H)(U,X).

Suppose h′ ∈ HomDb(H)(U,X) then h′ ∈ HomH(U,X) because U and X

are H-modules, and then, since f : E → X is an add(Σ)-approximation of
X ∈ mod(H), there exist k′ : U → E such that the following diagram commutes

U
ւ ↓

E → X

it is, fk′ = h′. This commutative diagram induces a commutative diagram
on Db(H), which induces the following commutative diagram in C

Ũ
ւ ↓

Ẽ → X̃

Again, applying HomC(T̃ , ) we obtain

HomC(T̃ , Ũ )
ւ ↓

HomC(T̃ , Ẽ) → HomC(T̃ , X̃)

Taking k = HomC(T̃ , k
′) we have that f∗k = HomC(T̃ , f̃k

′) = HomC(T̃ , h
′) =

h. Then, h : U ′ → Y factors through E′; observe that k 6= 0, otherwise h′

would factorize by add(τ T̃ ). �

We are going to see now that this approximation is in fact, an add(M)-
approximation of the modules in DΣ; To achieve this objective we are going

to prove that the morphism HomB(M
′, E′)

HomB(M ′,f∗)
−→ HomB(M

′, E′) is an
epimorphism. Recall M ′ = G

⊕
Q′. Before we establish our next result, we are

going to state the next technical lemma.
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Lemma 3.4. For any indecomposable G in F(Σ) and any indecomposable X
in T (Σ)

HomC(G̃, X̃) = HomH(G,X).

Proof. We know that G and X are indecomposable H-modules. We can assume
that G̃ and X̃ are in the fundamental domain of C. Therefore we can compute
HomC(G̃, X̃) = HomDb(H)(G,X) ⊕ HomDb(H)(G,F (X)), because since X and

G are in the fundamental domain, we know by [6], that only this summands
can be different from zero.

We want to see that HomDb(H)(G,F (X)) = 0.

If X is injective then τ−1X = P [1] with P a projective indecomposable
module in modH, so F (X) = τ−1X[1] = P [2] and HomDb(H)(G,F (X)) =

HomDb(H)(G,P [2]) = Ext2H(G,P ) = 0, because H is hereditary.

If X is not injective, then we have that τ−1X ∈ modH and then

HomDb(H)(G, τ−1X[1]) = Ext1H(G, τ−1X) ≃ DHomH(τ−1X, τG)

where the last isomorphism is given by the Auslander-Reiten formula, but we
have, if G is not projective, τG ∈ F(Σ) and τ−1X ∈ T (Σ) because T (Σ) is
closed under successors and F(Σ) is closed under predecessors, so HomH(τ−1X, τG) =
0 and therefore HomDb(H)(G, τ−1X[1]) = 0.

if G is projective we have Ext1H(G, τ−1X) ≃ DHomH(τ−2X,G) = 0, assum-
ing τ−2X not injective, otherwise τ−2X = P [1] and Ext2H(G,P ) = 0.

Then we have proof that HomDb(H)(G,F (X)) = 0, and so HomC(G̃, X̃) =

HomDb(H)(G,X) = HomH(G,X) because G and X are H-módules. �

We are now in conditions, of proving that f∗ : E′ → Y is an add(Σ ⊕ G)-
approximation of Y .

Lemma 3.5. Let f∗ be the morphism constructed before. If CG is in add(G),
then HomB(CG, f

∗) : HomB(CG, E
′) → HomB(CG, Y ) is an epimorphism.

Proof. Let CG = HomC(T̃ , G̃) with G ∈ F(Σ) indecomposable. Suppose that
there is a map 0 6= h : CG → Y , we want to show that the following diagram:

CG

ւ ↓
E′ → Y

commutes, it is, there exists a k : CG → E′ in mod(B) such that fk = h. We
can write, as we did before, using the [BMR]-equivalence h ∈ HomB(CG, Y ) ≃

HomC(G̃, X̃)/add(τ T̃ ), then there exist h′ ∈ HomC(G̃, X̃) such that h = HomC(T̃ , h
′).

We can assume that h′ don’t factorize by the add(τ T̃ ) in C, otherwise h will be
zero in modB.

So, we have that, HomB(HomC(T̃ , G̃),HomC(T̃ , X̃)) ≃ HomC(G̃, X̃)/add(τ T̃ ).

By lemma 3.4 since G ∈ F(Σ) and X ∈ T (X) HomC(G̃, X̃) = HomH(G,X)
and h′ : G → X.

Hence, we have that h = HomC(T̃ , h
′) with h′ ∈ HomH(G,X). Then, since

f : E → X is an add(Σ)-approximation of X ∈ modH and Σ is a complete
slice in modH, any morphism from G to X, will factorize by E because T (Σ)
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is covariantly finite. This is, there exist k′ : G → E such that the following
diagram commutes

G
ւ ↓

E → X

We may now proceed as in lemma 3.3, and show that this diagram induces
a commutative diagram on modB

HomC(T̃ , G̃)
ւ ↓

HomC(T̃ , Ẽ) → HomC(T̃ , X̃)

We have proved that there exist k = HomC(T̃ , k̃′) such that f∗k = HomC(T̃ , f̃ k̃′) =

HomC(T̃ , h̃′) = h. Then, h : CG → Y factors through E′; observe that k 6= 0

because k′ don’t factorize by add(τ T̃ ), otherwise h′ would factorize by add(τ T̃ ).
This finishes proof of the lemma. �

It only rest to prove that, if we have a map from a module Q in add(Q′), in
any module Y ∈ DΣ, this map also factors through E′. Our next lemma proves
the desired result.

Lemma 3.6. Let h be a map in HomB(Q,Y ), then there exist a morphism k
such that f∗k = h and h factors through E′.

Proof. Assume we have 0 6= h ∈ HomB(Q,Y ) where Q = HomC(T̃ , P̃ [1]) with
P an indecomposable projective module in H.

Let h be, h = HomC(T̃ , h
′) with h′ ∈ HomC(P̃ [1], X̃). Then, we have

HomC(P̃ [1], X̃) = ⊕i∈ZHomDb(H)(P [1], F iX) =

HomDb(H)(P [1],X) ⊕HomDb(H)(P [1], τ−1X[1])

where, HomDb(H)(P [1],X) = 0 because X ∈ modH and P [1] ∈ modH[1]

therefore there is no non zero map between X and P [1] in Db(H).
Then the only possibility for h′ 6= 0 is h′ ∈ HomDb(H)(P [1], τ−1X[1]) and so

h′[−1] ∈ HomDb(H)(P, τ
−1X).

First observe that ifX is injective then τ−1X = P ′[1] with P ′ projective inde-
composable in modH, therefore HomDb(H)(P, τ

−1X) = HomDb(H)(P,P
′[1]) =

Ext1H(P,P ′) = 0.
Let us assume then, that X is not injective, hence τ−1X ∈ modH. Moreover,

we have h′[−1] ∈ HomH(P, τ−1X).
Since X ∈ T (Σ) and T (Σ) is closed under successors we have, τ−1X ∈ T (Σ).

Moreover, we can consider τ−1Σ as an complete slice, and so τ−1X ∈ T (τ−1Σ).
Recall f : E → X was constructed as an add(Σ)- approximation of X, for

X ∈ T (Σ). Now we can take

τ−1f : τ−1E → τ−1X → 0.

We now can construct the following commutative diagram on modH
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P
↓

τ−1E
τ−1f
−→ τ−1X → 0

Since P is projective, then the morphism h′[−1] factors through τ−1E, it is,
there exists k′ : P → τ−1E such that the following diagram

P −→ τ−1X
ց ր

τ−1E

commutes.
Applying the shift functor [ ] to this diagram, we obtain a new commutative

diagram in Db(H).

P [1] −→ τ−1X[1] = FX
ց ր

τ−1E[1] = FE

This diagram, induces the following diagram on C

P̃ [1] −→ X̃
ց ր

Ẽ

And, as we did before we apply the functor HomC(T̃ , ) to obtain a commu-
tative diagram on modB

HomC(T̃ , P̃ [1])
ւ ↓

HomC(T̃ , Ẽ) → HomC(T̃ , X̃)

Then, if we choose k ≃ HomC(T̃ , k̃′[1]), we get that f∗k = h, where the
commutativity is given by the above diagram.

�

Proposition 3.7. Let M be the B-module, M = Σ′ ⊕ Q′ ⊕ G where G , Q′

and Σ are considered as before. Then the map HomB(N, f∗) : HomB(N,E′) →
HomB(N,Y ) is an epimorphism for every module Y ∈ DΣ and N ∈ add(M)
and E′ the add(Σ′)-approximation constructed before.

Proof. Let N be an indecomposable direct summand of M . Then we can con-
sider the following cases:

(a) N ∈ add(Σ′)
(b) N ∈ add(Q′)
(c) N ∈ add(G)

Hence we know the results holds for N in all the above cases. Case (a) follows
from Lemma 3.3, case (b) from Lemma 3.5 and case (c) from Lemma 3.6 Then
the proposition follows for M by the additivity of the functor HomB(N, ).

�
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This proves that there exist an add(M)-resolution of length at most two, for
every module in modB. Note that this proposition proves that M satisfies the
condition (a) of definition 2.3 for i = 2 and therefore that gl.dim EndB(M) ≤ 3.
We are going to proceed now to state and prove our main result.

Theorem 3.8. Let B a cluster-concealed algebra of infinite representation type.
Then rep.dimB = 3.

Proof. Let M be the module in the above proposition. Observe that if I is
injective in modB, then I = HomC(T̃ , τ

2T̃ ), but τ2T ∈ F(Σ), recall τT does
not have projective summands and F(T ) ⊂ F(Σ) due to the hypothesis taken
on Σ on H , therefore any indecomposable injective module in modB is a direct
summand of M The same occurs for any indecomposable P ∈ modB, then
P = HomB(T̃ , T̃ ) and again T̃ lies in F(Σ), thus the add(G) contains every
indecomposable projective and every indecomposable injective module. Then
G is generator-cogenerator for modB and hence M is a generator-cogenerator
for modB. Moreover, proposition proves that gl.dim EndB(M) ≤ 3 and thus
rep.dimB ≤ 3. �

We are going to see some applications of our main theorem. Let A be basic
connected finite dimensional algebra, A is said to be of minimal infinite type if
it is of infinite representation type and for each vertex e in the quiver of A we
have that A/AeA is of finite type. Recall that for any cluster-tilted algebra B
with a vertex e in the quiver of B we have that B/BeB is again a cluster-tilted
algebra(see [9] section 2).

So, as a consequence of the theorem, we have the following corollary.

Corollary 3.9. Let B minimal cluster-tilted of infinite representation type.
Then rep.dimB = 3.
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