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1. Introduction 

Grapes have different destinations. The most important in 
the national and international market is wine production. 
Another destination is dehydration to produce dried grape 
products (raisins) made from Vitis vinifera L. These can be 
used for direct consumption or as an ingredient in cereal 
bars, biscuits, cookies, puddings and breads, among other 
foods, many of which are consumed by children with the 
risk that this entails (Jordan, 2006). Some sweet wines 
are also made from grapes that are simply harvested later 
to contribute to high levels of both sugar and alcohol. 
Argentina occupies 10th place in global production and 
export of dried grapes, United States and Brazil being 

the major international buyers. Ninety five percent of the 
national production of dried grapes is sent to international 
markets and is concentrated in San Juan province. At 
present, climatic factors combined with little diversification 
in this sector and problems associated with the level of 
fungal contamination of raw materials, have resulted in 
a rather poor harvest, which could lead to problems of 
competitiveness abroad.

Ochratoxin A (OTA) is a very harmful chemical for human 
organisms. It exhibits hepatotoxic, nephrotoxic, teratogenic, 
mutagenic, immunotoxic and carcinogenic activity (category 
2B) (IARC, 1993) and it is considered to be a natural 
contaminant in many countries. The production of this 
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Abstract 

Grapes have different destinations. The most important in the national and international market is wine production, 
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The growth of these species, and consequently OTA production, can be influenced by different environmental 
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In general, OTA concentration increased as aW increased with no statistically significant differences at the tested 
incubation times. This work provides information that can be used by companies for the purpose of preventing 
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apricots) destined for human consumption.
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toxin was originally associated with Aspergillus ochraceus 
strains in South Africa (Van der Merwe et al., 1965). A few 
years later, Penicillium verrucosum was also associated 
with OTA production (Pitt, 1987). However, the latest 
evidence suggests that Aspergillus carbonarius isolated from 
grapes and dried fruits is the main ochratoxigenic fungus in 
several countries, as 75-100% of the isolates of this species 
were found to be OTA producers (Battilani et al., 2006; 
Leong et al., 2006; Magnoli et al., 2004; Ponsone et al., 
2007; Romero et al., 2005; Serra et al., 2005, 2006; Téren et 
al., 1996; Varga and Kozakiewicz, 2006; Varga et al., 1996, 
2006). Humidity between 16 and 19% (determined by the 
Dean Stara Method) and a maximum of 10 mg/kg of OTA 
are considered permissible by Secretaría de Agricultura, 
Ganadería, Pesca y Alimentación (2006). Thus, dried vine 
fruits are at greater risk of OTA contamination than wine 
grapes because the ratio of A. carbonarius to Aspergillus 
niger aggregate increases during drying (Valero et al., 2005, 
2007; Gómez et al., 2006).

The method usually used to reduce the water activity (aW) 
of the grapes consists mainly of drying them in sunshine 
in the open-air. Quality is thus dependent on weather 
conditions (Pateraki et al., 2007). This substrate is exposed 
for prolonged periods of time to high temperatures and 
sunny radiation, and this fact determines the consequent 
contamination with different fungal species.

When intermittent sunshine and rain episodes occur, 
drying can be slowed down and this can lead to colonisation 
by Aspergillus section Nigri species, especially the 
ochratoxigenic species such as A. carbonarius (Magan 
and Aldred, 2005).

OTA in dried grapes and sweet wines is a matter of concern, 
considering the high levels and occurrence reported in 
several studies (Aksoy et al., 2007; Bellí et al., 2004a; Bircan, 
2009; Blesa et al., 2004; Lombaert et al., 2004; López de 
Cerain et al., 2002; MacDonald et al., 1999; Magnoli et 
al., 2004; Meletis et al., 2007; Meyvaci et al., 2005; Möller 
and Nyberg, 2003; Solfrizzo et al., 2008; Stefanaki et al., 
2003; Valero et al., 2008; Varga and Kozakiewicz, 2006; 
Zinedine et al., 2007). 

Growth of Aspergillus species and consequently OTA 
production can be influenced by intrinsic ecophysiological 
factors, such as moisture, pH, composition of the substrate, 
and extrinsic factors, e.g. temperature (Häggblom, 1982). 
Aspergillus growth is markedly affected by different 
environmental factors, aW and temperature being the two 
most important (Magan and Lacey, 1984). Therefore, the 
determination of the optimal environmental conditions 
is essential for raw materials and finished food hygienic 
quality. At the present time, the effect of temperature 
and water availability on A. carbonarius growth and OTA 
production has been reported on synthetic medium (Bellí et 

al., 2005; Esteban et al., 2006; Leong et al., 2006; Mitchell et 
al., 2004; Pateraki et al., 2007; Romero et al., 2007; Tassou et 
al., 2007a,b, 2009) and on other natural substrates (Bellí et 
al., 2007; Joosten et al., 2001; Marin et al., 2008). Recently, 
only one study evaluating the A. carbonarius ecophysiology 
on dried grapes was carried out in Greece by Kapetanakou 
et al. (2009), but this fact has been not analysed in any of 
the American countries. Thus, the objective of the present 
work was to evaluate the lag phase, growth rate and OTA 
production of two Argentinean isolates of A. carbonarius 
on irradiated dried grapes at different water activities and 
temperatures.

2. Materials and methods

Fungal isolates

Two isolates of A. carbonarius (RCDG90 and RCDG92) 
isolated from Argentinean dried grapes were selected 
according to their capacity to produce OTA (Magnoli et 
al., 2004). These isolates are kept in the National University 
of Río Cuarto, Argentina (RC) collection. Cultures were 
maintained in 15% glycerol at -80 °C. 

Substrate conditions 

Dried grapes (1 kg) packed in specially designed biaxial-
oriented polypropylene bags (25 µm, World Plast S.A., 
Villamarina, Peru) were irradiated with 8-10 kGrays of 
gamma irradiation. The dried grapes were checked for 
sterility and absence of OTA and stored aseptically at 4 °C. 
The initial aW of the grapes was 0.662. For all experiments, 
aW was modified to 0.995, 0.973, 0.951, 0.928 and 0.910 by 
adding sterile distilled water using a previously defined 
moisture absorption curve. Finally, aW levels were 
confirmed by using an Aqualab Series 3 water activity meter 
(Decagon Devices, Inc., Pullman, WA, USA). 

Inoculation and incubation 

Re-hydrated dried grapes were placed in sterile 9 cm Petri 
dishes to form a 20 g monolayer of fruit. Then a 4 mm 
diameter agar disk was taken from a 7 day old growing 
colony of each strain on Malt Extract Agar (MEA) at 25 
°C and transferred to the centre of each plate containing 
the grapes. Petri dishes conditioned to the same aW were 
placed in closed plastic containers together with beakers of 
glycerol-water solution of the same aW in order to maintain 
the correct equilibrium of relative humidity inside the 
boxes. Containers were incubated at 15, 25 and 30 °C 
and the experiment was carried out in duple with three 
replicates per treatment.
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Growth assessment

Growth was assessed every day during the incubation 
period. Dried grapes were examined using a binocular 
magnifier (10×), and two diameters of the growing colonies 
were measured at right angles in two directions until the 
colony reached the edge of the plate. The radii of the 
colonies were plotted against time, and a linear regression 
applied in order to obtain the growth rate as the slope of 
the line. Lag phase for growth was defined as the time (h) 
each colony reaches 5 mm of diameter for each treatment.

Ochratoxin A extraction

After 7, 14 and 21 days of incubation, three replicates per 
treatment were destructively sampled, and the OTA analysis 
were carried out according to the methodology described 
by Zimmerli and Dick (1996), with some modifications: a 
5 g portion of a finely ground dried grape sample was added 
to a 250 ml Erlenmeyer flask along with 100 ml mixture of 
methanol : sodium bicarbonate at 1% (70:30). The mixture 
was shaken for 30 minutes and filtered to remove particulate 
matter. A 10 ml aliquot of the above extract was diluted with 
40 ml of phosphate buffered saline (PBS) containing 0.01% 
Tween 20. It was filtered again through a microfibre filter 
and 10 ml of each diluted extract was taken and added to an 
immunoaffinity column (OchraTestTM, Vicam, Digen Ltd., 
Oxford, UK). The column was washed with 10 ml of double 
distilled water at a flow rate of 1-2 drops per second. OTA 
was eluted from the column with methanol (HPLC grade) 
at a flow rate of 1-2 drops per second. The dry extract was 
kept at 4 °C. Each sample was analysed in triplicate.

Ochratoxin A detection

OTA detection was performed using high-performance 
liquid chromatography (HPLC), following the methodology 
proposed by Scudamore and MacDonald (1998), with 
some modifications. The HPLC apparatus used for OTA 
determination was a Hewlett Packard chromatograph (HP/
Agilent, Santa Clara, CA, USA) with an injection loop 
of 50 µl, equipped with a spectrofluorescence detector 
(excitation: 330 nm; emission: 460 nm) and a C18 column 
(Supelcosil LC-ABZ, Supelco, Sigma-Aldrich, St. Louis, 
MO, USA; 150×4.6 mm, 5 µm particle size), connected to 
a precolumn (Supelguard LC-ABZ, Supelco; 20×4.6 mm, 5 
µm particle size). The mobile phase was pumped at 1.0 ml/
min and consisted of an isocratic system: 57% acetonitrile, 
41% water, and 2% acetic acid. OTA was quantified on the 
basis of HPLC fluorometric response compared with OTA 
standard (Sigma Aldrich, USA, purity >99%). The limit of 
detection was 1 ng/g. Each sample was analysed three times.

Assay of spiking and recovery of ochratoxin A

OTA-free sample (20 g) of dried vine fruits contained in a 
250 ml Erlenmeyer flask was spiked with standard solutions 
of OTA, equivalent to 50, 100, 200 and 400 µg OTA/g. 
Spiking was carried out in duplicate and a single analysis 
of the blank sample was carried out. After leaving it for 
16 h for the solvent to evaporate, extraction solvent was 
added and the OTA concentration was determined, using 
the protocol previously described. The recovery percentage 
was calculated.

Statistical analysis

The experimental design was performed as follows: five aW 
× three temperatures × two isolates × three incubation times 
× three replicates for each parameters measured. Growth 
rate, lag phase and OTA accumulation produced by the A. 
carbonarius isolates were analysed statistically using PROC 
GLM in SAS program (SAS Institute Inc., Cary, NC, USA) 
by means of ANOVA. Means were compared by Fishers 
LSD test to determine the significant difference between 
the different treatments assayed (Quinn and Keough, 2002).

3. Results

Figure 1 shows the effect of aW and temperature on lag 
phase (hours) and the growth rate (mm/day) of the A. 
carbonarius RCDG90 and RCDG92 isolates. Analysis of 
variance revealed that the factors aW, temperature and their 
interaction had a significant influence on lag phase and 
mycelial growth of both isolates (P<0.0001). A. carbonarius 
isolates reached the maximum values of lag phases at the 
minimum temperature assayed (15 °C), which were similar 
for both isolates varying from 100 to 522 h at 0.995 and 
0.910 aW, respectively. Significant differences in lag phase 
values at this temperature were observed only at 0.910 aW. 

Growth was observed at all aW and temperature ranges 
assayed. No significant differences between the growth 
rates reached at 25 °C and 30 °C by both isolates were 
observed. No significant differences in growth rate between 
the isolates tested were observed at 15 and 25 °C (data not 
shown) but the growth rates of RCDG92 isolate increased 
with the increment of temperature while the RCDG90 
isolate reached the maximum growth rates at 25 °C and 
regardless of the assayed aW. 

OTA production occurred over all assayed temperatures 
with the maximum at 25 and 30 °C depending on the aW. 
In general OTA concentration increased as aW increased 
with no statistically significant differences at the tested 
incubation times (Table 1). 

The data for the two A. carbonarius isolates were used 
to develop further contour maps in order to identify the 
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influence of a range of aW and temperature conditions 
on OTA production on irradiated dried grapes. With 
the conditions assayed in this study, the maximum OTA 
production was clearly observed at 0.995 aW and 30 °C for 
both isolates, with mean toxin concentrations of 861.7 and 
616 µg/g by RCDG90 and RCDG92 isolates, respectively 
(Figure 2). No significant differences (P<0.05) were observed 
among the incubation times for most treatments, except 
for RCDG92 isolate at 30 °C and 0.955 and 0.973 aW (data 
not shown). 

The evaluation of the results by ANOVA showed that the 
factors aW and temperature were statistically significant in 
relation to the in situ OTA production by the A. carbonarius 
isolates analysed after the incubation period of 21 days 
(P<0.0001) (Table 2).

4. Discussion

In this study the influence of the aW, temperature and 
incubation time on growth and OTA production by A. 
carbonarius isolates on dried grapes was determined. 
This study provides the first data about the impact of 
aW and temperature regimes on growth rate and OTA 
production by isolates of A. carbonarius isolated from 
Argentina when grown on irradiated dried grapes. In 
previous work, Romero et al. (2007) studied the effect of aW 
and temperature on the growth of ochratoxigenic isolates 
of A. carbonarius isolated from Argentinean dried vine 
fruits, but they determined these parameters on Czapek 
Yeast Extract Agar (CYA). In contrast to their results, mean 
growth rate of 14.6 mm/day at 0.995 aW and 25-30 °C were 
observed, whereas they reported the maximum growth 
rate at different aW and temperature conditions, reaching a 
mean growth rate of 17.46 mm/day at 0.955 aW and 30 °C. 
This value is higher than ours and others found in the 
literature; Bellí et al. (2004b, 2005) reported a maximum 
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Figure 1. Effect of different water activities and temperatures on growth rate (bars) and lag phase (points) of A. carbonarius 
(RCDG90 and RCDG92) isolates at (A) 15 °C, (B) 25 °C and (C) 30 °C. Columns with the same superscript within each isolate 
indicate that they are not significantly different (P<0.001) according to Fisher LSD test.
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growth rate of 9.1 and 10.1 mm/day at 30 °C and 0.98-
0.99 aW for strains isolated from European and Spanish 
wine grapes, respectively in a Synthetic Nutrient Medium 
(SNM) with similar composition of grapes between veraison 
and ripeness. Leong et al. (2006) reported that the highest 
growth rate of Australian A. carbonarius strains occurred at 
30 °C and aW 0.965 on a simulated grape juice medium but 
the maximum growth rate registered was 7 mm/day. The 

different behaviour between the isolates can be attributed 
to culture media, intraspecific and regional variability. 

These data indicate that each substrate greatly influences 
the behaviour of the isolates that develop in it, hence 
the importance of studies on natural substrates where 
environmental conditions are simulated.

The lag phases of the isolates assayed in this work were 
higher than those previously obtained on a media based 
on dried grapes (Astoreca et al., 2007b). Furthermore, both 
isolates showed growth rates significantly higher than that 
reported in the in vitro assay (Astoreca et al., 2007a). The 
optimal conditions for growth differed with respect to 
that obtained on dried grapes based medium, 0.995 being 

Table 1. OTA concentration of two isolates of A. carbonarius on 
irradiated dried grapes at different temperature, water activity 
and incubation time.

Isolates aW OTA concentration (μg/g)1,2 ± SD

7 days 14 days 21 days

15 °C
RCDG90 0.91 27.9±7.4j 21.9±3.3j 22±3.6j

0.93 53.5±5.1h,i 50.7±5.1h,i 50.6±5.8h,i

0.95 96.0±19.2g,h 97.8±22.7g,h 92.7±21.0g,h

0.97 152.5±30.0g,h 138.6±19.9g,h 132.0±27.8g,h

0.99 200.6±22.0f,g 185.5±33.2f,g 165.0±32.9g,h

RCDG92 0.91 13.0±2.6m,n 19.0±2.4m,n 17.3±4.1m,n

0.93 42.3±6.5l,m,n 50.2±8.5l,m 48.8±7.5l,m,n

0.95 87.6±4.4j,k 99.3±15.0i,j,k 90.9±13.4j,k

0.97 95.3±4.6i,j,k 111.0±15.5h,i 101.7±12.6i,j,k

0.99 150.3±19.8f,g 170.8±14.2e,f 152.4±4.9f,g

25 °C
RCDG90 0.91 31.3±5.8i,j 31.0±5.6i,j 30.6±7.0i,j

0.93 32.6±5.7i,j 38.7±5.5i,j 41.7±10.5i,j

0.95 84.7±16.2g,h 85.3±6.5g,h 77.4±3.2g,h

0.97 281.7±27.6d 267.0±10.9d,e 239.0±22.8d,e

0.99 374.5±102.4b,c 435.7±14.2c 411.6±8.7c

RCDG92 0.91 12.3±2.5n 17.0±4.3m,n 20.1±1.0m,n

0.93 28.3±7.1m 29.2±2.6m 25.7±4.0m

0.95 73.7±13.0k,l 73.4±12.5k,l 69.4±9.5k,l

0.97 193.3±9.0d 185.0±22.8d,e 171.7±39.9e,f

0.99 284.3±23.4c 276.7±16.3c 270.8±30.9c

30 °C
RCDG90 0.91 84.7±9.8gh 85.6±8.6gh 81.5±12.0gh

0.93 100.0±17.9gh 113.5±26.5gh 111.6±27.3gh

0.95 226.5±48.8e 222.2±23.8e 205.3±9.2e,f

0.97 584.0±51.3c 567.3±81.7c 566.6±83.2c

0.99 861.7±115.9a 840.6±109.2a 814.6±101.4ab

RCDG92 0.91 71.5±3.0kl 74.6±2.6jkl 78.9±1.4jkl

0.93 94.0±11.5jk 88.4±11.9jk 77.4±13.8jkl

0.95 173.9±18.5ef 145.7±34.1g 132.8±43.5gh

0.97 348.3±46.5b 338.1±45.7b 300.2±93.4c

0.99 616.0±29.3a 607.9±4.9a 595.8±4.5a

1 Mean levels of OTA; SD: standard deviation; limit of detection: 5 ng/g.
2 Columns with the same superscript within each isolate indicate that 
they are not significantly different (P<0.001) according to LSD test.
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Figure 2. Contour maps for A. carbonarius isolates (A) 
RCDG90 and (B) RCDG92 in relation to water activity and 
temperature. The numbers on the contour lines refer to mean 
OTA concentrations (µg/g).
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the optimum aW for growth. These results demonstrate 
that the natural substrate would be offering the isolates a 
greater nutritional contribution than the artificial media 
(Astoreca et al., 2009a,b).

There are several studies in the literature that point to the 
crucial role of ecological factors, such as water activity and 
temperature, in strongly affecting OTA production by A. 
ochraceus and A. carbonarius (Esteban et al., 2006; Leong 
et al., 2006; Marín et al., 2008; Mitchell et al., 2003; Pardo et 
al., 2004, 2006; Pateraki et al., 2007; Tassou et al., 2007a,b, 
2009; Valero et al., 2005).

On the other hand, Kapetanakou et al. (2009) evaluated 
the combined effect of aW, pH and temperature on OTA 
production by A. carbonarius on culture medium and 
Corinth raisins. The present study is consistent with these 
authors since they reported a maximum OTA production 
at 25 °C for A. carbonarius and a decrease in OTA levels 
with a decrease in water activity. They also obtained the 
highest amounts of ochratoxin A produced at 0.99 aW 
regardless of temperature, which was the highest aW tested 
in our research.

These experiments showed a marked influence of aW and 
temperature on lag phase, growth rate and OTA production 
on irradiated dried grapes. This study suggests that fungal 
growth could be prevented by an adequate control of these 
environmental factors. Values lower than 15 °C and 0.90 
aW could help in the prevention of OTA contamination 
in dried grapes. 

This work provides information that can be used in 
the drying of dried grapes for the purpose of exporting 
dried grapes free of OTA and preventing A. carbonarius 
contamination, growth and OTA production on this and 

other substrates (e.g. dried prunes, figs, apricots) destined 
for human consumption.
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