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Spin-orbit effects in nanowire-based wurtzite semiconductor quantum dots
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We study the effect of the Dresselhaus spin-orbit interaction on the electronic states and spin relaxation
rates of cylindrical quantum dots defined on quantum wires having wurtzite lattice structure. The linear and
cubic contributions of the bulk Dresselhaus spin-orbit coupling (SOC) are taken into account, along with the
influence of a weak external magnetic field. The previously found analytic solution for the electronic states of
cylindrical quantum dots with zinc blende lattice structures with Rashba interaction is extended to the case of
quantum dots with wurtzite lattices. For the electronic states in InAs dots, we determine the spin texture and
the effective g factor, which shows a scaling collapse when plotted as a function of an effective renormalized
dot-size-dependent spin-orbit coupling strength. The acoustic-phonon-induced spin relaxation rate is calculated
and the transverse piezoelectric potential is shown to be the dominant one.
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I. INTRODUCTION

Semiconductor nanowires catalytically grown from
nanoparticles, also called nanorods and nanowhiskers, provide
a promising platform for spintronic devices. One of their
advantages is that small quantum dots can be conveniently
defined in these nanowires by employing different techniques.
For example, quantum dots can be obtained by varying
the composition during the growth process1–4 in the same
way that quasi-two-dimensional superlattices are grown using
molecular-beam epitaxy or metallorganic chemical vapor de-
position techniques. This fabrication method produces sharply
defined quantum dots with square-well confinement in the
longitudinal direction with highly controllable lengths. This
type of quantum dot has been thoroughly studied in the
last ten years and its spin-related properties have attracted
much interest. In particular, the effective g factor in InAs
nanowire-based quantum dots has been measured5 for the first
few electrons entering the dot and a strong dependence on
the dot size has been established. A less precise but very
flexible type of quantum-dot structure can be obtained by
electrostatic confinement controlled with thin metallic gates
deposited perpendicularly to the wires, typically made of
InAs or InSb.6–8 The gate voltages, which are generally time
dependent, allow for the definition of the quantum dots as
well as for the control of charge transport and spin ma-
nipulation via electric-dipole spin resonance.6,9,10 Moreover,
studies of spin-orbit interaction and spin relaxation have been
made in InAs nanowire-based double-quantum dots with two
electrons.11,12

An important aspect of semiconductor nanorods, and also of
the quantum dots defined in them, is that they often display the
wurtzite crystal structure even though the constituting material
has a zinc blende structure in the bulk.13 This structural change
has important consequences for the spin properties of the dots.
Notably, while in the zinc blende semiconductors the leading
Dresselhaus spin-orbit coupling (SOC) term is cubic in k, in
wurtzite crystals a linear term appears.14 A realistic theoretical
study of the spin-orbit effects in wurtzite quantum dots has now
become possible due to recent advances in the characterization

of the band structure of different wurtzite materials. While the
linear-in-k Dresselhaus contribution to the conduction band
energy of wurtzite crystals has been known for some time,14 the
cubic term in k has been obtained only recently within the k · p
approximation for different wurtzite semiconductors.15,16 De
and Pryor,17 on the other hand, calculated the band-structure
parameters of several binary compounds which normally
display the zinc blende structure in the bulk assuming that
they have the wurtzite structure, in order to make them
available for studies of wurtzite nanowires made of those same
materials. These new data pave the way to a realistic study of
nanowire-based quantum dots with wurtzite structure, which
we undertake here.

Disk-shaped quantum dots with the Rashba structural spin-
orbit interaction have been extensively studied theoretically
and have been shown to admit an analytical solution for
their energy eigenstates, without18 and with19 an applied
perpendicular magnetic field. The semiclassical evaluation of
the Green function has allowed study of the properties of the
low-energy part of the spectrum of the Rashba billiards.20 The
exact solution, as we show here, can be conveniently extended
to wurtzite quantum dots having cylindrical symmetry around
the crystal c axis, either with flat (“disk”) or elongated (“rod”)
geometry. This is the case since the linear wurtzite Dresselhaus
coupling is mathematically equivalent to the Rashba linear
spin-orbit coupling characteristic of asymmetric semiconduc-
tor quantum wells, and furthermore, the newly obtained cubic
term of wurtzite admits in the quasi-two-dimensional case the
same eigenstates as the linear term. In this work we exploit
these similarities in order to give solutions of the eigenvalue
problem of the wurtzite quasi-two-dimensional structures and
cylindrical quantum dots. In a confined geometry, the wurtzite
cubic term of the Dresselhaus coupling gives rise to an
additional linear contribution that reinforces or counteracts the
bare linear term. As we will see below, this reinforcement can
be actually much bigger than the original linear term, opening
up an unexplored regime of strong “Rashba-like” spin-orbit
coupling in quantum wells and dots. Also, new possibilities
appear when these linear Dresselhaus terms are combined
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with the standard Rashba term due to structural asymmetry.
Indeed, further reinforcement or cancellations could possibly
be achieved by tuning the symmetry and dimensions of the
structure with the help of an external gate voltage. Thus,
flexible schemes of spin-orbit coupling cancellation could be
implemented, leading to very long spin relaxation times in
wurtzite structures having particular geometric shapes.21 The
Dresselhaus term, enabled by the bulk inversion asymmetry,
has been shown to yield the dominant coupling mechanism
in cases of important structural asymmetry, like that of
extrinsic impurities giving rise to the impurity band of n-doped
semiconductors.22

The article is organized as follows. In Sec. II we introduce
the effective Hamiltonian including the spin-orbit coupling
for wurtzite structures. In Sec. III we obtain the electronic
states of quasi-two-dimensional structures considering first
only the linear spin-orbit coupling (Sec. III A) and then the full
Hamiltonian with the cubic spin-orbit term and the Zeeman
energy (Sec. III B). In Sec. IV the solution of the previous
section is used to solve the problem of thin cylindrical quantum
dots with hard-wall confinement potential. In Sec. IV A we
present the general analytical solution of this problem and
the energy levels calculated numerically. In Sec. IV B we
explore the spin structure of the one-particle eigenstates. The
experimentally accessible effective g factor of the quantum
dots is studied in Sec. IV C, and in Sec. IV D we discuss the
spin relaxation due to the coupling to phonons. Section V
provides concluding remarks.

II. INTRINSIC SPIN-ORBIT COUPLING IN
WURTZITE-BASED CONFINED GEOMETRIES

Within the envelope-function approximation for
conduction-band electrons in wurtzite semiconductors,
the effective quantum-dot Hamiltonian23,24 incorporating the
linear14 and cubic15,16 Dresselhaus SOC reads

H = H0 + H1 + H3 + HZ, (1)

H0 = p2

2 m∗ + Vc(x,y,z), (2)

H1 = α (kyσx − kxσy), (3)

H3 = γ
(
bk2

z − k2
x − k2

y

)
(kyσx − kxσy), (4)

HZ = 1

2
g∗μBBσz, (5)

where Vc is a nanoscale confinement potential, σ is the spin
operator, α, γ , and b are material-dependent parameters, m∗
is the effective mass and g∗ the bulk effective gyromagnetic
factor, μB is the Bohr magneton, and B is an external
magnetic field assumed to be applied in the z direction
that coincides with the c axis of the wurtzite structure.
Here we include the magnetic field only through a Zeeman
term since we will consider relatively weak fields whose
orbital effects can be safely ignored. In what follows we will
consider quasi-two-dimensional and cylindrical quantum-dot
structures. Catalytically grown nanorods made out of materials
which have the zinc blende crystal structure in the bulk
can adopt either the zinc blende or the wurtzite structure,

depending on the size of the nanoparticle seed and other
growth conditions. Experimental data allowing determination
of α, γ , and b are not yet available, so in our study we will
rely on the theoretical estimates obtained by De and Pryor.17

Motivated by anticipated applications to nanowires, these
authors calculated all the relevant band-structure parameters
assuming a wurtzite structure for the semiconductor binary
compounds that have a zinc blende structure in the bulk. An
asymmetry in the z confinement would add a Rashba term,
resulting in a renormalization of α. In order to give a wider
applicability to our results, whenever possible we will present
them for reasonably large ranges of parameters so that they
can be adapted to different materials and to parameters newly
obtained, experimentally or theoretically.

III. QUASI-TWO-DIMENSIONAL SYSTEMS

Before tackling the quantum-dot problem it is useful to
consider the eigenvalue problem of a quasi-two-dimensional
system. Thus we choose Vc = Vc(z), which confines the
electrons only along the z direction, such that H0 can be
separated as H0 = H

xy
0 + H z

0 , with an in-plane term H
xy
0 =

(p2
x + p2

y)/2m∗ and a longitudinal part defined by H z
0 =

p2
z/2m∗ + Vc(z).

A. Linear term

If we leave aside for the moment the cubic term H3

and the external magnetic field, we are left with a situation
mathematically analogous to the classic Rashba problem in
which the spin-orbit coupling originates from an asymmetric
extrinsic potential. Since the total Hamiltonian is separable,
we can start working with the two-dimensional problem in the
xy plane given by H2d = H

xy
0 + H1. Its well-known solution

is25

ζks(r) = 1√
2A

eik·r
(

se−i (ϕk− π
2 )

1

)
, (6)

E(k,s) = h̄2k2

2m∗ + sαk. (7)

In these expressions and henceforth, A is the area of the
sample, r = (x,y), k = (kx,ky), k = |k|, and ϕk is the angle
between k and the x axis. The spin quantum number s = ±1
denotes, respectively, the spin-up and spin-down eigenstates
with respect to the spin quantization axis, which lies in the
xy plane and is perpendicular to k (it forms an angle ϕk − π/2
with the x axis). Note that the spin-orbit term in the energy
has the same form as the usual Rashba expression. According
to (7), the states (6) are degenerate for given k and s. This
plane-wave solution is convenient in most contexts and has
the advantage that its spin quantization direction is position
independent. However, (6) does not profit from the fact that
the z component of the total angular momentum Jz commutes
with the Hamiltonian and therefore provides a good quantum
number, which is an extremely useful property when one
tackles cylindrically symmetric nanostructures. The common
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eigenstates of H2d and Jz are of the form18

χm,k,s(r,ϕ) = C

(
Jm(kr) eimϕ

sJm+1(kr) ei(m+1)ϕ

)
. (8)

Jm is the Bessel function of the first kind of order m and
the normalization factor C depends on the area of the sample
(assumed to have circular symmetry). The states (8) are
degenerate with those of (6) for given k and s, but while
the spins of (6) lie in the xy plane and their spin density is
independent of r, the spins of (8) lie outside the xy plane and
their spin density is r dependent.

B. Cubic term

We now include the cubic-in-k term of the Hamiltonian, H3,
given in Eq. (4), and the Zeeman energy, Eq. (5). We adopt
cylindrical coordinates (r,ϕ,z) and write

H = − h̄2

2m∗

(
∇2 + ∂2

∂z2

)
+ Vc(z) + H1

+ γ

α

[
b

(
− ∂2

∂z2

)
+ ∇2

]
H1 + HZ, (9)

where the symbol ∇2 is used to represent the two-dimensional
Laplacian.

Assuming that Vc(z) is an infinite potential well of length
L, the proposed solution of the Schrödinger equation is

ξnm(r,ϕ,z) = ψnm(r,ϕ)

√
2

L
sin

(
nπz

L

)
, (10)

ψnm(r,ϕ) =
(

unm(r) eimϕ

vnm(r) ei(m+1)ϕ

)
, (11)

where unm(r) and vnm(r) are real functions and ψnm(r,ϕ)
is an eigenstate of Jz with eigenvalue jz = m + 1/2. The
corresponding total energy is

Et
n = En + Ez

n, (12)

with the radial part En and the longitudinal energy Ez
n =

(h̄2/2m∗)(nπ/L)2 that is due to the confinement in the
z direction. Plugging (10) into the Schrödinger equation, we
obtain for unm and vnm the equations

(−∇2
m + h

)
unm(ρ) + (

α′
n + γ ′∇2

m

) (
m + 1

ρ
+ ∂

∂ρ

)
vnm(ρ)

= εnunm(ρ), (13a)(−∇2
m+1 − h

)
vnm(ρ) + (

α′
n + γ ′∇2

m+1

) (
m

ρ
− ∂

∂ρ

)
unm(ρ)

= εnvnm(ρ), (13b)

where ∇2
m ≡ (1/ρ)(∂/∂ρ) + ∂2/∂ρ2 − m2/ρ2. In Eqs. (13) we

have introduced R, a parameter to be defined as the radius
in the quantum-dot context, and uE = h̄2/2m∗R2, as units of
length and energy, respectively. This allows us to define the
dimensionless parameters ρ = r/R, K = kR, γ ′ = γ /uER3,
and h = gμBB/2uE. The dependence on the (“longitudinal”)
quantum number n has been incorporated to the in-plane
problem via the redefinition of the coupling constant α written

in the dimensionless form

α′
n =

[
α + γ b

(
nπ

L

)2]/
uER, (14)

and the in-plane dimensionless energy is given by εn = En/uE.
To solve Eqs. (13) we make the ansatz

unm(ρ) = Jm(Kρ), vnm(ρ) = dnJm+1(Kρ). (15)

Using recurrence properties of the Bessel functions26 one
obtains the eigenvalue equation(

K2 + h − εn α′
nK − γ ′K3

α′
nK − γ ′K3 K2 − h − εn

)(
1
dn

)
= 0, (16)

whose solutions are

εn± = K2 ±
√

K2(α′
n − γ ′K2)2 + h2. (17)

Then the total energy is given by

Et
n± = (

εn± + εz
n

)
uE, (18)

with εz
n = Ez

n/uE = (nπR/L)2, and the corresponding wave
functions are

ψKnm(ρ,ϕ) =
(

Jm(Kρ) eimϕ

dn± Jm+1(Kρ) ei(m+1)ϕ

)
, (19)

with

dn± = εn± − K2 − h

α′
nK − γ ′K3

. (20)

The obtained solution, Eqs. (17) and (19), reduces to that
of the linear Hamiltonian analyzed in Sec. III A, given by
Eqs. (7) and (8), when the cubic term and the Zeeman energy
are neglected. As in the linear Rashba-like problem, there
are two possible energies εn± for a given value of K . The
energies εn± can be expressed as a function of K2 and are thus
independent of the sign of K . Because of the (anti-)symmetry
of the Bessel functions with respect to a change of sign
in the argument, the wave functions corresponding to ±K

are not independent. We therefore keep only positive values
of K .

In the presence of a magnetic field, and for in-plane energies
εn close to zero, Eq. (17) has solutions with imaginary K = iκ .
Since Jm(iκρ) = imIm(κρ), where Im is the modified Bessel
function of the first kind of order m, the corresponding wave
functions grow exponentially with increasing ρ and are thus
not normalizable in an infinitely large system. Such solutions
are therefore discarded in the context of two-dimensional
systems, but they will become relevant for the case of quantum
dots discussed in Sec. IV.

In Fig. 1 we present (solid lines) the dispersion rela-
tion (18) for InAs with the parameters suggested in Ref. 17
from band-structure calculations (we label them with an
index r)

αr = 0.571 eV Å, γr = 571.8 eVÅ
3
,

b = 4, and an effective mass m∗ = 0.026 me. The two energy
branches are plotted for B = 0 T (left) and B = 20 T (right).
(In this figure we consider a large value of the magnetic field
with the sole purpose of illustrating more clearly its effects on
the energy levels.) We also show the effect of suppressing the
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FIG. 1. (Color online) Energy dispersion [Eq. (18)] with (right)
and without magnetic field (left). For subband n = 1, three cases
are considered: thick solid lines correspond to the full SOC, dashed
lines to an intermediate case with no cubic-in-k SOC, but with the
α parameter renormalized by γ (14), and dotted lines to the bare
Rashba-like interaction, linear in k. Blue (red) lines correspond to
εn− (εn+). The thinner solid lines are the lower branches of subbands
n = 2 and 3. Inset: Same three cases of SOC dispersion relation
without the parabolic contribution for n = 1. The Zeeman effect and
an avoided crossing are more clearly distinguished on this energy
scale.

cubic term but keeping the contribution of γ in Eq. (14) on the
linear term (dashed line), as well as the usual Rashba-like case
obtained for γ = 0 (dotted line). Blue (red) lines correspond
to εn− (εn+). Thick lines correspond to n = 1, as indicated
between the two panels. Also shown are the curves of ε2− and
ε3−, including the linear and cubic spin-orbit contributions
(thin lines). For n = 1 and B = 0 T there is a crossing of
the two branches at K = √

α′/γ ′ (K = 19.34 in our plot).
An analogous feature present in bulk wurtzite semiconductors
has been discussed in the literature as a possible opportunity
to implement long-lived spin qubits.27 The crossing becomes
avoided for finite B, although the level splitting can hardly be
seen on the right panel of Fig. 1. For this reason we plot in the
inset the energies subtracting the trivial parabolic contribution.
This allows for a smaller energy range such that one can
clearly observe the Zeeman splitting at K = 0 and the avoided
crossing.

In Fig. 1, the thin solid lines are the lower branches of
subbands n = 2 and 3. Even though they lie at sufficiently
high energies so as not to affect our further analysis, which
concentrates on low energies, we note that they could become
relevant if the region of the avoided crossing mentioned
above is explored. Also, we point out a potentially interesting
degeneracy point of all the lower branches of the different
subbands, which happens at K = 1/bγ ′ (K = 17.58 in our
plot), where the curves become independent of n. This massive
degeneracy is due to the renormalized linear spin-orbit term.
Although this feature may be physically relevant, we mention
that higher values of n correspond to higher kz, and eventually
the energies of Eq. (18) obtained in third-order perturbation
theory in the wave vector cease to be reliable.

IV. QUANTUM DOTS

A. Effect of spin-orbit coupling on the energy levels

We now consider cylindrical quantum dots with hard-
wall quantum confinement having radius R and length L.
The discrete eigenenergies and states of this problem will
be obtained from the quantum-well solutions found in the
previous section. In order to get the energetically lowest states,
we keep only the lowest subband, n = 1, and omit the subindex
n from now on. In all cases we work with k low enough to stay
in the regime of validity of the expansion of the effective SOC
Hamiltonian up to third order in k.

The eigenstates of the disk-shaped quantum dot have to
satisfy the circular boundary condition (the hard-wall confine-
ment forces a zero of the wave function at the dot boundary).
This can be achieved at particular values of the in-plane energy
ε for linear combinations �m = caψKam + cbψKbm of two
degenerate eigenstates of the quantum-well problem. Those
quantized energies are then the eigenenergies of the quantum
dot. In the general case including a finite magnetic field, there
are three energy ranges (see Fig. 1) with different situations:
(i) energies in the low “belly” of the ε− branch, ε < −|h|;
(ii) energies above the energy gap caused at K = 0 by the
Zeeman splitting, ε > |h|; and (iii) energies in the Zeeman
gap, −|h| < ε < |h|. We now consider these three cases
separately.

Case (i): ε < −|h|. Two real values of K , noted Ka and Kb,
associated to the ε− branch (in the “belly” region) are involved
in the dot solution. The in-plane wave function is thus written
as

�m(ρ,ϕ) = ca

(
Jm(Kaρ)eimϕ

d−(Ka)Jm+1(Kaρ)ei(m+1)ϕ

)

+ cb

(
Jm(Kbρ)eimϕ

d−(Kb)Jm+1(Kbρ)ei(m+1)ϕ

)
, (21)

with the hard-wall boundary condition �m(ρ = 1,ϕ) = 0. A
nontrivial solution (Ka,Kb) will be given by the condition

Jm(Ka) d−(Kb)Jm+1(Kb) − Jm(Kb) d−(Ka)Jm+1(Ka) = 0.

(22)

Case (ii): ε > |h|. The two quantum-well states involved in
the dot solution belong to different branches, ε+ and ε−, with
real values of K , noted Ka and Kb:

�m(ρ,ϕ) = ca

(
Jm(Kaρ)eimϕ

d+(Ka)Jm+1(Kaρ)ei(m+1)ϕ

)

+ cb

(
Jm(Kbρ)eimϕ

d−(Kb)Jm+1(Kbρ)ei(m+1)ϕ

)
. (23)

The boundary condition leads to

Jm(Ka) d−(Kb)Jm+1(Kb) − Jm(Kb) d+(Ka)Jm+1(Ka) = 0.

(24)

Case (iii): −|h| < ε < |h|. One imaginary value of K ,
Ka ≡ iκa, and a real value Kb are involved. The energy
associated to Ka is

ε±,a = −κ2
a ±

√
−κ2

a

(
α′

n + γ ′κ2
a

)2 + h2, (25)
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and the coefficient for the wave function

d±(Ka) = (−i)
ε±,a + κ2

a − h

α′
nκa + γ ′κ3

a

≡ −iδ±(κa). (26)

With Jm(iκρ) = imIm(κρ), the quantum-dot wave function is
then written as

�m(ρ,ϕ) = imca

(
Im(κaρ)eimϕ

δ±(κa)Im+1(κaρ)ei(m+1)ϕ

)

+ cb

(
Jm(Kbρ)eimϕ

d−(Kb)Jm+1(Kbρ)ei(m+1)ϕ

)
. (27)

The boundary condition leads to

Im(κa)d−(Kb)Jm+1(Kb) − Jm(Kb)δ±(κa)Im+1(κa) = 0. (28)

Equations (22), (24), and (28) express a root-finding
problem, which we solve numerically. We find a family of
solutions for each value of m that corresponds to the discretized
energies of the quantum dot. Moreover, the solutions give
access to the wave numbers {Ka,Kb} such that we can
determine the coefficients {ca,cb} from the boundary condition
and the normalization of the in-plane wave functions (21), (23),
and (27). All of these solutions carry a well-defined value of
jz = m + 1/2, and in the absence of a magnetic field, the jz

and −jz solutions are degenerate.
The results for the energy levels are presented in Fig. 2

as a function of the SOC strength. The states of different |jz|
are shown with different colors. To show the effect of the
spin-orbit coupling, we start from the case of vanishing SOC
in the center of the figure and increase the SOC strength up to
the predicted values αr and γr, corresponding to the left and
right edges of the figure.

Without SOC (α = γ = 0, inner edges of the plot), the
electronic states can be characterized by the orbital angular

momentum lz along the z-axis and the spin s = ±1/2, in
addition to the total angular momentum jz = lz + s. The
values of |lz| corresponding to the states are indicated in the
center of the figure. Without magnetic field (left side), the states
characterized by (lz,s) = (±|lz|,±1/2) are degenerate. In the
presence of a magnetic field (right side), the Zeeman energy
splits the levels corresponding to different spin orientations. In
the presence of SOC, the orbital angular momentum and the
spin get mixed, lz and s cease to be good quantum numbers, and
only the total angular momentum quantum number jz, shown
by the different colors in Fig. 2, characterizes the states. It can
be seen that states corresponding to the same |lz| at zero SOC
are split by the SOC according to the different values of |jz|.

In order to discriminate the effects of the different SOC
terms, we increase the SOC in two steps. We first consider the
usual Rashba-like problem by setting γ = 0 and varying the
linear coupling strength α from zero up to αr = 0.571 eV Å.
This situation is depicted in the inner part of Fig. 2, where the
left side corresponds to the case of zero magnetic field and the
right side to B = 2.5 T. The ensuing step is to fix α at αr and
raise the value of γ from zero to γr = 571.8 eVÅ

3
. The result

is matched with the previous one and traced by the adjoining
curves in the outer panels of the figure. It must be noted that
γ determines not only the cubic-in-k SOC, but it also enters
in the linear-in-k coupling [cf. Eq. (14)]. Consequently, at the
end of each curve we find the energy of the quantum dot for
the corresponding αr and γr.

Note the significant effect of γ on the eigenenergies, which
leads to much stronger energy changes than α alone. It brings,
for example, the lowest pair of levels with jz = ±1/2 (lowest
black curves) down to energies that are below Ez

1. Moreover,
level crossings occur as a function of γ , changing the order
of the states in energy with respect to the case of vanishing
SOC. This happens mainly for the lowest energy states of a
given |jz| that are pulled down by the SOC below the higher
energy states with lower values of |jz|. We remark that the full
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FIG. 2. (Color online) The discrete eigenenergies of a quantum dot with radius R = 275 Å and height L = 100 Å for n = 1, shown
as a function of the spin-orbit coupling strengths α and γ , without magnetic field (left side) and with B = 2.5 T (right side). States with
|jz| = 1/2,3/2,5/2,7/5, and 9/5 are represented by different black, blue, green, red, and orange lines, respectively. In the central panels we
keep γ = 0 and vary α from zero up to αr = 0.571 eV Å, reported in 17. Conversely, in the following curves (outside panels) α is fixed at αr,
and γ increases from zero to its final value of γr = 571.8 eVÅ

3
. In-between the panels, the values of the quantum numbers lz associated to the

nearby states at zero SOC are indicated.
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range of eigenenergies that we consider has not been explored
in previous studies, and that we explicitly include allowed
energy values that lie within the gap of the two-dimensional
dispersion relation of Fig. 1, that is, −|h| < ε1 < |h|. It can
also be observed that the Zeeman splitting shrinks as the SOC
increases, while the spin mixture brought about by the latter
increases accordingly. This indicates that the effective g factor
in quantum dots is affected by the SOC and depends on the
geometry. The degeneracy lifting of states with lz � 1 by effect
of the SOC is consistent with the tendency observed in the dots
of Ref. 3. In that experiment, the Coulomb blockade diamond
corresponding to four electrons is smaller than the ones for
two and six electrons, but somewhat larger than the three-
and five-electron diamonds. Such a behavior points towards a
lifting of the degeneracy of the lz = 1 states, which remains
much smaller than the level spacing of states with different
lz. The fact that the degeneracy lifting calculated within our
model is larger than the one observed in the experiment may
be due to the noncircular cross section of the experimentally
studied dots and/or interaction effects not included in our
calculation.

B. Spin texture of the eigenstates

We now investigate the properties of the quantum-dot
eigenstates. The spinor states of Eqs. (21), (23), and (27)
contain the information on the spin texture of the dot states.
Without SOC and in the presence of a magnetic field, even
a very weak one, the states are spin polarized, and the spin
texture of the one-electron states is uniform throughout the
dot. The appearance of a nontrivial spin texture is therefore
a signature of the SOC, and can be seen as the degree of
mixing of the two spin components in an eigenspinor. To
obtain the spin texture corresponding to a state, we compute
the expectation value of the spin operator

〈σ 〉(r) = �†(r)σ�(r) (29)

for each spatial point r inside the quantum dot. Because of the
separability of the wave functions (10), the spin orientation is
independent of the longitudinal coordinate z. Moreover, the
rotational symmetry of the dots around the z axis imposes
that the resulting spin orientations present the same symmetry.
Their projection on the ϕ̂ direction vanishes, such that the local
spin direction

〈σ 〉(r) = r̂ cos[β(r)] + ẑ sin[β(r)] (30)

has only radial and z components. The angle of the local spin
orientation with respect to the xy plane β depends only on the
radial coordinate r . We construct the full eigenstate solution �

with energy ε as (21), (23), and (27), depending on the value
of ε, with the corresponding Ka(ε) and Kb(ε) obtained from
a numerical solution of the quantization conditions (22), (24),
or (28).

In Fig. 3, we present two examples of spin texture in
cylindrical quantum dots of length L = 100 Å and radius
R = 275 Å, in the presence of the full linear and the cubic SOC
terms with the coupling strengths αr and γr predicted in Ref. 17.
The left panels show the dependence of the spin orientation on
the position in the xy plane for the lowest energy states that
have |jz| = 1/2. This spin texture corresponds to one of the

FIG. 3. (Color online) Spin textures in cylindrical quantum dots
with L = 100 Å and R = 275 Å. Left and right panels show results for
the lowest and the second-lowest states with |jz| = 1/2. The arrows
and colors indicate the spin orientation as a function of the position
in the xy plane. Below the disks, the same data are shown for a linear
cut through the center of the sample.

two sublevels in the lowest Zeeman doublet, shown in Fig. 2 by
the two lowest black lines. The other of the sublevels, that are
degenerate at B = 0, has spin orientations with the sign of the
z component reversed. The right panels show the spin texture
for the next higher levels that are characterized by |jz| = 1/2,
corresponding to the second pair of levels (black lines starting
at |lz| = 1 in Fig. 2).

C. Effective g factor in quantum dots

The effective g factor is experimentally accessible, and
it is thus a widely studied quantity. An example is the
measurements of Ref. 5, where the effective g factor has
been observed to depend on the dot size with absolute
values that are reduced as compared to the bulk effective
g factor g∗ ≈ −14.7 (value from Ref. 28) using an external
magnetic field perpendicular to the wire. In the experiment,
the effective g factor is extracted from the linear term of the
magnetic-field-induced energy splitting

�E = |geffμBB| (31)

of two states that are characterized by the same |jz| and are
degenerate in the absence of a magnetic field. According to
this definition, each quantum-dot state has its own effective
g factor. We will focus on the effective g factor of the ground
state which is often the most relevant one, and use a magnetic
field in the direction of the wire, which does not break the
cylindrical symmetry. To calculate the effective g factor we
can use different approaches. The most direct way is to set the
magnetic field strength to a small finite value, e.g., B = 0.1 T,
and to calculate the difference between the two lowest dot
energies, using the procedure of Sec. IV A. Alternatively, in
order to avoid the finite value of the magnetic field, we can
express the effective g factor as

geff = 1

μB

∂�E

∂B
= g∗ ∂ε

∂h
(32)

in terms of the sensitivity ∂ε/∂h of the quantized dot
energy levels with respect to the magnetic field, at h = 0.
To determine this derivative, we proceed as in the case of
Rashba SOC treated in Ref. 19, and derive the quantization
conditions (22) and (24) for negative and positive in-plane en-
ergy ε, respectively. The resulting expression for the effective
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g factor is

geff = −g∗ sgn(ε)u(Ka) + u(Kb)

u(Ka)u(Kb)

Jm(Ka)Jm+1(Kb)

ζ (Ka,Kb)[2Ka + sgn(ε)u′(Ka)]−1 + sgn(ε)ζ (Kb,Ka) [2Kb − u′(Kb)]−1 , (33)

where we have defined the functions ζ (Ka,Kb) =
Jm(Kb)J ′

m+1(Ka) + sgn(ε)J ′
m(Ka)Jm+1(Kb) and u(K) =

α′K − γ ′K3. We denote by J ′
m(K) and u′(K) the derivatives

of the functions Jm and u with respect to K .
The expression of Eq. (33) is a generalization of the result

of Ref. 19, and it reduces to the result given in Eq. (13) of
that paper in the case γ = 0 of vanishing cubic-in-k SOC.
In order to compute the effective g factor using the analytic
expression (33), we first determine the eigenenergies and the
corresponding pair of wave vectors Ka and Kb by solving
numerically the quantization conditions of Eqs. (22) and (24)
at h = 0, and then evaluate (33) using the obtained values. In
Fig. 4 we present our results for different dot dimensions with
lengths ranging from 50 Å to 200 Å and radii from 150 Å
to 500 Å. We have checked that a direct numerical evaluation
of the level splitting from numerically calculated energies at
small values of magnetic field B yields the same results as
Eq. (33). In the figure, the numerical data for geff (black dots)
is plotted as a function of the inverse effective dimensionless
linear in-plane spin-orbit coupling α′−1 [see Eq. (14)]. The data
corresponding to different dot sizes approximately collapses
on a single curve. Such a single-parameter scaling shows that
the dependence of the ground-state effective g factor geff on
L and R is, at least within the range of explored sizes, to a
good approximation given by a function of α′. Thus the main
mechanism giving rise to a size dependence of the effective
ground-state g factor is the L-dependent renormalization of
the effective linear coupling strength α′ by the cubic SOC γ ,
and its scaling with R.

For a fixed value of L, the renormalized linear-in-k coupling
strength α′ is proportional to 1/uER. Since uE ∝ R−2, we have

−15

−10

−5

0

0 0.25 0.5 0.75 1

g e
ff

α′−1

FIG. 4. (Color online) The calculated effective g factors (full
black circles) for cylindrical quantum dots of different length L

and radius R, plotted versus 1/α′ defined in (14), with the SOC
parameters from Ref. 17. The data points are for dots with radii R

from 150 Å to 500 Å, and lengths values L in the range between
50 Å and 200 Å. The crosses represent experimental data from
Ref. 5, obtained with a magnetic field perpendicular to the symmetry
axis of the quantum dot. The blue horizontal line indicates the bulk
effective value g∗ ≈ −14.7.

α′ ∝ R such that the effective linear coupling decreases with
decreasing R. It can be seen in Fig. 4 that the value of geff

increases (in absolute value) towards the bulk effective g factor
g∗ (blue line) as R, and thus also the effective coupling α′
decreases. On the other hand, an increase in R leads to a larger
α′, and according to Fig. 2, the Zeeman splitting of the levels
decreases as the SOC increases. The consequence is that |geff|
diminishes. Conversely, for a given radius R, the increase in
L leads to a decrease of the effective linear-in-k coupling α′,
with the result of an approach of geff to g∗.

The effective cubic-in-k coupling γ ′ ∝ 1/uER3 ∝ 1/R

increases when R decreases, and a competition between
α′ and γ ′ can be expected. However, the spectrum of the
lowest energies is related to small values of K and is mainly
dominated by the linear SOC (see Fig. 1), at least for the
not-too-small values of R that we consider. The scaling of the
results with α′ leads to the conclusion that the main effect of
the cubic Dresselhaus coupling γ is the renormalization of
the effective linear-in-k coupling, and that the impact of the
effective cubic-in-k coupling strength γ ′ seems to be of minor
importance. However, the above arguments are relevant for the
case under study of not-too-small R and low-energy dot states.
More important effects of the cubic-in-k coupling γ ′ can be
expected for the g factor of excited states and in dots with very
small R.

Similarly to the results presented in Ref. 28, where a zinc
blende Hamiltonian with adjustable parameters such as the
energy band-gap magnitude was used, we find negative values
for the ground-state g factor of the dot. However, in our case
small positive values do occur for short pillbox-shaped dots.
In general, and similarly to the theoretical results for Rashba
SOC,19 as well as the experimental values of Ref. 5 (crosses in
Fig. 4), our effective g factors are of reduced absolute value as
compared to the bulk effective g factor g∗. Given the different
field orientations underlying the experimental measurements
and our results, a quantitative agreement of the data could not
be expected. However, the comparison made in Fig. 4 under the
assumption of a small anisotropy of geff shows good qualitative
agreement with similar size dependence. While the effective
g factor has been measured for very different values of L,
only a small range of radii has been covered in Ref. 5. Thus
a broader range of parameters and different field orientations
would be needed to validate our study.

D. Phonon-induced spin relaxation rate

An important quantity characterizing the usefulness of
quantum dots for spintronics applications is the spin lifetime,
which is generally limited by interactions with acoustic
phonons. We consider here the most relevant situation for
possible applications, namely, an electron initially in the higher
sublevel |i〉 of the lowest Zeeman doublet, which relaxes to
the lower sublevel |f 〉 due to the emission of a phonon. The
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rate � of this process can be calculated using Fermi’s Golden
Rule,

� = 2π

h̄

∑
Q,λ

|〈f |Uλ(Q)|i〉|2[n(Q) + 1]δ(�E − h̄ωλ), (34)

where Q is the phonon momentum. The label λ = {l,t} refers
to the longitudinal and the transverse modes, respectively,
and n(Q) is the Bose-Einstein phonon distribution with
energy h̄ωλ = h̄cλQ, where cλ is the sound velocity of the
corresponding mode. The energy difference between the two
electronic states �E = Ei − Ef determines via the δ function
the energy of the phonons involved in the relaxation process.
The potential Uλ(Q) comprises both the deformation and the
piezoelectric contributions29–32 for wurtzite lattice structures.
We neglect confinement effects on the phonons, only including
bulklike phonons in our description. For the longitudinal mode,
we have

Ul(Q) = [�l(Q) + i�l(Q)] eiQ·r, (35)

with �l(Q) being the deformation potential given by

�l(Q) = �0Al

√
Q, (36)

where �0 is a bulk-phonon constant. The quantity Aλ =√
h̄/2V �cλ contains the mass density � and the sample volume

V . The deformation potential has the same form as in the
case of a zinc blende structure. The term �l(Q) accounts for
the piezoelectric contribution, and upon introducing spherical
coordinates (Q,θp,ϕp) for the phonon momentum, it reads

�l(Q) = Al
1

Q1/2
�0 cos θp(h33 − hx sin2 θp), (37)

where hx = h33 − 2h15 − h31. In general, hij are bulk phonon
constants and �0 = 4πe/κ , where κ is the dielectric constant

and e the electronic charge. θp is the angle between Q and the
z axis (defined as the c axis of the wurtzite structure).

The potential of the transverse phonon mode is given by

Ut(Q) = �t(Q)eiQ·r (38)

with

�t(Q) = At
1

Q1/2
�0 sin θp(h15 + hx cos2 θp). (39)

We emphasize that in wurtzite lattices the transverse piezoelec-
tric potential has only one term, while in zinc blende lattices
it has two. The matrix element in Eq. (34) can be factorized,
and the rate can be written as

� = 2π

h̄

∑
Q,λ

|Mλ(Q)|2|〈f |eiQ·r|i〉|2n(Q)δ(�E − h̄ωλ),

(40)

where Ml = �l(Q) + i�l(Q) and Mt = �t(Q). We first note
that the modulus of the momentum is fixed by the δ function.
Concerning the integral over the electronic coordinates, we
remark that both the initial and the final states denoted by
�

f (i)
nm (ρ,φ,z) = �

f (i)
nm (ρ,φ)

√
2/L sin(nπz/L) have the same

z-dependent factor. Therefore, the integral corresponding to
the matrix element in (40) can be further split into two parts
by using cylindrical coordinates, leading to

|〈f |eiQ·r|i〉|2 = |Z(θp)|2|ϒ(θp,ϕp)|2. (41)

The integral over z can be performed analytically, yielding

|Z(θp)|2 = 2(2πn)4(1 − cos qz)

q2
z

[
(2πn)2 − q2

z

]2 , (42)

where the definition qz = QL cos(θp) has been used. The other
integral ϒ(θp,ϕp) reads

ϒ(θp,ϕp) =
∫ 1

0
dρ ρ

[(
cf

a Jmf

(
Kf

a ρ
) + c

f

b Jmf

(
K

f

b ρ
)) (

ci
aJmi

(
Ki

aρ
) + ci

bJmi

(
Ki

bρ
))

+ (
cf

a df
a Jmf +1

(
Kf

a ρ
) + c

f

b d
f

b Jmf +1
(
K

f

b ρ
))(

ci
ad

i
aJmi+1

(
Ki

aρ
) + ci

bd
i
bJmi+1

(
Ki

bρ
))]

×
∫ 2π

0
dϕ exp[i(mi − mf )ϕ] exp[iQ sin θp cos(ϕp − ϕ)ρR]. (43)

The integral over ϕ can be easily performed by applying the
Jacobi-Anger relation

exp [ix cos ϕ] =
∞∑

l=−∞
ilJl(x) exp [ilϕ] . (44)

Upon replacing Eq. (44) in Eq. (43) and carrying out the
integration over ϕ, all the terms vanish except the one with
l = mf − mi . The integral then results in

∫ 2π

0
dϕ ei(mi−mf )ϕeiQ sin θp cos(ϕp−ϕ)ρR

= 2π ei(mi−mf )(ϕp−π/2)Jmf −mi
(ρRQ sin θp). (45)

As can be seen in Eq. (45), the complex exponential becomes
a common factor in Eq. (43) and leads to |ϒ(θp,ϕp)|2 = f (θp),
which is not surprising, since the cylindrical symmetry is not
broken by the phonon potential.

In addition to the determination of the values of Ka,
Kb, and �E from numerically solving the quantization
conditions (22), (24), and (28) as in Sec. IV A, the calculation
of the spin relaxation rate still involves an integral over ρ and
a subsequent integration over θp [since neither |ϒ(θp,ϕp)|2 nor
|Mλ(Q)|2 depend on ϕp, cf. Eqs. (36), (37), and (39)], which
we perform numerically as well.

In the numerical evaluation of the relaxation rate, the
parameters we use are � = 5900 kg/m3, cl = 4410 m/s,
ct = 2130 m/s, κ = 15.15, and �0 = 5.8 eV, all taken from
Ref. 29. As the piezoelectric bulk constants for InAs
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FIG. 5. (Color online) The calculated contributions of different
acoustic-phonon potentials to the spin relaxation rate as a function of
magnetic field for cylindrical InAs quantum dots of length L = 100 Å
and radius R = 275 Å, with wurtzite lattice structure. The black
curves correspond to the zero-temperature relaxation rate yielded
by the piezoelectric transverse (TA-Piezo; solid), the piezoelectric
longitudinal (LA-Piezo; dotted), and the deformation (LA-Defo;
dashed) potentials. The green line shows the spin relaxation rate
due to TA-Piezo at finite temperature T = 10 K.

nanowires having wurtzite structure have not been obtained
so far from microscopic calculations, we follow the standard
prescription29,30,33,34 of estimating them from the cubic struc-
ture by the use of the relations h15 = h31 = (−1/

√
3)h14 and

h33 = (2/
√

3)h14. For h14 we use the value of the zinc blende
structure case (3.5 × 108 V m−1 29), assuming that at least the
order of magnitude of that value should be correct for the
wurtzite case. It can be seen from Eqs. (37), (39), and (40)
that the relaxation rate due to the piezoelectric contributions
is proportional to h2

14 and thus not extremely sensitive to its
precise value.

We present in Fig. 5 the results for the spin relaxation rate in
a cylindrical dot of length L = 100 Å and radius R = 275 Å,
as a function of magnetic field, assuming that the initial and
final eigenstates in the relaxation process are the two lowest
energy states (i.e., the first Zeeman-split sublevels). The black
curves show the zero-temperature contributions of the different
phonon potentials separately. It can be seen that the transverse
piezoelectric mode yields the dominant relaxation rate for
magnetic field strengths below 1.25 T. Moreover, the relaxation
rate strongly increases with the magnetic field strength.
This is due to the Zeeman splitting that makes phonons of
higher energies relevant where the density of phonon states
is increased. Quite long spin lifetimes, of the order of 10 ns,
occur for magnetic field strengths around 1 T, and much longer
lifetimes are obtained at weaker magnetic fields.

The temperature dependence enters solely through the
Bose-Einstein distribution in Eq. (34), such that the increase
of the spin relaxation rate with increasing temperature can
be easily obtained. The result for the dominating TA-piezo
mechanism at 10 K is shown in Fig. 5 (green solid line).

Though it is clearly dominated by the piezoelectric con-
tribution, we find that the spin-relaxation rate caused by the
deformation potential is consistent with the one of Ref. 29,
where the singlet-triplet relaxation for an InAs nanowire-based
quantum dot was calculated. However, in that work, only the
deformation coupling was taken into account and assumed

to dominate. The same assumption was made in Ref. 30,
where the electron spin relaxation in a similar quantum dot
was calculated. In both references, the supposed dominance
of the deformation over the piezoelectric potential was jus-
tified by the fact that they considered small semiconductor
nanostructures. As explained in Ref. 35, there is a competition
between the two components that depends on the size of the
nanostructure. For instance, the leading role of the piezoelec-
tric coupling for weak magnetic fields has been reported36 for
quasi-one-dimensional cigar-shaped quantum dots in GaAs
nanowires with zinc blende structure. For GaAs quantum dots,
a crossing between the deformation and piezoelectric-induced
rate as a function of the magnetic field was found in Ref. 37.
In our case this occurs as well, though for lower values
of magnetic field than those observed in Ref. 37. For InSb
nanowires, numerical calculations show that the deformation
potential dominates.36,37 That domination has been assumed to
be present, in general, for all narrow-gap semiconductors.38 In
contrast, in recent measurements on an InAs nanowire-based
quantum dot,34 the piezoelectric coupling was crucial for the
determination of the phonon spectrum.

We find that for InAs, which has a larger band gap than InSb
but smaller than GaAs, the spin relaxation rate is mainly driven
by the (transverse) piezoelectric phonon potential for magnetic
fields below 1.25 T. Beyond this value, the deformation seems
to overcome the piezoelectric contribution, but our theory does
not allow us to treat stronger magnetic fields.

V. CONCLUDING REMARKS

Motivated by recent experiments on InAs nanowire-based
quantum dots,5,6 we have calculated the electronic structure of
quantum wells and cylindrical quantum dots with wurtzite
lattice structure, taking into account the linear and cubic
Dresselhaus SOC and a weak applied magnetic field. We
found analytical solutions for the energy levels of both types
of structures. For quantum dots, we worked along the lines
of the solutions previously found in the presence of the linear
Rashba spin-orbit coupling.18,19 Our obtained solution allowed
us to explore the spin texture and the effective g factor
of the energy eigenstates, and furthermore, we calculated
the phonon-induced spin relaxation rate in the ground-state
Zeeman doublet.

The energy dispersion of quantum wells shows a strong
influence of the cubic Dresselhaus term. In quasi-two-
dimensional structures, the cubic term leads to a thickness-
dependent renormalization of the linear term which is of the
same order of magnitude as the bare term. This renormalization
produces a level crossing of all the subbands (within the
range of validity of perturbation theory) that is being reported
here. Another level crossing, which is a consequence of the
competition between the linear and the cubic terms, and which
has been reported earlier in wurtzite-structure materials, is also
obtained here. Although our analytical results are valid for all
wurtzite-lattice materials, for concreteness we presented full
numerical results for InAs quantum wells only.

The quantum-dot eigenstates have been obtained as linear
superpositions of degenerate quantum-well states, and their
associated energies calculated as functions of the Dresselhaus
coupling constants with and without a relatively weak Zeeman
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term. Again, a strong influence of the cubic term is observed
in the energy levels. The spin texture of the energy eigenstates
is shown to be qualitatively modified by the presence of the
Dresselhaus SOC. Further studies and applications of these
states as qubits should take into account this seldom-discussed
feature of the states. Our analysis of the effective ground-state
g factor shows a remarkable scaling collapse when the data are
plotted as a function of the effective linear in-plane spin-orbit
coupling α′ that contains a size-dependent renormalization
from the cubic Dresselhaus coupling γ . The obtained results
are consistent with existing experimental data,5 even though
the magnetic field orientation is not the same. The scaling of
the data indicates that other size-dependent mechanisms are
of minor importance. However, the cubic in-plane coupling
γ ′ is expected to become more relevant in the case of very
small radius R and/or for the g factor of higher excited
states.

Finally, we have calculated the acoustic-phonon-induced
spin relaxation rate between the lowest Zeeman sublevels as

a function of magnetic field. The different rates arising from
the longitudinal deformation, longitudinal piezoelectric, and
transverse piezoelectric contributions for wurtzite structures
have been calculated and compared. While our results for the
spin relaxation rate due to the deformation mechanism are
consistent with those of Ref. 29, we find that, in contrast
to what is usually expected for small nanostructures,29 the
transverse piezoelectric phonon potential gives the dominant
relaxation rate, at least for our case of cylindrical dots.
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