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Abstract

In this work we discuss several aspects of the behaviour of the elec-
trons in the interaction with the material scattered. The interpretation
of the physical phenomena is helped through the TEM observation of
diffraction microphotographs. From the pure quantum mechanical point
of view we use the well known Born approximation to obtain the wave
amplitude in a simple form in order to understand the problem roughly:
electronic and probe features before the interaction, at the moment and
after the interaction. Introducing the quantum field theoretical ap-
proach, the construction of new theoretical models that have account
on the electron-phonon interaction in cristalline and amorphous samples
is explicitly made. The comparison with the pure quantum mechanical
results obtained previously and other models in the literature is briefly
discussed.

1 Introduction and motivation: quantum me-

chanical considerations

The De Broglie postulate states that a particle having linear momentum has
associated a wavelength . The experiments of G. P. Thompson and A. Reid,
[1] and Davisson and Germer, [2] ( published in the same Nature volume) gave
the first evidence of the validity of the De Broglie postulate.

In transmission electron microscopy (TEM) observations, closely con-
nected with the work of G. P. Thompson [1], electrons collide with and then
go through matter. Afterwards they hit a screen, revealing the microscopic
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details of the sample. We have observed by (TEM) a carbon steel sheet with
a previous cold rolled mechanical treatment which induced a permanent mag-
netic field by plastic deformation. The sample to be examined by TEM was
obtained by cutting a circular slice from the steel with an electro-spark erosion
machine. The slice was electro-polished in a commercial ”Struers” double jet
device with a solution of 90% vol.acetic acid and perchloric acid 10% vol. at 15
◦C and 30 V, to obtain a very thin zone. A TEM at an accelerating potential of
160 kV was used to obtain the pattern shown in Fig. 1 and the microscope was
aligned in such a way that the electron beam, before introducing any sample,
reached the centre of the screen.

The pattern of Fig. 1 shows a standard diffraction image of a steel
sample but with all the spots shifted from the centre of the TEM screen.

Three different electron diffraction patterns can be observed by TEM
showing the crystallinity of matter: a) amorphous, cf. Fig. 2; b) compound
by a large number of very small crystallites, see Fig. 3; and c) formed by
large single crystals cf. Figs. 1 and 4, [6]. If non ferromagnetic materials are
observed, the central beam reaches the central part of the screen, see Fig. 4,
but when a magnetized ferromagnetic sample is observed by TEM, the central
beam is shifted from the centre of the screen, see Fig. 1.

Electrons are affected by magnetic induction and by electric fields. As
inside of metals the electron field is null, the travelling electrons can interfere
only with magnetic forces via the Lorentz formula:

−→
F = q−→v ×−→

B (1)

During its travel at velocity v through the magnetic sample, the par-
ticles (electrons) do not lose their charge and the internal induced magnetic
field produces the necessary force to bend the electron beam inside the sam-
ple, eq. (1) . If the electron charge had disappeared, the central spot would
not have moved from the central position. So, there is no doubt at all about
the complementarity of the charge of the electron while it is behaving as a
matter wave inside matter. If, for example, the sample were substituted by a
non-magnetized one without changing any of the microscope conditions, the
centred spot would appear in the centre of the screen.

In order to explain the electron diffraction pattern of Fig. 3 it is
necessary to take into account some basic concepts from the former period of
modern physics, i.e. the De Broglie wave length λ and the Bragg law, as it was
done by G. P. Thompson, [1]. And in order to explain the electron pattern
shown in Figs. 4 and 5, we have also to consider the Coulombian interaction
between electrons and matter as a scattering problem, taking into account
that matter is a tridimensional geometrical arrangement of ordered atoms.
The micro world interactions are studied by means of quantum mechanics. The
matter wave function Ψ (r) associated with the electron satisfies the stationary
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Schrödinger equation at all points of its trajectory. Electrons in a scattering
experience have three different places where they are affected by the potential
energy: a) before the sample, where the potential energy V (r) is null, b) inside
the sample, where the potential energy is deemed Coulombian and c) outside
the sample where again the electron is not restricted to any potential but where
Ψ (r) has been strongly modified by the crystal interaction with matter and
carries the useful information about the matter which has interacted.

In the first region, where V (r) = 0, the stationary Schrödinger equa-
tion is written as follows:

∇2Ψ + k2Ψ (r) = 0 (2)

where E is the electron kinetic energy and the substitution k2 = �
2

2m
E

has been used and whose well known solution is the plane wave function:
Ψ (r) = eikr

In the second region, where the potential energy is given by the sam-
ple, it is difficult to find a wave function which could satisfy the Schrödinger
equation. In order to write the wave function Ψ (r) we can consider two types
of approximations connected with two types of processes: elastic and inelastic.
In the elastic process, the energy and the linear momentum are considered
unaltered and in the inelastic one, the energy is altered by either excitation or
ionization.

What is wanted is to obtain the electron wave function after its scat-
tering with matter far from where the interaction takes place considering the
elastic approximation process. The potential energy is restricted to the col-
lision surroundings and the wave function amplitude tends to zero when the
distance between sample and screen is large, that is why the intensity of the
visual light that the impinging electrons produce on the fluorescent screen of
the TEM diminishes. So the product Ψ (r)V (r) tends to zero and the situation
is called of ”short range”. The solution of the Schrödinger equation far away
from the zone of interaction has to be proportional to eikr because V (r) = 0
and must have an asymptotic behaviour tending to zero.

The interaction region inside the sample, V (r) = 0, could be consid-
ered as a sphere of radius R. Far from the interaction region where r >> R,
the potential energy could be considered as central and the solution of the
Schrödinger equation could be obtained by the usual method of variable sep-
aration in spherical coordinates:

Ψ (r, θ, ϕ) = R (r)Y l
m (θ, ϕ) (3)

being R(r) the radial function and Y l
m (θ, ϕ) the spherical harmonics func-

tions.
Considering the Hamiltonian correspondent to the radial part and the

auxiliary function u (r) = R (r) r the radial Schrödinger equation is written as
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follows: [
− �

2

2m

d2

dr2
+

�
2l(l + 1)

2mr2
+ V (r)

]
u = Eu (4)

But if the product V (r)u(r) tends to zero and if r >> R, as it is in this
case, the radial function that satisfies eq. with k given by eq.(3), is u = eikr

which is similar to the behaviour of the matter wave when V (r) tends to zero
and are called “short range potentials” [7].

Considering a short range potential, the matter wave must be free
but if the impact parameter is larger than R, the particles will have different
orbital momentum and the matter wave will consist of a superposition of all
the orbital momentum states and it will be impossible to write the angular
dependence with spherical harmonics, as it is used for radial potentials. Then,
the solution of the Schrödinger equation will be R(r) = u(r)/r times a function
f (θ, ϕ), instead of the spherical harmonics Y l

m (θ, ϕ), that is:

Ψdisp (r, θ, ϕ) = f (θ, ϕ)u(r)/r (5)

Screens or detectors are the devices which receive the scattered elec-
trons, but both are far away from the target, and they receive scattered as
well as non scattered electrons (whose function is Ψinc = eikz), so the dis-
persed wave function is expressed as the sum of both, the scattered and the
non scattered:

Ψdisp (r, θ, ϕ) = eikz + f (θ, ϕ)u(r)/r (6)

where the incoming wave function eikz is expressed as a plane wave with
its energy being the average energy of the ensemble system.

The parameter k in eq. and (10) is the modulus of the wave vector−→
k which has the direction of the scattered wave and is also the modulus
of the incident propagation vector

−→
k 0 because of the energy conservation in

the elastic consideration.
−→
k 0 can be expressed as

−→
k 0=k−→a z, being −→a z the

unit vector of the direction of the incoming electrons. When the electrons hit
the sample, an elastic interaction occurs and the only thing happening to the
electron is the deviation of its trajectory, maintaining constant the modulus
of the momentum, see Fig. 5. where it may be clearly seen how the electron
changes its direction. Some extra momentum appears: −→q = 2

−→
k Sin (θ/2),

then

−→
k =

−→
k 0 + −→q (7)

and another one has to come up on the sample, the backward momentum
−q, which will not be considered here. The θ angle is the same angle seen in
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electron diffraction and is the same which appears in the Bragg law: 2d Sinθ =
nλ.

We now apply the Born approximation in order to solve the Schrödinger
equation and compare its result with the previous method.

The Schrödinger equation in the interaction zone is[
− �

2

2m
∇2 + V

]
Ψ = EΨ (7)

and from the relation k2 = �2

2m
E, the kinetic energy E can be rewritten as

follows: [∇2 + k2
]
Ψ =

2m

�2
V Ψ (8)

We now compare the differential equation with the well-known differ-
ential equation in mathematical-physics:

[∇2 + k2
]
Ψ = −4πρ whose solution

is:

Ψ (r) =

∫
G (r, r′) r′d3−→r ′ (9)

where G is the Green function of and

ρ (r) = −mV (r)

2π�2
Ψ (r) (10)

is the inhomogeneity.
There are two Green functions for the operator ∇2 +k2that appears in

eq. (8) and (9) , G+ = eikr and G− = e−ikr to assure the asymptotic behaviour
of the function and the movement of the wave matter when r > 0 the G+ is
selected. Considering that r is the observation position and r′is the integration
variable with R = |r − r′| the Green function is wrtten as: G+ = eik|r−r′|

So eq.(9) becomes:

Ψ (r) = − m

2π�2

∫
eik|r−r′|

|r − r′|V (−→r ) Ψ (−→r ) d3−→r ′ (11)

The solution of the differential equation is the integral equation (11),
so in order to obtain the general solution we have to consider the solution eikz

of the homogeneous equation and the general solution is:

Ψdisp (r, θ, ϕ) = eikz − m

2π�2

∫
eik|r−r′|

|r − r′|V (−→r ) Ψ (−→r ) d3−→r ′ (12)

As it was previously mentioned V (r′) is different from zero, in a very
small spherical region of radius R as compared with r. With this assumption
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we can think that the integration variable r′compared to r in 1/ |r − r′| tends
to 1/r, and in the exponential the value |r − r′|tends to |r − r′| · r/r as the
result of being developed in powers of r′ tending to zero so the asymptotic
solution becomes:

Ψdisp (r, θ, ϕ) = eikz − m

2π�2

eikr

r

∫
e−ikr′V (−→r )Ψ (−→r ) d3−→r ′ (13)

Iteration is the central point of the Born approximation and for the
zero approximation term we may adopt:

Ψ0 ≈ eikz = ei
−→
k 0

−→r ′
(14)

And the first approximation solution is:

Ψdisp (r, θ, ϕ) = eikz − m

2π�2

eikr

r

∫
e−ikr′V (−→r ) ei

−→
k 0

−→r ′
d3−→r ′ (15)

and with eq. (7), the last equation in (15) gives:

Ψdisp (r, θ, ϕ) = eikz − m

2π�2

eikr

r

∫
e−i−→q ·−→r ′

V (−→r ) d3−→r ′ (16)

Comparing the last equations with (6):

Ψdisp (r, θ, ϕ) = eikz + f (θ, ϕ)
eikr

r
(17)

we can see that:

f (θ, ϕ) = − m

2π�2

eikr

r

∫
e−i−→q ·−→r ′

V (−→r ) d3−→r ′ (18)

is the Fourier transformation of the potential energy V (r).
The importance of the calculation of f (θ, ϕ) in scattering theory is

connected to the cross section; in solid physics it is the amplitude of the dis-
persed wave function used to obtain the same Laués relation and of course the
Bragǵs law as is done with x-rays instead of electrons and the superposition
in a diffraction effect of wave functions, [5].

2 Second quantization approach: the struc-

ture of the lattice

The electron will polarize its surrounding and in its motion will carry the
polarization cloud around it. The electron and the cloud constitute a quasi-
particle. The polarization of the surroundings means a distortion of the lattice,
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hence an excitation of optical phonons. The quasi-particle can be described as
an electron surrounded by a cloud of (virtual) optical phonons. It is called a
”polaron”. One of its most important properties is an increased inert mass.

The model describing a polaron will depend on whether the distortion of
the lattice is limited to the immediate vicinity of the electron (small polaron)
or whether it extends over several lattice constants (large polaron). The large
polaron case is the most representative for scattering experiments. In order to
perform the computations in the second quantization approach we can use the
continuum approximation [8].

Firstly we are expressing the coefficients bik of the Wigner-Seitz lattice in
terms of ε (0) , ε (∞) and the limiting frequency of the longitudinal optical
branch ωL, then

P = −ε0E =
ε0b21

ε0 + b22
w =

{
NMωLε0

Vg

[
1

ε (0)
− 1

ε (∞)

]}1/2

s (19)

The interaction energy of an electron with the polarized medium is

Hel−ph = − e

4πε0

∫
P (r) (r − rel)

|r − rel|3
dr (20)

Inserting (19) in (20) and using the quantized form in the continuum approx-
imation of s (r, t) we can easily solve the problem: we must connect s (r, t)
with the discrete displacements in the lattice snα.Taking a binary lattice, lon-
gitudinal vibrations obey

eα(q) = e∗α (−q) are // to q (21)

this fact give us (see [8])

sn
1√
NM

∑
q

Qq
q

q
exp(iq · Rn) (22)

with

Qq =

(
�

2ωL

)1/2 (
a+
−q + aq

)
; M : reduced mass of the binary lattice

(23)

Here the summation over j is omitted since we are only considering the LO
branch and the limiting value ωL for the the optical vibration frequency. The
dependence of the LO branch can be neglected where the continuum approxi-
mation is valid. Finally:

s (r) =

(
�

2NMωL

)1/2 ∑
q

q

q

[
a+

q exp(−iq · r) + aqexp(iq · r)] (24)
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only the 2 exponential factors are now r-dependents and the integral in the
Hel−ph is easy to carry out. Since

∫
exp(±iq · r) (r − rel)

|r − rel|3
dτ = ∓4πi

q

q2
exp(±iq · rel) (25)

then

Hel−ph = i

{
e2

�ωL

2ε0Vg

[
1

ε (0)
− 1

ε (∞)

]}1/2 ∑
q

1

q

[−a+
q exp(−iq · rel) + aqexp(iq · rel)

]
(26)

From the perturbative QFT we know that the zero order wave functions are
the plane waves extended by the vacuum state |0; 0〉of the phonon system,

being the zero order energy E
(0)

(k)
= �

2k2

2m
. The states over which the additional

terms are summed are states where an optical phonon of energyq and wave
number �ωLis emitted. Then

∣∣k; 0
〉(1)

=
∣∣k; 0

〉(0)
+

∑
q

〈
k − q; 1q |Hel−ph| k; 0q

〉
E

(0)

(k)
− E

(0)

(k−q)
− �ωL

q

∣∣k − q; 1q

〉(0)
(27)

E
(1)

(k)
= E

(0)

(k)
+

∑
q

∣∣〈k − q; 1q |Hel−ph| k; 0q

〉∣∣2
E

(0)

(k)
− E

(0)

(k−q)
− �ωL

(28)

that can easily be computed having account of the matrix element

〈
k − q; 1q |Hel−ph| k; 0q

〉
= − i

q

{
e2ωL

2ε0Vg

[
1

ε (0)
− 1

ε (∞)

]}1/2

(29)

Now, considering the pure quantum mechanical expression (16) and expression
(27), the relation between the potential V (r′) and the specific structure of the
lattice in the sample is easily obtained:

−i
∑

q

1(
�2q2

2m
− �ωL

) {
e2

�ωL

2ε0Vg

[
1

ε (0)
− 1

ε (∞)

]}1/2

= − m

2π�2

∫
V (r′) exp(−iq · r)d3r′

(30)
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3 Scattering in amorphous solid bodies: the

new quantized model

Our starting point is the Hamiltonian electron-phonon (20) but now P is the
corresponding to the amorphous isotropic case. There are in such case two
characteristic velocities of sound propagation: ul and ut (longitudinal and
transversal respectively). As is more or less known, the main consequences
of these two velocities ul and ut are that the Rayleigh line contains two
Mandelstam-Brillouin’s doublets and they are closely related with the scat-
tering by longitudinal and transversal acoustic waves, being from the center of
the line ±	 ωl and ±	 ωt where: 	ωl = qul; 	ωt = qut.

Now, as in [9]

P h =
−ω2eikr

4πrc2
ε h
ig εijkn′

hn
′
jGk (31)

where

Gi =

∫
δGike

−iqrF k
0 dV (Fk0 ≡ Ek) (32)

Fk0 ≡ Ek is the incident field and n′ is the unitary scattering vector. The
variation of the permittivity by the deformation of an isotropic amorphous
body is[9]

δGik = a1uik + a2ullδik (33)

where uik is the tensor of deformations, obviously, that can be written as a
function of the displacement vector: ui = 1

2
[u0ie

iqr + u∗
0ie

−iqr]. Then

uik =
i

4

[
(u0iqk + u0kqi) eiqr + (u∗

0iqk + u∗
0kqi) e−iqr

]
(34)

and the volume integral takes the following simple form∫ (
uike

−iqr + u∗
ike

iqr
)
dV =

iV

4
[(u0iqk + u0kqi) + (u∗

0iqk + u∗
0kqi)] (35)

As in the crystal case that was treated before, all the fields can be expressed as
functions of the displacements then, the Hamiltonian remains with the same
form as in (20) but now with P given by (31):

Hel−ph = − e

4πε0

∫ −ω2eikr

4πrc2
ε h
ig εijkn′

hn
′
jGkωhdr ; with : ωh ≡ (r − rel)

|r − rel|3
(36)
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To obtain the explicit form of Gi we use the expressions (33)-(35) in (32), then

Gi =
i

4
V

[
a1 (u0iqk + qiu0k) F 0k + 2a2F

0
iu

k
0 qk

]
(37)

As is easily seen, in order to pass to the quantized version, the displacements
must to be written as functions of the standard annihilation and creation
operators â and â+ → û0i = u0i√

2
(â + â+).Then

〈
k − q; 1q |Hel−ph| k; 0q

〉

= −eik·rel

r2
el

(
ik · rel − 1

)(
i

4k2

e

(4π)2 ε0

ω2

c2

)
V

[
a1 (u0iqk + qiu0k) F 0k + 2a2F

0
iu

k
0 qk

]

The advantage of this formulation from others [10] is clear: expressions (36)
-(38) have the correct limit coming from the quantized model to the classical
case.

4 Concluding remarks:

In this work several aspects of the behaviour of the electrons in the interac-
tion with the material scattered have been described and new models were
presented

From the quantum theoretical point of view, and helped through the TEM
observation of diffraction microphotographs, the basis of this interesting phys-
ical phenomenon was carefully explained.

The well known Born approximation was used obtaining the wave ampli-
tude in a simple form in order to understand roughly the problem: electronic
and probe features before the interaction, at the moment and after it.

From the quantum field theoretical approach, the construction of new the-
oretical models that have account on the electron-phonon interaction in crys-
talline and amorphous samples was explicitly made.

With the QFT approach the relation between the potential V (r′) included
into the Born approximation and the specific structure of the sample was easily
obtained, then the meaning of f (θ, ϕ) in the scattering of solids was elucidated.

Finally, it is interesting to note that similar models describing scattering in
amorphous samples as in [10], although fit with some degree quantum aspects
of the phenomena, do not have the correct classical limit.
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Figures

Figure 1: Electron diffraction pattern of a magnetized steel, see the central
spot not coincident with the centre of the micrograph

Figure 2: Electron diffraction pattern of an amorphous sample, see the circular
rings
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Figures

Figure 3: Electron diffraction pattern of an amorphous sample, see the circular
rings

Figure 4: Electron diffraction pattern obtained from a large single crystal
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Figures

Figure 5: Diagram of linear momentum interchange
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