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CHARACTERIZATIONS OF ITALIAN GRAPHS

AND SICILIAN GRAPHS ∗, ∗∗
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Abstract. In this work we deal with three variants of domination
in graphs, these are Italian domination (or Roman {2}-domination),
{2}-domination and 2-domination. We define Sicilian graphs as those
graphs for which the Italian domination and the {2}-domination num-
bers coincide. Sicilian graphs constitute a superclass of Italian graphs
(introduced by Klostermeyer et al. in 2019). First, we give a char-
acterization of Italian graphs in terms of the existence of a special
Roman {2}-dominating function. Then, we focus on web graphs for
which their {2}-domination number was recently found (Cheng et al.,
2020), and we study Sicilian web graphs. We explore also Sicilian co-
bipartite graphs. As a by-product, we find the 2-domination number
for web graphs and co-bipartite graphs. Finally, we show necessary con-
ditions for non-Italian graphs to be Sicilian as well as characterize Sicil-
ian graphs within some relevant graph classes such as quasi-threshold
graphs and cographs.
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1. Introduction and preliminaries

All graphs in this paper are undirected and simple. Let G be a graph, and
let V (G) and E(G) denote its vertex and edge sets, respectively. Whenever it is
clear from the context, we simply write V and E and denote G = (V,E). For
basic definitions not included here, we refer the reader to [2]. Two vertices of V
are adjacent if there is an edge of E between them. The neighborhood of v ∈ V ,
N(v), denotes the set of all adjacent vertices to v, and the closed neighborhood of
v is N [v] = N(v) ∪ {v}. A clique in G is a subset of V that induces a complete
subgraph of G. A vertex u ∈ V is universal in G if N [u] = V .

A graph where the vertices can be divided into two disjoint sets such that all
edges connect a vertex in one set to a vertex in the other set is called a bipartite
graph.

For a subset S ⊆ V and an integer-valued function f defined on V , we denote
f(S) =

∑
v∈S f(v).

A subset D of V is a dominating set in G if every vertex in V \D is adjacent
to at least one vertex in D, i.e.

⋃
v∈D N [v] = V . The minimum size among all

dominating sets in G is called the domination number of G and denoted by γ(G).
A subset D of V is a 2-dominating set in G if every vertex in V \D has at least
two adjacent vertices in D [11]. The minimum size among all 2-dominating sets
in G is called the 2-domination number of G and denoted by γ2(G).

Italian domination (also called Roman {2}-domination) was introduced in 2016
by Chellali et al. [3] as a variant of 2-domination. Given a graph G with vertex set
V , a Roman {2}-dominating function (R2DF) f : V → {0, 1, 2} has the property
that for every vertex v ∈ V with f(v) = 0, either there exists a vertex u ∈ N(v)
with f(u) = 2, or at least two distinct vertices x, y ∈ N(v) with f(x) = f(y) = 1.
The weight of an R2DF is the value f(V ). The minimum weight among all R2DFs
of G is called the Italian domination (or Roman {2}-domination) number of G
and denoted by γI(G). The problem of deciding if, given a graph G and an integer
number α, G has an R2DF of weight at most α, is NP-complete [3, 4, 9, 15,16].

Baghirova et al. [1] proved recently that many problems, including Italian dom-
ination, are linear-time solvable on graph classes that have bounded clique-width.
In particular, the decision problem associated with Italian domination is a 2-stable
1-locally checkable problem with a check function that can be computed in con-
stant time. Nevertheless, this result is mainly of theoretical interest and does not
lead to practical algorithms.

In this work we focus on the one hand, on two graph classes which have bounded
clique-width —thus, a linear-time algorithm for Italian domination exists from
[1]— and on the other hand, on two graphs classes with unbounded clique-width,
thus, we do not even know from scratch the existence of an efficient algorithm for
them. We find closed formulas for the Italian domination numbers in both cases.

On another direction, in [3] two independent inequality chains relating the corre-
sponding parameters are presented for comparing Italian domination with the clas-
sical dominations. These are: γ(G) ≤ γI(G) ≤ 2γ(G) and γ(G) ≤ γI(G) ≤ γ2(G),
for every graph G. In [12], a characterization of trees T for which γI(T ) = 2γ(T )
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is given. A general graph G is called an Italian graph if γI(G) = 2γ(G) [13]. With
the purpose of exploring Italian graphs, in [13] a graph G is called an I1a graph
if the range of some minimum weight R2DF of G is the set {0, 1}. The classes of
Italian graphs and I1a graphs are not comparable. Stars are Italian graphs that
are not I1a. The path on four vertices P4 is an I1a graph that is not Italian.
Complete graphs are Italian graphs that are I1a as well. All paths are I1a but the
only ones that are Italian are P2, P3 and P6 [13]. We notice that all cycles are
I1a but the only one that is Italian is C3. I1a graphs are characterized as those
graphs G for which γI(G) = γ2(G) [13].

As mentioned in the work by Chellali et al. [3], Roman {2}-dominating functions
are also closely related to {2}-dominating functions [8]. For a function f to be
a {2}-dominating function, even for vertices v ∈ V with f(v) = 1 it is asked for
the existence of a vertex u adjacent to v with f(u) ̸= 0. Formally, for a function
f : V → {0, 1, 2} to be a {2}-dominating function ({2}DF), the property that
f(N [v]) ≥ 2 must hold for every vertex v ∈ V (and not only for those v with
f(v) = 0). From their definitions it is clear that γI(G) ≤ γ{2}(G). The minimum
weight of a {2}DF in G is called the {2}-domination number of G and denoted by
γ{2}(G). The problem of deciding if, given a graph G and an integer α, G has a
{2}DF of weight at most α, is NP-complete [11]. By taking any dominating set ofG
and defining a function that assigns 2 to its elements and 0 to the remaining vertices
of G, we build a {2}DF of G and thus γ{2}(G) ≤ 2γ(G). Thus, the following
inequality chain holds for all graphs G: γ(G) ≤ γI(G) ≤ γ{2}(G) ≤ 2γ(G).

In Section 2, we give a characterization of Italian graphs in terms of the existence
of an R2DF with range {0, 2}. Then, we introduce Sicilian graphs as those graphs
G such that γI(G) = γ{2}(G), which turn out to be a superclass of Italian graphs.
With the aim of exploring Sicilian graphs, we deal with web graphs for which the
{2}-domination number is known from a recent work [5]. In particular, for any
web graph we find the Italian domination number and prove that they are all I1a
graphs, which allows us to find their 2-domination number as well. We find some
Italian web graphs as well as non-Italian web graphs that are Sicilian. In Section
3 we deal with co-bipartite graphs and find the Italian, the {2}-domination and
the 2-domination numbers for them. In Section 4 we find necessary conditions for
non-Italian graphs to be Sicilian, as well as completely characterize Sicilian graphs
within some relevant graph classes such as quasi-threshold graphs and cographs.

2. Italian graphs and Sicilian graphs

Recall that G is an Italian graph if γI(G) = 2γ(G) [13]. Clearly, the smallest
non-Italian graph is the trivial graph with one vertex (K1), since γI(K1) = 1 and
γ(K1) = 1, and this clearly implies that being an Italian graph is not a property
inherited by its induced subgraphs. Although the characterization in Proposition
2.4 below is not a structural one, it describes Italian graphs by the existence of a
special R2DF.

We first characterize Italian graphs with Italian domination number equal to 2.
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Proposition 2.1. Let G = (V,E) be a connected graph with |V | = n ≥ 2. Then
γI(G) = 2 if and only if G has a universal vertex, or two non-adjacent vertices of
degree n− 2.

Proof. First suppose that γI(G) = 2. If n = 2, then G = P2 since G is connected
and then it has a universal vertex (in fact two). Consider n ≥ 3 and let f be an
R2DF of G with f(V ) = 2. Clearly, since f assumes values 0, 1 or 2 and f(V ) = 2,
there exists a vertex v ∈ V with f(v) = 0. Since f is an R2DF of G, there either
exists u ∈ N(v) with f(u) = 2 (and then f(v) = 0 for all v ∈ V \ {u}), or else
there exist two distinct vertices x, y ∈ N(v) such that f(x) = f(y) = 1 (and then
f(v) = 0 for all v ∈ V \{x, y}). In the first case, G has a vertex of degree n−1 (i.e.
a universal vertex) and in the second, G has two non-adjacent vertices of degree
n− 2 or one universal vertex (in fact two).

For the converse, if G has a vertex u of degree n − 1 (i.e. u is a universal
vertex), then the function f such that f(u) = 2 and f(v) = 0 for all v ∈ V \ {u}
is an R2DF of G, implying γI(G) = 2 since n ≥ 2. If there exist two distinct
and non-adjacent vertices x, y ∈ V of degree n− 2, then the function f such that
f(x) = f(y) = 1 and f(v) = 0 for all v ∈ V \ {x, y} is an R2DF of G with weight
f(V ) = 2, implying γI(G) = 2 since n ≥ 2. □

From the proof of Proposition 2.1 we derive:

Corollary 2.2. Every graph with a universal vertex is Italian and no graph without
universal vertices but with two non-adjacent vertices of degree n− 2 is Italian.

Also from the proof of Proposition 2.1, we notice that every graph with a
universal vertex has a minimum weight R2DF with range {0, 2} and no graph
without universal vertices but with two non-adjacent vertices of degree n− 2 has
such a minimum weight R2DF.

Concerning paths Pn with n ≥ 1, we know that γI(Pn) = ⌈n+1
2 ⌉ and γ(Pn) =

⌈n
3 ⌉ [3]. Klostermeyer et al. noticed that the only ones that are Italian are P2, P3

and P6 [13]. We observe that for these three paths, there exists a minimum weight
R2DF with range {0, 2}, and that the range of every minimum weight R2DF for
Pn with n ̸= 2, 3, 6 is not the set {0, 2} (see Figure 1 for some examples).

Concerning cycles Cn with n ≥ 3, we know that γI(Cn) = ⌈n
2 ⌉ and γ(Cn) =

⌈n
3 ⌉ [3]. We notice that the only cycle that is Italian is C3 and for it, there exists

a minimum weight R2DF with range {0, 2}, and that the range of every minimum
weight R2DF for a cycle Cn with n ≥ 4 is not the set {0, 2} (see Figure 2 for some
examples).

Let us then introduce:

Definition 2.3. A graph G is called an I2a graph if the range of some minimum
weight R2DF of G is the set {0, 2}.

We can prove that the existence of a minimum weight R2DF with range {0, 2}
is a necessary and sufficient condition for any graph to be Italian.

Proposition 2.4. A graph is Italian if and only if it is an I2a graph.
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Figure 1. All minimum R2DFs for paths Pn with 2 ≤ n ≤ 6
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Figure 2. All minimum R2DFs for cycles Cn with 3 ≤ n ≤ 6

Proof. Let G be an Italian graph, then by definition γI(G) = 2γ(G). Let D be a
minimum size dominating set of G. Let f : V → {0, 2} be the function such that
f(v) = 2 for all v ∈ D and f(u) = 0 for all u ∈ V \D. Since D is a dominating
set of G, f is an R2DF of G. Also, since γI(G) = 2γ(G), f is a minimum weight
R2DF of G. Therefore G is an I2a graph.

For the converse, let G be an I2a graph. Let f be a minimum weight R2DF of
G with range {0, 2}. Let D = {v ∈ V : f(v) = 2}. Since f is an R2DF of G, D is
a dominating set of G. Also, since f is of minimum weight, then D is of minimum
size. Therefore, γI(G) = 2γ(G), that is, G is Italian. □

Recall that γI(G) ≤ γ{2}(G) ≤ 2γ(G) for every graph G. We introduce the
following definition:

Definition 2.5. A graph G is called a Sicilian graph if γI(G) = γ{2}(G).

Clearly, Sicilian graphs constitute a superclass of Italian graphs, since if a graph
G is Italian then the first and second inequalities above Definition 2.5 become
equalities, i.e. γI(G) = γ{2}(G) = 2γ(G).

Example 2.6. For paths Pn with n ≥ 1, we also know that γ{2}(Pn) = 2⌈n
3 ⌉ [14].

The only Sicilian paths are those three that are Italian (P2, P3 and P6). For cycles
Cn with n ≥ 3, we also know that γ{2}(Cn) = ⌈ 2n

3 ⌉ [14]. We now notice that the
only Sicilian cycle is the one that is Italian (C3).
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In other words, there are neither paths nor cycles that are Sicilian but not
Italian.

Nevertheless when exploring a closely related graph class, the class of web
graphs which are circulant graphs that generalize cycles and complete graphs —in
fact, web graphs are precisely defined as power of cycles— we found many Sicilian
graphs that are not Italian. Many domination type problems have been widely
studied on web graphs in the last years (see for example [5, 7]).

It is known that web graphs have unbounded clique-width, thus obtaining the
exact value of the domination parameters for them is even more interesting, pro-
vided that it is not possible to apply the results from [1].

Given n,m ∈ Z+ with m ≥ 1 and n ≥ 2m+1, a web graph denoted by Wm
n is a

graph where V (Wm
n ) = {v0, . . . , vn−1} and vivj ∈ E(Wm

n ) if and only if j ≡ i± l
(mod n), l ∈ {1, . . . ,m} [17]. It is known that γ(Wm

n ) = ⌈ n
2m+1⌉ [7].

Taking advantage of a recent work [5], the {2}-domination number of web
graphs is known: for a web graph Wm

n , γ{2}(W
m
n ) = ⌈ 2n

2m+1⌉. However, neither
2-domination nor Italian domination have been studied for web graphs yet.

First we can prove:

Proposition 2.7. For a web graph Wm
n , γI(W

m
n ) =

⌈
n

m+1

⌉
.

Proof. We know from [3] that if G is a connected graph with n vertices and maxi-
mum degree ∆(G) = ∆, then γI(G) ≥ 2n

∆+2 . In the case of a web graph Wm
n with

m ≥ 1 and n ≥ 2m+1, ∆(Wm
n ) = 2m and this lower bound for γI(W

m
n ) becomes

γI(W
m
n ) ≥ 2n

2m+2 = n
m+1 . Since γI(W

m
n ) is an integer number, we have in fact

γI(W
m
n ) ≥

⌈
n

m+1

⌉
.

We will define a function on V (Wm
n ) with weight

⌈
n

m+1

⌉
and prove that it is

an R2DF of Wm
n , and the thesis will follow.

If v0, v1, . . . , vn−1 are the vertices ofW
m
n and vi is adjacent to vi±l, l ∈ {1, . . . ,m}

—where sums are taken modulus n— for each i = 0, . . . , n−1, we define the func-
tion f on V (Wm

n ) such that f(vk(m+1)) = 1 for k = 0, . . . , ⌈ n
m+1⌉−1 and f(v) = 0

for the remaining vertices of Wm
n , and prove that it is an R2DF of Wm

n . More
precisely, if vj is a vertex such that f(vj) = 0, let us analyze the two possible
cases:

• k0(m+ 1) < j < (k0 + 1)(m+ 1) for some k0 = 0, . . . , ⌈ n
m+1⌉ − 2;

• (⌈ n
m+1⌉ − 1)(m+ 1) < j ≤ n− 1.

In the first case, vk0(m+1) and v(k0+1)(m+1) are both adjacent to vj and f(vk0(m+1)) =
f(v(k0+1)(m+1)) = 1; in the second, v(⌈ n

m+1 ⌉−1)(m+1) and v0 are both adjacent to

vj , and f(v(⌈ n
m+1 ⌉−1)(m+1)) = f(v0) = 1. It only remains to notice that f defined

in this way is an R2DF of Wm
n with weight

⌈
n

m+1

⌉
. □

Hopefully, we can also derive the 2-domination number of web graphs from [13]:

Corollary 2.8. For any web graph Wm
n , γ2(W

m
n ) = ⌈ n

m+1⌉.
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Proof. From the proof of Proposition 2.7 we deduce that Wm
n is an I1a graph

for each n and m. Recalling that I1a graphs G are characterized as those for
which γI(G) = γ2(G) [13], it turns out that γ2(W

m
n ) = γI(W

m
n ) and the result

follows. □

When m = 1, Wm
n is isomorphic to a cycle on n vertices for all n. We have

already noticed that the only Italian (and thus Sicilian) web graph of the form
W 1

n is C3. We ask ourselves if there is some Sicilian web graph Wm
n for m greater

than 1. For instance, we found that all Sicilian web graphs for the cases m = 2
to m = 4 are W 2

5 , W
2
7 , W

2
10, W

3
7 , W

3
9 , W

3
10, W

3
13, W

3
14, W

3
17, W

3
21, W

4
9 , W

4
11, W

4
12,

W 4
13, W

4
16, W

4
17, W

4
18. W

4
21, W

4
22, W

4
26, W

4
27, W

4
31 and W 4

36. It can be checked that
for m = 2, W 2

7 is the only Sicilian web graph that is not Italian. And so are W 3
9 ,

W 3
10 and W 3

17, for m = 3.

3. Italian domination and 2-domination in co-bipartite
graphs

In this section we study the Roman {2}-domination and the 2-domination
numbers for another graph class that has unbounded clique-width, the class of
co-bipartite graphs. Once more, obtaining the exact value of the domination pa-
rameters for this other graph class is even more interesting, provided that it is not
possible to apply the results from [1].

A graph G = (V,E) is called co-bipartite if it is the complement of a bipartite
graph. Observe that the vertex set V of a co-bipartite graph G can be partitioned
into three sets C1, C2 and U , where C1 and C2 are non-empty cliques, and U
(possibly the empty set) consists of all universal vertices in G.

Theorem 3.1. Let G = (V = C1 ∪ C2 ∪ U,E) be a connected co-bipartite graph
with |V | = n, where C1 and C2 are non-empty cliques and U is the set of universal
vertices in G.

(1) If U ̸= ∅, or U = ∅ but there exist two non-adjacent vertices u ∈ C1 and
w ∈ C2 both of degree n− 2, then γI(G) = 2.

(2) If U = ∅ and there not exist two non-adjacent vertices u ∈ C1 and w ∈ C2

both of degree n− 2, but there exist distinct vertices u,w ∈ Ci and x ∈ Cj,
with i, j ∈ {1, 2} and i ̸= j, and such that for all v ∈ Cj \ {x} it happens
N [v] ∩ {u,w} ≠ ∅, then γI(G) = 3.

(3) Otherwise, γI(G) = 4.

Proof. (1) Follows from Proposition 2.1.
(2) Let u,w ∈ Ci be two distinct vertices and x ∈ Cj (i ̸= j) such that for

all v ∈ Cj \ {x} it happens N [v] ∩ {u,w} ̸= ∅ (see an example in Figure
3). Notice that Proposition 2.1 implies that γI(G) ≥ 3. Let f be the
function defined on G by f(u) = f(w) = f(x) = 1 and f(v) = 0 for all
v ∈ V \ {u,w, x}. It is clear that f is an R2DF of G with f(V ) = 3.
Therefore γI(G) = 3.
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(3) Note that if |Ci| = 1 for some i ∈ {1, 2}, since G is a connected graph
and U = ∅, the only vertex u ∈ Ci must be adjacent to some v ∈ Cj

with j ∈ {1, 2} and j ̸= i. But then v is a universal vertex resulting
in a contradiction. So we consider from now on that |Ci| ≥ 2 for each
i ∈ {1, 2}.

We know from Proposition 2.1 that γI(G) ≥ 3. Suppose that γI(G) = 3.
Then there exists an R2DF f of G such that f(V ) = 3. If there were three
distinct vertices u,w, x ∈ V such that f(u) = f(w) = f(x) = 1, we have
two possibilities:

• If u,w ∈ Ci and x ∈ Cj , with i, j ∈ {1, 2} and i ̸= j, then for every
vertex v in Cj \ {x} results f(v) = 0 and, since f is an R2DF of G,
v would be adjacent to one u or w, arriving to a contradiction since
we supposed that this did not happen.

• Now suppose without loss of generality that u,w, x ∈ C1 and choose
y ∈ C2. Then the function g defined on V such that g(u) = g(w) =
g(y) = 1 and g(v) = 0 for all v ∈ V \ {u,w, y} is also an R2DF of G
arriving again easily to a contradiction.

If there were two distinct vertices u, x ∈ V such that f(u) = 2 and f(x) =
1, then every other vertex would be adjacent to u. But x cannot be
adjacent to u, otherwise u would be a universal vertex. Then u ∈ Ci and
x ∈ Cj with i, j ∈ {1, 2} and i ̸= j. Observe that since u has degree n−2, x
does not have degree n− 2 and therefore there exists w ∈ Ci distinct from
u that is not adjacent to x. But then, for all v ∈ Cj \ {x}, N [v]∩{u,w} ≠
∅, arriving again to a contradiction since we supposed that this did not
happen. Therefore γI(G) ≥ 4.

Now, let u,w ∈ C1, x, y ∈ C2 and let f be the function defined on
V such that f(u) = f(w) = f(x) = f(y) = 1 and f(v) = 0 for all
v ∈ V \{u,w, x, y}. It is clear that f is a R2DF of G. Therefore γI(G) = 4.

□

From Theorem 3.1, we observe the following. For a connected co-bipartite graph
G, if U ̸= ∅, then γI(G) = 2γ(G) = 2 and then G is Italian (thus also Sicilian).
If G satisfies the hypothesis of the first part of Theorem 3.1, item 2, we have
γ{2}(G) = 3 (assign 1 to u,w, z with z ̸= u,w), then G is not Sicilian neither
Italian. If G satisfies the hypothesis of the second part of Theorem 3.1, item 2,
since γI(G) = 3 is odd, then G is not Italian. If N [x] ∩ {u,w} ̸= ∅ (see Figure 3
for an example), then γ{2}(G) = 3 (assign 1 to u, w and x), and therefore G is
Sicilian. But if N [x] ∩ {u,w} = ∅, then γ{2}(G) = 4 and G is not Sicilian. If G
satisfies the hypothesis of Theorem 3.1, item 3, γI(G) = 2γ(G) = 4 and then G is
Italian (thus also Sicilian).

Now, let us turn our attention to 2-domination. We can prove:

Theorem 3.2. Let G = (V = C1 ∪ C2 ∪ U,E) be a connected co-bipartite graph.

(1) If U = ∅ then γ2(G) = γI(G).
(2) If |U | = 1 and there exist u ∈ C1, w ∈ C2 with N [u] = V \ {w} and

N [w] = V \ {u}, then γ2(G) = 2. Otherwise, γ2(G) = 3.
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(3) If |U | ≥ 2 then γ2(G) = 2.

Proof. (1) If U = ∅, then from the proof of Theorem 3.1, G is I1a and therefore
γ2(G) = γI(G) (see an example in Figure 3).

(2) If |U | = 1 and there exist u ∈ C1, w ∈ C2 with N [u] = V \ {w} and
N [w] = V \ {u}, then γ2(G) = 2 since γ2(G) ≥ 2 from its definition and
D = {u,w} is a 2-dominating set in G.

Now suppose |U | = 1 and that there do not exist u ∈ C1, w ∈ C2

such that N [u] = V \ {w} and N [w] = V \ {u}. To prove that γ2(G) ̸= 2,
suppose that there exists a 2-dominating set D = {x, y} of G. If one of the
elements of D is a universal vertex, then the other one is also a universal
vertex, arriving to a contradiction since |U | = 1. If x and y belong both
to the same clique, then they are both in fact universal vertices, again
a contradiction. Finally, if they belong to different cliques, then we must
have N [x] = V \{y} and N [y] = V \{x}, arriving to another contradiction.
We conclude that γ2(G) ≥ 3. The set D consisting of one vertex from
each clique together with the universal vertex is a 2-dominating set of G,
therefore γ2(G) = 3.

(3) Suppose |U | ≥ 2. Let x, y ∈ U with x ̸= y. Then D = {x, y} is a 2-
dominating set of G and therefore γ2(G) = 2 since γ2(G) ≥ 2 from its
definition.

□

u

w x

Figure 3. A Sicilian non-Italian and I1a co-bipartite graph

4. Characterizations of Sicilian graphs

In this section we analyse two graph classes with bounded clique-width, these
are quasi-threshold graphs and cographs. As said in the introduction, we are cer-
tain that a linear-time algorithm for the problem of finding a R2DF of minimum
weight exists for both of them. Nevertheless, since they are not practically im-
plementable, we find for them the exact values of the domination type problems
studied in this work, in addition to characterize Sicilian graphs within these graph
classes.

Let us start by showing two examples of Sicilian non-Italian graphs. Notice
that the first one (see Figure 4) is the well-known graph S3 or trampoline and it
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has a minimum weight R2DF with range {0, 1}. The second example (see Figure
5) shows a graph G that is also Sicilian but not Italian. Nevertheless, G does not
have an R2DF with range {0, 1}; in fact it can be proved that every minimum
weight R2DF of G assigns 2 to the vertex adjacent to both pendant vertices.

0

1 1

0 1 0

Figure 4. S3 is Sicilian and non-Italian: γI(S3) = γ{2}(S3) = 3
and 2γ(S3) = 4

1 0 1

0

0

1

0

0

2

0

0

Figure 5. A Sicilian non-Italian nor I1a graph G: γI(G) =
γ{2}(G) = 5 and 2γ(G) = 6

We next prove a necessary condition for certain Sicilian non-Italian graphs:

Proposition 4.1. If G is a Sicilian graph whose minimum weight R2DFs have
all range {0, 1, 2} then γI(G) ≥ 5.

Proof. From Proposition 2.4, since the range of every minimum weight R2DF of
G is {0, 1, 2}, G is not Italian and γI(G) ≥ 3.

Suppose that γI(G) = 3. Since G is Sicilian, γ{2}(G) = 3. Considering that
every {2}DF of G is an R2DF of G, every minimum weight {2}DF of G must have
range {0, 1, 2}. Let f be a minimum weight {2}DF of G. Then there exist u,w ∈ V
such that f(u) = 2, f(w) = 1 and f(v) = 0 for all v ∈ V \ {u,w}. But for f to be
a {2}DF of G, it must happen that every vertex in G is adjacent to u, implying
that u is a universal vertex, and this contradicts the fact that γ{2}(G) = 3.

Now suppose γI(G) = 4. Since G is Sicilian, γ{2}(G) = 4. Since every {2}DF of
G is an R2DF of G, then every minimum weight {2}DF of G has range {0, 1, 2}.
Let f be a minimum weight {2}DF of G. There exist u, w, x ∈ V such that
f(u) = 2, f(w) = f(x) = 1 and f(v) = 0 for all v ∈ V \ {u,w, x}.

For f to be a {2}DF, every vertex apart from u, w and x must be adjacent to
u or to both, w and x.

If w and x are adjacent, then the function g defined on V such that g(u) =
g(w) = 2 and g(v) = 0 for all v ∈ V \ {u,w} is a minimum weight {2}DF,
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contradicting that every minimum weight {2}DF has range {0, 1, 2}. Therefore w
and x are non-adjacent.

Since w and x are non-adjacent, they must be adjacent to u, otherwise f would
not be a {2}DF. But again the function g defined on V such that g(u) = g(w) = 2
and g(v) = 0 for all v ∈ V \ {u,w} is an optimal {2}DF, contradicting that every
minimum weight {2}DF has range {0, 1, 2}.

The contradiction came from assuming that γI(G) = 4. Therefore, γI(G) ≥ 5.
□

Next, we wonder if we are capable of identifying which are the smallest con-
nected graphs that are not Sicilian. Clearly, the smallest one is the trivial graph
with one vertex (K1), since γI(K1) = 1 and γ{2}(K1) = 2, and this clearly implies
that being a Sicilian graph is not a property inherited by its induced subgraphs.
Concerning connected graphs with two or three vertices — P2, P3 and C3—, we
have that they are all Sicilian (see Example 2.6). Concerning the six connected
graphs with four vertices, it can be checked that P4 and C4 are the only ones that
are not Sicilians (see Example 2.6); the remaining are the complete bipartite graph
K1,3, the paw, the diamond and the complete graph K4 which are all Sicilian.

Despite the fact that being a Sicilian graph is not a hereditary property to
its induced subgraphs, we wonder if having no induced P4 nor C4 is a sufficient
condition for a graph to be Sicilian. In the remainder, we analyze two graph classes
defined by the existence of no induced P4 and/or C4.

4.1. Quasi-threshold graphs

Graphs with no induced P4 nor C4 are precisely quasi-threshold graphs. More
formally, G is a quasi-threshold graph if and only if G is (P4,C4)-free [18].

Equivalently, a graph is quasi-threshold if it can be constructed recursively as
follows [18]: K1 is a quasi-threshold graph, adding a new vertex adjacent to all
vertices of a quasi-threshold graph results in a quasi-threshold graph, and the
disjoint union of two quasi-threshold graphs results in a quasi-threshold graph.

Proposition 4.2. Let G be a quasi-threshold graph. Then γI(G) = 2 when G
is connected and, when it is not, γI(G) = 2r + s, where r is the number of con-
nected components of order equal or larger than 2 and s, the number of connected
components of order 1.

Proof. The proof follows by considering in every connected component Gi of G,
its recursive construction as mentioned above (given that Gi is a quasi-threshold
graph). We notice that the last operation performed in each Gi is the addition
of a dominating vertex ui, when Gi is not K1. When for some i Gi = K1, then
γI(Gi) = 1; otherwise, γI(Gi) = 2 (there exists an optimal R2DF f of Gi with
f(ui) = 2 and f(v) = 0 for every v ∈ V (Gi) \ {ui}). In all, both items follow.

□

The above proposition enables one to characterize quasi-threshold graphs that
are Sicilian. In fact, every quasi-threshold graph G with no isolated vertices is
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Italian since γ(G) = r, where r is the number of connected components of G (of
order equal or larger than 2).

Theorem 4.3. Every quasi-threshold graph G with no isolated vertices is an Ital-
ian graph and therefore it is also Sicilian.

Corollary 4.4. Let G be a quasi-threshold graph with no isolated vertices. Then
γ{2}(G) = 2r, where r is the number of connected components of G.

4.2. Cographs

We now ask ourselves if having no induced P4 remains a sufficient condition for
a given graph to be Sicilian.

Graphs with no induced P4 (P4-free) are precisely cographs [6]. Equivalently, G
is a cograph if and only if G can be constructed from isolated vertices by disjoint
union and join operations (the join of two graphs G and H is the graph formed
from disjoint copies of G and H by connecting each vertex of G to each vertex of
H). Connected cographs have Italian domination number at most 4 [10].

Next we give a characterization of Sicilian cographs. We first prove:

Proposition 4.5. Let G be a connected cograph.

(1) If γI(G) = 1 then G = K1, which is not a Sicilian graph;
(2) If γI(G) = 2 then:

(a) If G has a universal vertex, then G is an Italian graph.
(b) If G has no universal vertex, then G is not a Sicilian graph.

(3) If γI(G) = 3 then G is a Sicilian non-Italian graph.
(4) If γI(G) = 4 then G is an Italian graph.

Proof. (1) It is straighforward.
(2) If γI(G) = 2, from Proposition 2.1 G has a universal vertex, or two non-

adjacent vertices of degree n− 2. Clearly, if G has a universal vertex then
G is an Italian (and Sicilian) graph. If G has no universal vertex then
γ{2}(G) ≥ 3 and therefore G is not a Sicilian graph.

(3) Since γI(G) = 3, which is odd, clearly G is not Italian. Let G1 and G2 be
two induced subgraphs of G —which are also cographs— such that G is
the join of G1 and G2. We analyze the only two possible cases:

• Case 1: there exists an R2DF f of G that assigns a strictly pos-
itive weight to exactly two vertices of G. Suppose that f(v) = 1,
f(w) = 2 with v ∈ V (G1) and w ∈ V (G2), and f(z) = 0 for all
z ∈ V (G) \ {v, w}. Then w is a universal vertex in G, which leads to
a contradiction since γI(G) > 2.
Suppose that f(v) = 1, f(w) = 2 with v, w ∈ V (G1). Then every
vertex x ∈ (V (G1) \ {v, w})∪ V (G2) is adjacent to w. Define a func-
tion g on V (G) in the following way: g(v) = g(w) = 1, g(z) = 1
for some z ∈ V (G2) and g(x) = 0 otherwise. Since f is an R2DF
of G, it is easy to verify that g is a {2}DF of G. Moreover, since
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γ{2}(G) ≥ γI(G) = 3, it holds that γ{2}(G) = 3 and therefore G is a
Sicilian graph.

• Case 2: there exists an R2DF f of G that assigns a strictly positive
weight to exactly three vertices of G. Firstly and without loss of
generality, suppose that v, w, x ∈ V (G1) where f(v) = f(w) = f(x) =
1 and f(y) = 0 for all y ∈ V (G) \ {v, w, x}. Define a function g
on V in the following way: g(v) = g(w) = 1, g(z) = 1 for some
z ∈ V (G2) and g(y) = 0 for all y ∈ V (G) \ {v, w, z}. Since f is an
R2DF of G, g defined in this way is a {2}DF of G. Moreover, since
γ{2}(G) ≥ γI(G) = 3, it holds that γ{2}(G) = 3 and therefore G is
a Sicilian graph. Secondly and without loss of generality, suppose
that v, w ∈ V (G1), x ∈ V (G2) where f(v) = f(w) = f(x) = 1 and
f(z) = 0 for all z ∈ V (G) \ {v, w, x}. In this case, the function f is
also a {2}DF. Moreover, since γ{2}(G) ≥ γI(G) = 3, it holds that
γ{2}(G) = 3 and therefore G is a Sicilian graph.

(4) Again, let G1 and G2 be two induced subgraphs of G such that G is the
join of G1 and G2. The set D = {v, w} with v ∈ V (G1), w ∈ V (G2) is
a dominating set of G. Then γ(G) = 2 since G has no universal vertex
(otherwise it would be γI(G) = 2), resulting G an Italian (and thus also
Sicilian) graph.

□

In all we have:

Theorem 4.6. Let G be a connected cograph. Then:

(1) G is an Italian graph if and only if G has a universal vertex or γI(G) = 4.
(2) G is a Sicilian non-Italian graph if and only if γI(G) = 3.
(3) G is not a Sicilian (thus neither Italian) graph if and only if G = K1 or

G has two non-adjacent vertices of degree n− 2.

5. Conclusions

Given an Italian graph G and a minimum R2DF f of G with range {0, 2} (which
exists following Proposition 2.4), then the minimum dominating set problem on G
can be solved easily since {v : f(v) = 2} is an optimal solution for it, and clearly

γ(G) =
f(V )

2
. Besides, since f turns out to be a {2}-dominating function of G

as well and G is Sicilian, the value of γ{2}(G) can be obtained, which is equal to
f(V ).

For quasi-threshold graphs, although a linear time algorithm for Italian domi-
nation was guaranteed from [1], in this work we went a step further finding closed
formulas for their Italian domination numbers (Proposition 4.2). Furthermore, we
derived in Corollary 4.4, the {2}-domination number for any given quasi-threshold
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without isolated vertices. Concerning cographs, from Proposition 4.5 it can be de-
cided in linear time if a given cograph is Sicilian (and in particular Italian), or
otherwise not Sicilian.

Finally, it is known that neither web graphs —studied in Section 2— nor co-
bipartite graphs —studied in Section 3— have bounded clique-width. Thus, hav-
ing found in this work the closed formulas for the Italian domination and the
2-domination numbers for them is a significant contribution, provided that it was
not even known if an efficient algorithm existed for them.

We wish to reach more characterizations of Sicilian graph classes beyond those
studied in this work.
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