
Citation: Loor, F.; Gil-Costa, V.; Marin,

M. Metric Space Indices for Dynamic

Optimization in a Peer to Peer-Based

Image Classification Crowdsourcing

Platform. Future Internet 2024, 1, 0.

https://doi.org/

Academic Editor: Jerry Chou,

Wu-Chun Chung

Received: 21 March 2024

Revised: 29 May 2024

Accepted: 3 June 2024

Published:

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Metric Space Indices for Dynamic Optimization in a Peer to
Peer-Based Image Classification Crowdsourcing Platform
Fernando Loor 1,†, Veronica Gil-Costa 2,*,† and Mauricio Marin 3,†

1 Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, San Luis, Argentina
(5700); fernandoloor1@gmail.com

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Físico
Matemáticas y Naturales, Universidad Nacional de San Luis, San Luis, Argentina (5700)

3 Centre for Biotechnology and Engineering (CeBiB), Departamento de Ingeniería Informática, Universidad de
Santiago, 15782 Santiago, Chile; mauricio.marin@usach.cl

* Correspondence: gvcosta@email.unsl.edu.ar
† These authors contributed equally to this work.

Abstract: Large-scale computer platforms that process users’ online requests must be capable of
handling unexpected spikes in arrival rates. These platforms, which are composed of distributed
components, can be configured with parameters to ensure both the quality of the results obtained
for each request and low response times. In this work, we propose a dynamic optimization engine
based on metric space indexing to address this problem. The engine is integrated into the platform
and periodically monitors performance metrics to determine whether new configuration parameter
values need to be computed. Our case study focuses on a P2P platform designed for classifying
crowdsourced images related to natural disasters. We evaluate our approach under scenarios with
high and low workloads, comparing it against alternative methods based on deep reinforcement
learning. The results show that our approach reduces processing time by an average of 40%.

Keywords: metric spaces; P2P–STB-based platform; self-tuning of parameters; performance computing

1. Introduction

Dynamic optimization involves methods for controlling a stochastic system to achieve
desirable behavior. This approach has been applied to various problems, including traffic
management [1], wastewater treatment processes [2], wind energy extraction [3], and others.
Comprehensive surveys on dynamic optimization can be found in [4,5]. In the context of
computer platforms, dynamic optimization has been utilized for various purposes, such
as routing optimization in wireless sensor networks [6], task placement and management
in fog platforms [7], monitoring and controlling energy usage and power quality [8], and
managing unpredictable workloads on large-scale platforms [9]. However, the majority
of prior studies have analyzed isolated scenarios and have focused on single-objective
optimization. Moreover, dynamic optimization is a highly time-consuming task, and its
complexity increases with the number of states the system may have. Various techniques
have been employed for dynamic optimization [10], including metaheuristics [4], which
can require a significant amount of computation time to converge towards satisfactory
solutions, which is a limitation in applications where real-time efficiency or fast processing
speeds for large volumes of data is required. Other techniques, such as reinforcement
learning and deep reinforcement learning [11,12], often require significant computational
power and resources for training, and may need large amounts of data to learn meaningful
patterns.

In this paper, we introduce a novel approach to dynamic optimization based on metric
indices for adjusting parameters in a distributed platform. Specifically, our approach
involves a dynamic optimization engine comprising a pivot-based index utilized to search

Future Internet 2024, 1, 0. https://doi.org/10.3390/fi1010000 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/article/10.3390/fi1010000?type=check_update&version=1
https://doi.org/10.3390/fi1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-4637-9725
https://orcid.org/0000-0003-0662-7149
https://doi.org/10.3390/fi1010000
https://www.mdpi.com/journal/futureinternet

Future Internet 2024, 1, 0 2 of 29

for new parameter values. We evaluate our proposal within the context of distributed
platforms used for image classification following natural disasters, such as earthquakes,
volcanic eruptions, hurricanes, and wildfires [13], where a substantial, unpredictable
workload initially exists but gradually diminishes over time. Therefore, it is crucial to take
prompt actions to optimize platform performance to prevent saturation of the available
computational resources and ensure timely processing of incoming images.

Our case study focuses on a crowdsourcing-based platform used to process photos
that cannot be automatically classified, often due to blurriness or being out of focus. The
classification process involves volunteers connected through digital television (DTV) inte-
grated with a Set-Top Box (STB). Volunteers receive a set of images and their corresponding
potential categories from a centralized server. They then tag each image with a specific
category and send their responses back to the server. The server aggregates all responses
and checks for consensus on each image. This information is valuable for decision-makers
in various institutions or public organizations, as it can be used to disseminate critical data
and instructions to emergency responders and the general public. It helps in making deci-
sions on how to allocate humanitarian aid resources effectively. The volunteer community
operates within a peer-to-peer (P2P) network, where each peer is a TV connected to an STB.
The STB processes the compressed digital signal, decompresses it, and transmits it to the
television for viewing.

1.1. Research Objectives

Dynamic optimization is a challenging task for online systems like crowdsourcing-
based platforms used to process data during critical situations such as natural disasters.
In this work, our goal is to dynamically adjust the values of parameters that significantly
impact the performance of distributed platforms when faced with unpredictable bursts
of incoming requests. We aim to maintain communication and computation costs below
an upper bound while achieving a high percentage of consensus in image classification.
Addressing this challenge effectively requires finding an efficient approach that optimally
utilizes the available computational resources without overloading or underutilizing them,
all while maintaining a high consensus percentage. To achieve this, we propose using
metric space indices for dynamic parameter adjustment. The index is generated off-line
using data from previous natural disaster scenarios. After a natural disaster occurs, the
P2P–STB-based platform continuously monitors the workload of computational resources,
which depends on the arrival rate of incoming tasks. At regular intervals, ∆t, if there are
changes in the workload, the platform consults the index to adjust the parameters that
have the most significant impact on performance. To the best of our knowledge, this work
represents the first attempt to address parameter estimation challenges using metric space
indices in this context.

1.2. Contribution

In this paper, we propose using metric space indices for control optimization in a
P2P-based crowdsourcing platform which was designed to classify images taken after a
natural disaster occurs. Our proposal operates using thresholds, comparing current inputs
with historical data to optimize configurable parameters. It enables continuous evaluation
of various scenarios, simultaneously addressing multiple objectives such as maximizing
consensus while minimizing communication, computation costs, and keeping resource
utilization levels between a given range. Importantly, it does not require a training phase.

The platform is based on the collaboration of volunteers who can classify blurred
photos taken in places where the natural disaster occurred to identify hurt people, blocked
routes, etc. The platform is formed by (1) a centralized server which distributes the tasks
among the volunteers and also computes the consensus of the tags selected for each image,
(2) the P2P network that the volunteers connect to though a TV which has an STB device,
and (3) an internet server provider that connects the P2P network and the server. In [13],

Future Internet 2024, 1, 0 3 of 29

we presented different routing algorithms for this platform and we identified the most
critical parameters.

This work focuses on how to effectively control the state of the platform as the burst of
incoming tasks varies using a metric index. The index is built off-line and contains vectors
v =< [nc], [c], [m] > with a set of parameters that can be controlled ([c]) and have a major
impact on the platform’s performance; parameters that cannot be controlled ([nc]), like the
number of volunteers and the incoming rate of tasks; and, finally, the expected values of
metrics ([m]), like communication latency and CPU utilization.

Then, at running time, we use the index to search for the optimal values of the
controlled parameters in such a way that the platform is able to process the tasks as soon as
they arrive. The platform monitors the workload of the computational and communication
resources involved in the image classification processing every ∆t units of time. If the
workload is above a given threshold, new values are obtained from the index. We evaluate
our proposal and compare the results with the ones obtained with traditional dynamic
optimization techniques. The experimental results show that the proposed solution reduces
the working time of the system by 40% on average, without saturating the available
resources.

1.3. Outline

The remainder of this paper is organized as follows. Section 2 briefly describes the
metric space concepts. Section 3 presents previous work. In Section 4, we present the design
of our case study: the crowdsourcing-based platform. Section 5 presents our proposal.
Sections 6 and 7 present the experimental results. Finally, Section 8 concludes this paper.

2. Metric Spaces

In this section, we introduce some basic concepts about metric spaces. Metric spaces
have been widely studied to search for objects which are similar to a given query object q.
Metric spaces have been used to retrieve objects from databases such as text, images, audio,
and video databases. In these cases, queries are represented by objects of the same type as
those stored in the database. The work in [14] exemplifies how metric spaces can be used
for computational biology to search for DNA and protein sub-sequences. The work in [15]
presents an index for fingerprint matching. Metric spaces can also be used to re-order a set
of documents [16]. In this case, the metric space distance between the documents is used to
diversify the set results.

Formally, a metric space (U , δ) comprises a universe of objects U and a distance function
δ : U × U → R+, which determines the similarity between any pair of objects [17].
Therefore, the smaller the distance between two objects, the more “similar” they are.
The definition of the distance function depends on the type of objects being compared. In
an m-dimensional vector space—a particular case of metric space in which every object
is represented by a vector of m coordinates—δ could be a distance function of the family
Ls(x, y) = (∑1≤i≤m|xi − yi|s)

1
s . For example, s = 2 yields the Euclidean distance.

For any x, y, z ∈ U , the function δ holds several properties: non-negativity (δ(x, y) ≥ 0),
reflexivity (δ(x, y) = 0 iff x = y), symmetry (δ(x, y) = δ(y, x)), and the triangle inequality
(δ(x, z) ≤ δ(x, y) + δ(y, z)). Some good surveys about metric spaces can be found in [14,17–19].

The finite subset X ⊆ U , with n = |X |, defines the database of objects where searches
are performed. There are two types of similarity queries: the range query R(q, r) is the
type of query which retrieves all elements that are within distance r to a query q. This is
{x ∈ X : δ(q, x) ≤ r}, and k-NN query, which retrieves the k closest objects x ∈ X to a
query object q [20].

Metric space search algorithms pre-process the dataset of object X to build an index I .
Different indexing algorithms have been proposed in the literature to speed up similarity
searches [19]. The idea is to use the triangle inequality during the query search process
to discard objects x that can be proven to be far enough from a given query q without
computing δ(x, q). There are two main index categories: clustering and pivoting.

Future Internet 2024, 1, 0 4 of 29

Clustering-based indices divide the dataset of objects into groups (called clusters),
such that similar objects fall into the same group [14]. Thus, the space is divided into zones
that are as compact as possible, usually in a recursive fashion. This technique stores a
representative point (“center”) for each zone plus extra information that permits one to
quickly discard the zone at the query time. Pivot-based indices select some objects as pivots
and calculate the distance between every other object and each pivot. The resulting index
is a data structure that can be seen as a table T with the pivots in the columns and the
object identifiers in the rows, where each cell Ti,j stores the distance between the object i
and the pivot j, as shown in Figure 1. Several algorithms (e.g., [21,22]) are almost direct
implementations of this idea. Essentially, only their extra data structure (e.g., additional
memory space is assigned to store pre-computed distances and other relevant information)
is used to reduce the cost of finding the candidate objects. A key challenge for pivoting
techniques is to determine the number of pivots needed to cover all objects in the working
set. Moreover, the number of pivots tends to increase with the size of the working set. Some
hybrid approaches (e.g., [23,24]) combine clustering techniques with pivoting techniques.
Typically, clusters are used to prune the search at a high level of the hybrid data structure.
Inside each cluster, a pivot data structure is used to reduce the number of comparisons.

Figure 1. Pre-calculated distances between the pivots (P1 . . . PN) and every object (o1 . . . oM) in the
metric space database.

Metric spaces have been used in parallel and distributed environments. For instance,
the work in [25] introduces three approaches for distributing a clustering-based index on
a cluster of processors. In the first approach, each processor builds a local index using
its respective local objects. The second approach involves building a single index and
subsequently distributing its clusters among the processors. The third approach combines
both local and global indices, determining the center and radius of each cluster using
the entire database and then having each processor fill the clusters with its local objects.
The work in [26] investigates the energy consumption between a GPU and a multicore
platform when searching for the k nearest objects in metric spaces on a database of finger
vein images. The work in [27] presents two methods to search for similarity objects using a
distributed index structure which is built with several graphs. The first method is based on
a controller–performer scheme and the second method is based on a pipeline. The work
in [28] presents a framework to search similar objects during stream query processing. The
framework uses a set of smaller tree-based indices rather than a single large index. The
work in [29] proposes a new distributed index named the M-Index. It transforms metric
objects to a certain M-Index hash. Some works also investigate the use of metric spaces
on peer-to-peer (P2P) networks. In particular, the work in [30] presents a dynamic load
balancing algorithm based on hypergraph partitioning. Also, the work in [31] presents the
Asynchronous Metric Distributed System (AMDS), which uniformly divides the data using
pivot-mapping to maintain load balance and utilizes a publish/subscribe communication
model for the asynchronous processing of a large number of queries. This approach not
only enhances the robustness and efficiency of the AMDS but also ensures load balancing
across the system.

3. Previous Work

Simulation-based dynamic optimization consists of finding the configuration of the
simulation model that is most suitable for a given situation—e.g., the configuration that
reduces latency, increases throughput, etc.—as time advances, represented through various

Future Internet 2024, 1, 0 5 of 29

states of the simulated model. In [10], the authors show that an adequate framework to
deal with this kind of problem is to model them as Markov decision processes.

Dynamic programming and reinforcement learning techniques are proposed as the
main methods for solving this type of problem, to which deep reinforcement learning is
later added as the means to efficiently control large and complex models.

In [32], the use of DRL is proposed for the optimization of the quality of experience
(QoE) for applications of the DASH video streaming standard. In [11], Q-learning is used
to optimize the allocation of network resources and communication resources in response
to requests for access division to 5G networks. In [33], the authors use Q-learning to
prioritize and manage rewards to minimize task response times and optimize the use of
cloud computing resources. DRL applications in economics can be found in [12]. Multiple
DRL applications in communication networks are reviewed in [34].

Reinforcement learning has also been applied in several works on production schedul-
ing for manufacturing systems, as shown in [35,36]; in fluid mechanics [37]; and in health
applications [38,39]. In [4,5] the application of evolutionary algorithms, originally devel-
oped for static optimization, for solving dynamic optimization problems is reviewed. The
methods are based on a metaheuristic to which components are added to deal with the
dynamic characteristics of the problem and adapt to various changes in the environment,
making the pertinent modifications and updates in the populations. The paper proposes a
taxonomy of dynamic optimization problems and then lists the benchmarks present in the
literature. The authors claim that most popular components of evolutionary algorithms
for dynamic optimization are particle swarm optimizers (PSOs) and differential evolution
(DE) algorithms.

Some applications of evolutionary algorithms for dynamic optimization include train-
ing neural networks for classification problems with drift of concepts, hyperparameter
optimization of Support Vector Machines (SVMs), training time series predictors with
neural networks, adaptive agriculture strategies, the locations of chemical odor sources
through robots, cost reduction in electrical energy systems, and the identification of pollut-
ing sources in water distribution networks.

In [40], the authors compare evolutionary algorithms for dynamic optimization with
Q-learning. The results obtained on popular benchmarks prove that Q-learning performs
competitively against previous algorithms. The authors in [41] propose using multi-state
Markov decision processes combined with multi-trajectory Least-Squares Temporal Dif-
ference to decide whether one or more machines have to be replaced. However, as far as
we know, no previous work attempted to address simulation-based dynamic optimiza-
tion problems with metric spaces. Moreover, different from previous work using RL, our
proposal does not require a time-consuming training phase and allows for continuous
assessment of diverse scenarios, simultaneously achieving multiple objectives.

4. P2P-Based Crowdsourcing Platform

Our case study is a P2P-based crowdsourcing platform as presented in [13]. It is used
to classify images taken after a natural disaster occurs. This is a very time-demanding
process as images have to be analyzed quickly to obtain information that can be used to
manage the resources that will provide aid to the victims.

4.1. P2P-Based Platform Architecture

P2P networks operate without fixed clients or servers, but rather as a series of peers
(nodes) that behave as equals among themselves. In other words, nodes simultaneously
act as clients and servers with respect to other nodes in the network. P2P networks
enable the direct exchange of information between interconnected devices. P2P networks
leverage managing and optimizing the use of bandwidth from other network users through
connectivity among them, thus achieving better performance in connections and transfers
than some conventional centralized methods, where a relatively small number of servers
provide the total bandwidth and shared resources for a service or application.

Future Internet 2024, 1, 0 6 of 29

Figure 2 shows the general scheme of the platform, which is composed of a centralized
server, an internet service provider (ISP), and a P2P network. In the P2P network, each
peer represents a volunteer (user) who will participate in the image classification process.
The volunteers are connected through digital television (DTV). The platform design is
based on DTV because it can reach a larger number of digital volunteers who are near
the natural disaster and can also be easily used without installing special applications.
Digital television allows users to interact with different services using their remote control.
For example, they can navigate through a program or guide or provide feedback to the
broadcast service. In other words, these services enable the user to not only be a receiver of
the transmitted images but also to participate in the television program they are watching.

The DTV is integrated with a Set-Top Box (STB) that processes the compressed digital
signal, decompresses it, and sends it to the television. STBs can be used to process low-
computational-cost operations on user data, as well as to temporarily store such data. In
Figure 2, peers are represented as colored balls forming a ring. The ring, as we detail below,
provides the communication channel between the peers.

Figure 2. General scheme of the P2P-based crowdsourcing platform for image processing. Each peer
is responsible for processing objects of different colors.

The communication between the P2P network and the server is made through the ISP.
The underlying communication infrastructure of the volunteers is a P2P network. Each
peer maintains links with a selected subset of other peers that form an overlay network.
Messages between peers are routed through this overlay network, which is built on top
of the physical network. To route the messages between peers, we use Distributed Hash
Table (DHT)-based systems [42] as the routing infrastructure. A DHT is a decentralized
distributed system that has (key, value) pairs, and any participating peer can efficiently
retrieve the value associated with a given key. To this end, the data items are mapped to
the peers by hashing the key k of the data items to the peers’ space. Thus, each peer in
the overlay maintains a partition of the data space. For example, if we need to process
colored objects, in Figure 2 the red peer is in charge of processing all red objects, the withe
peer processes all the white incoming objects, and so on. In this work, we use the Pastry
protocol [42], but it can be applied to other DHT implementations. Each peer in Pastry has
a unique identifier (peerID) used to define the position of the peer in the overlay network
and the range of keys it is responsible for. To support routing, each peer maintains a routing
table, a neighborhood set and a leaf set. The routing table contains the IP address of the
neighboring peers physically closest to a peer. The space partition helps to reduce the
number of peers to be visited during the lookup.

Additionally, each peer has a global cache and a standard local cache used to store
images. These caches are used to reduce communication between the P2P network and
the server. In other words, the caches leverage the fact that communication latency within
the P2P network is lower than the latency between peers and the server. The standard
local and global caches implement an LRU replacement policy and are used to store images
associated with tasks sent by the server. The global cache stores images for which the peer
is responsible in the data space partition, while the local cache stores images classified by
the volunteer peer.

Future Internet 2024, 1, 0 7 of 29

4.2. Routing Algorithms

To process the incoming images with the P2P-based crowdsourcing platform, we use
three routing algorithms named Baseline, Centralized, and Distributed. In the Baseline
algorithm, for each arriving image (Img) we create a task which contains the image, a list
of options of categories, and other data such as the time-to-live (TTL). The task is sent
through the ISP to H peers. In Figure 2, the task flow between the ISP and the peers using
the Baseline routing algorithm is colored in red. After receiving the task, the peers select
a category from a list of options and send the responses to the server. Finally, the server
checks whether the consensus reaches a given consensus threshold (C), that is, if at least a
given percentage of the peers selected the same option for the image. If there is consensus,
the image is marked as solved and stored in a database. Otherwise, the server selects a new
set of H peers to send the images. This process is repeated at most three times. If there
is no consensus for the image, then it is discarded. Moreover, if the TTL expires before
completing the task processing, the image is discarded.

In the second and third routing algorithms, named Centralized and Distributed, each
STB—which is a peer in the network—has a global cache and a local cache memory to
store the images. These cache memories are used to reduce the communication between
the P2P network and the server. The local cache is used to store images processed by the
peer and the global cache is used to store images assigned to the peer according to the
space partition.

The task flow between the ISP and the peers using the Centralized routing algorithm
is colored in green in Figure 2. The server sends the image identifier (ID), the list of options,
and the TTL to H peers. The peers receiving the message search for the image object inside
the P2P network. That is, they search in the local cache and in the global cache memories of
the peers using the communication protocol of the network. In the example in Figure 2, the
blue peer receives a message from the server and searches for an image which is assigned
to the red peer according to the space partition. First, the blue peer searches for the image
ID in its local cache. If it is not found, using the communication protocol of the network,
the blue peer sends the request to the green peer, which redirects it to the red peer. If
the red peer has the image in its global cache, then the red peer retrieves the image and
sends it back to the blue peer. Otherwise, the red peer requests the image from the server
and after receiving the image, it is stored in the global cache and sent to the blue peer.
Notice that the cache memories are useful for reducing the communication between the
P2P network and the server at the cost of increasing the communication inside the P2P
network. However, the communication latency inside the P2P network tends to be lower
than the communication though the ISP. Subsequently, the blue peer selects an option from
the list of options associated with the image and sends the result to the server. Finally,
the server waits for all the H results associated with the image and checks whether the
consensus is greater than or equal to C. In the same way as in the Baseline, if the TTL is
reached before completing the task processing, then the image is discarded.

The third routing algorithm, named Distributed, executes the same steps as the
Centralized algorithm until the blue peer receives the image j from the red peer. At this
point, the blue peer selects an option for the image j and sends the result to the light blue
peer. All the H peers processing the same j image send their results to the light blue peer,
which will verify whether there is consensus for that image. Afterwards, it sends the result
of the consensus (affirmative or negative) to the server. This routing algorithm tends to
further reduce the communication between the server and the peers at the cost of increasing
the communication costs inside the P2P network.

In a previous work [13], we showed that it is feasible to use a P2P network imple-
mented with an STB to deploy a crowdsourcing platform for image classification in the
context of natural disasters. Additionally, we showed that communication latency between
the server and the P2P network can became a bottleneck when the H, the consensus thresh-
old (C), and the time-to-live (TTL) parameters are not adjusted according to the arrival rate
of the images.

Future Internet 2024, 1, 0 8 of 29

5. Dynamic Optimization of the Crowdsourcing Platform

The crowdsourcing platform aims to process the incoming images as fast as possible
and with the largest number of consensuses. To this end, the platform uses parameters
such as the number of peers H involved in the image classification process, the TTL which
avoids waiting tasks consuming a lot of time, and the desirable consensus percentage (C).
Additionally, it is expected that the utilization of the available resources like the ISP is
kept below 40–60%, because in case of abrupt increases in arrival rates, the platform will
continue working (the workload can be doubled without saturating the platform) [43]. On
the other hand, it is expected that the resource utilization is kept above 20% so they are not
underutilized.

Additionally, once the image arrival rate begins to decrease—the platform is not under
stress—it is desirable that the platform recovers the values of the parameters that were
originally set by the data center engineer. Therefore, we propose automatically setting the
parameters of the platform to achieve close to 100% consensus and resource utilization
between 20% and 40%.

To properly control and set the parameter configuration, we propose including a
component called the “Dynamic Optimization Engine” in the crowdsourcing platform.
This component searches for new parameter configurations when the arrival rate of the
platform changes. In other words, it allows one to modify the most critical parameters, that
is, the parameters with higher impacts on the performance of the platform, in real time.

The proposed approach allows for the dynamic optimization of parameters by contin-
uously adjusting the platform’s configuration parameters in real time during the execution
of incoming tasks. This process takes into account the workload, resource utilization, and
consensus percentage, ensuring optimal performance under varying conditions. Unlike
static optimization, where parameter values are set at the beginning of the execution and
do not change during the system’s operation, our proposal is adaptive (the parameters are
adjusted in real time during execution), reactive (it responds to changes in the environment
or workload, continuously adapting to maintain optimal performance), and flexible (it can
adapt to unforeseen variations, improving the system’s efficiency and effectiveness).

Figure 3 shows the general scheme of the proposed method. Our proposal uses a metric
database built from previously executed simulations (off-line), where the configurations of
the input parameters and the estimated metrics for each simulated scenario are recorded in
vector form. This database is used to generate metric indices, which allows one to search for
similar scenarios. Then, during the runtime of the simulated platform, the platform sends
information about its current state to the dynamic optimization engine which accesses the
metric indices to obtain platform configurations that avoid resource saturation. In other
words, given an arrival rate λ, the dynamic optimization engine searches in the metric
index for a platform configuration that maintains the output rate of tasks X0 similar to
the input rate (λ ≈ X0). The dynamic optimization engine works with two metric indices:
one designed to modify the platform configuration under high-workload situations and
another to restore the original platform configuration once the workload decreases.

Future Internet 2024, 1, 0 9 of 29

Figure 3. General scheme of the dynamic optimization engine.

5.1. Dynamic Optimization Engine Based on Metric Indices
Building Phase

To build the metric indices, we ran simulations varying the input variables values and
recording the metrics or output variables for each execution. The simulations corresponded
to different scenarios with different values for the number of peers, task arrival rate (λ), the
number of peers to which each task is sent (H), and the routing algorithm, among others.
Then, we stored the input parameters and the metrics in an 11-dimensional vector, called a
configuration vector, as shown in Figure 4.

Figure 4. Groups of variables inside the vectors that compose the metric database.

The first two elements of the vector are the “Non-controllable” parameters which
include the arrival rate of the images and the number of peers. The data center engineer
cannot control the arrival rate, as it represents an externally generated workload that enters
the platform. It depends on the specific crowdsourcing campaign being executed. The
number of peers also depends on the participation of volunteers, and it is an external
variable that cannot be controlled by the data center engineer.

The controllable parameters are those with a greater influence on the performance
of the platform ([13]). For our case study, these parameters included the number of peers
receiving a task (H), the consensus threshold C, the time-to-live of the tasks TTL, and the
routing algorithm ALG. Finally, we included several metrics in the configuration vector
to reflect the workload of the different components of the platform: the percentage of
consensus, peer utilization, server utilization, ISP network utilization, and P2P network
utilization. These metrics are relevant because they allow one to detect the overloaded
resources as well as delays in the communication.

Algorithm 1 outlines the operations performed during the building phase of the
dynamic optimization engine. The database dbname consists of n_vectors 11-dimensional
vectors described as in Figure 4. The algorithm also receives the n_pivot variable which is
used later in Algorithm 2. In lines 2–6, we compute the maximum value for each element
of the vectors. That is, for each vector in the database dbname[i] we compute the maximum
value of each element k of the vectors in max_v[k]. Then, in lines 7–11, the values of the
configuration vectors are normalized. Each element of the configuration vectors is divided

Future Internet 2024, 1, 0 10 of 29

by its maximum value, ensuring that each element of the vectors falls within the interval
[0, 1]. By normalizing the values of the configuration vectors, all the parameters and the
metrics have the same priority.

Then, in line 12, we set the values of three constants: R1, R2, and R3. These constants
are used to adjust the distances between the groups of non-controllable parameters, con-
trollable parameters, and the output metric, respectively. In other words, they help assign
different priorities to each group. To give higher priority to non-controllable parameters,
the value of the constant R1 is always the greatest of the three. This increases the values
of the elements in the subspace generated by the non-controllable parameters, ensuring
their contribution to the distance function is greater than that of the other elements. As a
result, during the search process, vectors with similar non-controllable parameter values
are retrieved, even if the values of the other parameters and metrics differ.

Additionally, we set R3 > R2 to prioritize configuration vectors with performance
metrics closely aligned with those of the input configuration vector during the search
process. We explain how we select the values of these constants in Section 7.4.1.

Next, in lines 13–23, we apply these constants to the vectors in the database. Specif-
ically, we multiply the first two elements of each vector in the database (dbname) by R1.
Then, we multiply the next four elements of each vector by R2, and finally, we multiply
the last five elements of each vector by R3. With this new set of vectors, we create a metric
space index in line 24 that is designed for use under high-workload situations. Algorithm 2
describes the BUILD process.

Future Internet 2024, 1, 0 11 of 29

Algorithm 1 Algorithm used for the building phase of the dynamic optimization engine.

1: Procedure BUILDING_PHASE(Input: dbname, n_vectors, n_pivots)
2: for i = 0 to i = n_vectors − 1 do
3: for k = 0 to k = 10 do
4: max_v[k] = max_value (dbname[i].vector[k],max_v[k]);
5: end for
6: end for
7: for i = 0 to i = n_vectors − 1 do
8: for k = 0 to k = 10 do
9: dbname[i].vector[k] = dbname[i].vector[k]/max_v[k];

10: end for
11: end for
12: R1 = 200; R2 = 2; R3 = 20;
13: for i = 0 to i = n_vectors − 1 do
14: for k = 0 to k = 1 do
15: stress_dbname[i].vector[k] = R1 × dbname[i].vector[k];
16: end for
17: for k = 2 to k = 5 do
18: stress_dbname[i].vector[k] = R2 × dbname[i].vector[k];
19: end for
20: for k = 6 to k = 10 do
21: stress_dbname[i].vector[k] = R3 × dbname[i].vector[k];
22: end for
23: end for
24: stress_index = BUILD (stress_dbname, n_vectors, n_pivots)
25: R2 = 20; R3 = 2;
26: for i = 0 to i = n_vectors − 1 do
27: for k = 0 to k = 1 do
28: Nstress_dbname[i].vector[k] = R1 × dbname[i].vector[k];
29: end for
30: for k = 2 to k = 5 do
31: Nstress_dbname[i].vector[k] = R2 × dbname[i].vector[k];
32: end for
33: for k = 6 to k = 10 do
34: Nstress_dbname[i].vector[k] = R3 × dbname[i].vector[k];
35: end for
36: end for
37: Nstress_index = BUILD (Nstress_dbname, n_vectors, n_pivots)

In line 25, we set the values of constant R2 > R3 to prioritize configuration vectors that
have controllable parameters similar to those entered by the data center engineer. Then,
we apply the constants to the vectors of the database and, finally, we create a second index
in line 37. This second index is intended to be used under low-workload situations. We
illustrate the utilization of these constants in the next section.

In this work, we use pivot-based indices (https://www.sisap.org/index.html (ac-
cessed on 4/06/2024)). However, it is possible to easily replace these indices with other
metric indices as shown in the Metric Index Evaluation Section 7.4.2. Notice that we apply
the same algorithm to build both indices but using different constant values (R1, R2, R3).
Algorithm 2 shows the pseudocode for creating the index. The algorithm takes as input
the database dbname, the number of configuration vectors in the database n_vectors, and
the number of pivots n_pivotes to be selected. In line 2, an index object is created to store
information about the database containing the configuration vectors used to build the index.
In line 4, a matrix of size n_vectors × n_pivotes is created, where the rows represent the
identifier (ID) of the database object and the columns represent the identifier of the pivots.
Notice that the database objects are the 11-dimensional configuration vectors described

https://www.sisap.org/index.html

Future Internet 2024, 1, 0 12 of 29

before. Then, in lines 5–7, we select the first n_pivots objects of the database as pivots.
Finally, from line 8 to 12, each row i of the matrix is completed with the distances between
the vector of position i from the database and each one of the pivots of the index.

Algorithm 2 Algorithm used to build the pivot-based indices.

1: Procedure BUILD (Input: dbname, n_vectors, n_pivots)
2: Index.obj[] = load_DB(dbname)
3: Index.n_pivots = n_pivots
4: Index.Table = array[n_vectors, n_pivots]
5: for k = 0 to k = Index.n_pivots-1 do
6: Index.piv[k] = obj[k];
7: end for
8: for i = 0 to i = Index.n_vectors-1 do
9: for j = 0 to j = Index.n_pivots-1 do

10: Index.Table[i, j] = distance (Index.obj[i], Index.piv[j])
11: end for
12: end for
13: return Index;

5.2. Crowdsourcing Platform Parameter Configuration: Scheme of Two Metric Indices

In our case study, it was expected that all tasks reaching the volunteer community
would obtain consensus, as the processed images contributed to creating disaster situation
maps. So, it was important to maximize the consensus percentage.

Moreover, several factors indirectly influence whether the consensus percentage rises
or falls. In other words, anything causing task resolution delays can have a negative impact
on consensus levels. These factors include the time-to-live (TTL) of the tasks, the consensus
threshold required for voting (C), and the overutilization of the platform resources. The
TTL represents the period of time in which tasks are active, and then must be completed. If
in that period of time a task cannot be resolved, then it is discarded and terminated without
consensus. Overutilization can be caused by (a) a high occupancy of the ISP network
or the P2P network, (b) the absence of volunteers available to process the tasks, (c) the
overload of the server, which prevents it from sending tasks to the volunteer community in
time, and also delays in the reception and processing of volunteer responses. Likewise, a
high consensus threshold (C) will require the server to gather more matching responses
from volunteers before it can declare a consensus. Note that during the time the server
waits to gather H responses, the TTL could run out, causing the task to terminate without
consensus. Finally, we kept the ISP network utilization between 20% and 40%. We kept the
IPS network utilization above 20% so that the network was not underutilized and below
40% to prevent the system from becoming saturated in case of abrupt increases in input
tasks.

Then, as we explained before, we aimed to adjust the configuration parameters of
the crowdsourcing platform in two situations: (1) when the platform is overloaded or
under stress and (2) a second situation in which we aimed to recover the original parameter
configuration values, when the platform is not under stress.

In Figure 5, we show the steps involved in the building phase of our proposed dynamic
optimization engine. As we explained before, we simulated the crowdsourcing platform
to create the configuration vectors which in turn were used to create the metric space
database. Then, we built the two indices, one for workload (or stressed) situations and the
other for non-workload situations (or non-stressed). The indices were built using the same
configuration vector database but with different weighting (R1, R2, R3) for the subgroups
of controllable parameters, non-controllable parameters, and the metrics.

Notice that when the platform is under stress, the utilization metric of the networks,
the server, or the peers will be above 40%. Therefore, we want to retrieve a configuration
vector with values of the metrics below 40%. To this end, in the input configuration vector

Future Internet 2024, 1, 0 13 of 29

we set the values of the metrics reporting work overload to 20%. Then, we set R3 > R2 to
prioritize recovering configuration vectors with performance metrics close to 20%.

Figure 5. Steps involved in the building phase of the dynamic optimization engine.

Figure 6 illustrates how to use the two indices and the constants R1, R2 and, R3. This
example shows the variation in the average ISP utilization. At time T1, the ISP utilization
is above 40%, so the platform is in a stressful situation. In this case, we build the current
state vector of the platform using the current values of the arrival rate (λ) and the number
of volunteer peers in the network (non-controllable parameters); the current values of the
controllable parameters H1, ALG1, TTL1, and C1; and the performance metrics reported by
the platform. The subscript 1 is used to indicate that these values were observed at time T1.

Figure 6. ISP utilization: At time T1, the network utilization exceeds 40%, indicating a state of stress.
However, by time T2, the network utilization decreases, and the platform returns to normal operation.

Afterwards, the dynamic optimization engine detects that the ISP is overloaded, and
sets the 10th element of the vector of Figure 4 IPS Net Utilization = 20%. In addition, we
set the consensus percentage = 100%, because we want to maximize this metric in all cases.
Other metrics (peer utilization, server utilization, P2P Net Utilization) are set according
to the values of the current state vector, because these resources are not saturated. Given
that the platform is in a stress situation, we use the constant R1 > R3 > R2. In other
words, we give more priority to searching for configuration vectors that have the expected
values of the metrics ISP Net Utilization = 20% and consensus = 100%. In this way, the
dynamic optimization engine searches in the stress metric index for similar vectors, and
returns the top-k configuration vectors at time T′

1. Then, the engine selects the configuration
vector from the top-k list that best matches the non-controllable parameters (arrival rate
and number of peers). Finally, the engine applies the constants 1/R1, 1/R3, and 1/R2 to
the selected configuration vector before sending the updated parameter configuration to
the platform. In this example, the new configuration vector has controllable parameter
values (H′

1, ALG′
1, TTL′

1 y C′
1).

Future Internet 2024, 1, 0 14 of 29

At time T2, the average ISP utilization is below 40%, so the platform is in a stress-
free situation. In this case, the dynamic optimization engine applies the constant values
R1 > R2 > R3, to give priority to the controllable parameters, so that the platform can
recover configurations similar to those assigned at the beginning of the crowdsourcing
campaign. At time T′

2, the dynamic optimization engine returns a configuration vector
obtained from the non-stress index, with a configuration of controllable parameters H′

2,
ALG′

2, TTL′
2, and C′

2 that will be similar to the initial configuration of the platform. Notice
that the engine applies the constants 1/R1, 1/R3, and 1/R2 to the selected configuration
vector before sending the updated parameter configuration to the platform.

Search Phase

The dynamic optimization engine periodically receives the state of the platform and
suggests new controllable parameter values using the metric space indices. Algorithm 3
describes this process. The engine receives the state of the platform (stress or non-stress), the
current configuration vector of the platform, the number k of similar vectors to retrieve from
the indices, the number of pivots, and both indices created with Algorithm 1 (stress_index
and Nstress_index).

Algorithm 3 Algorithm used for the search phase of the dynamic optimization engine.

1: Procedure SEARCH_PHASE(Input: state, vector, k, n_pivots, stress_index,
Nstress_index)

2: if state == STRESS then
3: R1 = 200; R2 = 2; R3 = 20;
4: vector[k] = Apply(R1, R2, R3, vector);
5: Top_k = SEARCH_NN(stress_index, vector, n_pivots,k);
6: else
7: R1 = 200; R2 = 20; R3 = 2;
8: vector = Apply(R1, R2, R3, vector);
9: Top_k = SEARCH_NN(Nstress_index, vector, n_pivots,k);

10: end if
11: new_vector = Search_top1(Top_k,vector,2);
12: new_vector = Apply(1/R1, 1/R2, 1/R3, new_vector);
13: return new_vector;

In line 2, we check if the platform is overloaded (stress). If so, we set the values of
the constants R1, R2, and R3 to give more priority to the non-controllable parameters and
then to the metrics (line 3). We then multiply the values of the current state vector of the
platform by these constants (line 4). That is, we multiply the first two elements of the
vector by R1, the following four elements by R2 , and the last five elements by R3. In line
5, we search for the top-k most similar vectors in the stress_index using the SEARCH_NN
function described in Algorithm 4.

On the other hand, if the state of the platform is not overloaded (non-stress), we set
the values of the constants R1, R2, and R3 to prioritize first the non-controllable parameters
and then the controllable parameters (line 7). We then multiply the values of the current
state vector of the platform by these constants (line 8) and in line 9 we search for the top-k
most similar vectors in the Nstress_index using the SEARCH_NN function.

In line 11, we select the new configuration vector from the top-k list that best aligns
with the non-controllable parameters (arrival rate and number of peers) of the current state
vector. In essence, we conduct a second similarity search, but this time with the smaller
set of top-k vectors, focusing on the subset of the first two elements of the vectors. The
Search_top1 function receives as input the set of top-k vectors, the input vector and the
number (two) of elements of the vectors to be compared. Then, this function computes the
distance between the first two elements of the input vector, and the first two elements of
the top-k vectors and selects, from the top-k set, the vector with the smallest distance to the
input vector. This function does not use a metric space index. Then, in line 12, we apply the

Future Internet 2024, 1, 0 15 of 29

constants 1/R1, 1/R3, and 1/R2 to the new_vector before sending the updated parameter
configuration to the platform. That is, we multiply the first two elements of the new_vector
by 1/R1, the following four elements by 1/R2, and the last five elements by 1/R3.

Algorithm 4 describes the search operation on the pivot-based metric index [22]. The
index stores the distances between all the objects of the database and the pivots. The
triangular inequality is used to discard objects non-similar to the input vector q.

Algorithm 4 Top-k search algorithm for a pivot-based index.

1: Procedure SEARCH_NN (Input: Index, q,n_pivots,k)
2: D_q_P[n_pivots] = Ø
3: candidates[K] = Ø
4: D1_q_U[Index.n_vectors] = Ø
5: for p ∈ Index.piv do
6: D_q_P = D(q, p);
7: Insert_candidate (candidates, p, D_q_P)
8: end for
9: for u ∈ (Index.obj − Index.piv) do

10: D1 = 0
11: for p ∈ Index.piv do
12: D1 = D1 + |D(q, p) − Index.Table[u,p]|
13: end for
14: D1_q_U[u] = D1
15: end for
16: sort_ascending (D1_q_U)
17: Dmax
18: for u ∈ D1_q_U do
19: Dmax = D∞(q, u)
20: if (not candidates.complete) or (Dmax < lastElement(candidates).D) then
21: D_q_u = D(q, u)
22: Insert_candidate (candidates, u, D_q_u)
23: end if
24: end for

The variable Index contains a table that stores the distances between all objects in the
metric space and the pivots. q denotes the input vector for which we want to find similar
configurations. n_pivots is the number of pivots and k is the number of nearest neighbors
that the search process must retrieve.

We create D_q_P to store the distances between the input vector q and each one of the
pivots. The array candidates contain, at the end of the search, the k nearest neighbors and
their distances to the current input vector q. D1_q_U stores the distances estimated by the
triangular inequality between the index vectors and the vector q.

In the first loop of the algorithm (lines 5–8), we compute the distances between the
input vector and each of the pivots, with the distance function D. We use the Euclidean
distance. Since the candidate array is initially empty, all pivots are inserted as candidates,
along with their distances, to the vector q. In the second loop of the algorithm (lines
9–15), the entire index is traversed applying the triangular inequality D1(q, u) between the
elements of the index and the current state vector q. D1(q, u) is calculated as in Equation
(1). Note that the second term on the right side of the equation is pre-computed and stored
in the table Index.Table, which has the distance between each vector in the database and
each pivot of the index.

D1(q, u) = ∑
p∈P

(|d(q, p)− d(u, p)|) (1)

The estimated distances D1(q, u) and the vectors u are stored in the array D1_q_U (line
14), and then the array is sorted in ascending order according to the distances estimated

Future Internet 2024, 1, 0 16 of 29

(line 16). Finally, for all index objects that are not pivots, we calculate D∞(q, u) according to
Equation (2) in line 18.

D∞(q, u) = arg max
p

|d(q, p)− d(u, p)| (2)

If the candidate array has less than k elements, we insert the new vector as a candidate.
If the candidate array is complete, we evaluate whether the estimated distance D∞(q, u) is
greater than the distance from the farthest candidate to q. If so, we calculate the distance
between the input vector q and u and the vector u is inserted as a candidate in the cor-
responding position (line 22). At the end of the algorithm, the candidates array has the k
nearest neighbors to q.

6. Experimental Settings

We simulated the crowdsourcing platform using the LibCppSim library [44]. We
set the image size as the average taken from aerial images in DOTA [45] and NWPU
VHR-10 [46] and the natural disaster Twitter databases CrisisMMD [47]. The arrival rate
distribution was modeled with an envelope described by a Weibull distribution (similar
to [47–51]). It includes the working intervals of the volunteers and also intervals during
which user activity decreases, related to night-time hours. Figure 7 shows an example of
the distribution. The x-axis shows the time advance in hours and the y-axis shows the
number of incoming images.

Figure 7. Distribution of the arrival of images used in the experiments.

We implemented the distribution described in [52] to represent the processing time
of each volunteer. According to [52], the average classification time of each volunteer
is 1.76 s. Similar results were presented by [53] to classify tweets. We ran experiments
with nQ = 10, 000 incoming images to be processed. We set the number of volunteers
receiving an image as H = {30, 50} and the network size was set to 500 peers, which
is an intermediate community size between those proposed in [52,54]. We modeled the
network latency and network transfer rate according to [55]. Thus, we set the average
communication delay inside the P2P network to 228.2 ms, the average communication
delay between the P2P and the server to 441.4 ms, the average transfer rate inside the
P2P network to 8.67 MBps, and the average transfer rate between the server and the P2P
network to 5.3 MBps.

In the following experiments, we simulate the execution of the platform using experts
and non-expert volunteers. Expert volunteers are those with skills obtained in previous
crowdsourcing campaigns and who have been trained to correctly classify the images. In
this work, we set to 50% the ability of non-expert volunteers to correctly classify the images
and that to 90% for experts. A similar setting was used in [56].

Alternative Dynamic Optimization Approaches

In the following experiments, we compared the results obtained by our proposed
metric space index-based dynamic optimization engine, named Index, with the following
approaches:

• IndexLimit: Based on the proposed Index optimization algorithm, but between suc-
cessive optimization actions the parameter H changes at most 5 units, the parameter
TTL can vary 24 units, and the parameter C can vary at most by 5%.

Future Internet 2024, 1, 0 17 of 29

• IndexF: Similar to Index, but during situations without stress, the new configuration
vector is applied if the metrics do not match a stress situation.

• Analytic Ad Hoc Controller: This uses Equation (3) to adjust the value of H. This equa-
tion is based on the difference between the average utilization of the ISP (ISP_Util)
and the utilization requested by the data center engineer (e.g., 40%).

H = H − 30 × (ISP_Util − 0.4) (3)

We also compared the effectiveness of the proposed dynamic optimization engine with
a deep-reinforcement-learning-based approach. To this end, we trained a deep reinforce-
ment learning model implementing a Deep Q-Learning (DQL) agent. DQL uses a neural
network to approximate the state perceived by the agent, thus allowing one to control envi-
ronments with combinations of complex states and address non-tabular problems [57]. We
implemented the optimization technique using a wrapper from the OpenAI Gymnasium
library, based on Python. In particular, we implemented the following versions:

• DQL: Deep Q-Learning (DQL) model with Experience Replay, trained with a minimum
of 1.500 episodes. The model input variables are the same as those presented in
Figure 4.

• DQL-O: This is similar to DQL, but we added to the state vector the original values of
the controllable parameters set by the data center engineer.

• DQL-Act: We included in the state vector of the DQL model the size of the queue
of active tasks on the server. In this way, we evaluated the hypothesis that knowing
the number of active tasks can allow the agent to more adequately estimate the
server workload.

• DQL-O-Act: This combines the DQL−O and DQL− Act approaches. The state vector
is built with the original values of the controllable parameters and with the size of the
list of active tasks of the server.

We defined the agent’s reward according to Equations (4) and (5). PC is the percentage
of consensus achieved. ∆ is the difference between the current and the original values
of the parameters. For the H parameter, ∆ = |Ho − Hc| is the difference between the
original value of H (Ho) and its current value (Hc). The same is applied for the TTL and
the consensus threshold C. For the routing algorithm, we used the values 0 = Baseline,
1 = Centralized, and 2 = Distributed. One the one hand, under stressful situations, the
reward receives a penalty equal to one negative unit, and also receives a reward equal to
the percentage of consensus obtained. In this way, the agent is induced to escape the stress
situation, also favoring a high level of consensus. On the other hand, in situations without
stress, the agent is granted a reward equal to the percentage of consensus obtained and a
penalty proportional to the difference that the controllable parameters have with respect
to the values that were initially configured by the data center engineer. Thus, the agent
will try to bring the platform to an operating point similar to the one that was initially
configured, but will try to keep the percentage of consensus high.

Rs = −1 + PC (4)

Rns = PC − (∆H + ∆TTL + ∆C + ∆ALG)

4
(5)

7. Results
7.1. Effectiveness Evaluation

First, we evaluated the impact of the controllable parameters on the different index-based
dynamic optimization approaches. Table 1 shows the values of the fixed parameters, that is,
the fixed parameter values which were set while varying the value of a specific parameter.

Future Internet 2024, 1, 0 18 of 29

Table 1. Fixed values of the parameter used while varying the value of a specific parameter and the
range of possible values for each parameter.

Params Fixed Value Range of Possible Values

ALG Centralized Baseline/Centralized/Distributed

C 40% 10–90%

H 50 10–100

TTL 24 h 2–72 h

We chose the Centralized routing algorithm as the fixed value for the routing algorithm
(ALG) parameter as it strikes a balance between the Baseline and the Distributed routing
algorithms. This means it leverages the available computing and network resources in
the P2P network while avoiding overloading the peers with the consensus calculation.
Furthermore, the following experiments (Figures 8 and 9) as well as prior research [13]
comparing the performance of these three algorithms shows that the Centralized approach
generally reports better results. We set C = 40% to achieve a minimum consensus of 40%,
and H = 50. Increasing these values also increases the computational costs, while reducing
them may lead to a decrease in the quality of volunteers’ votes. Finally, we set the TTL = 24
h to avoid prematurely dropping tasks, while considering that a 24 h wait is sufficient for
disaster scenarios [13,50].

Table 2 shows the mean and standard deviation (std) reported by the Index, the In-
dexLimit, and the IndexF algorithms for the consensus (Cons.); the processing time of the
platform (workT); and the ISP utilization (ISP_Util). We processed a total of nQ = 10, 000 im-
ages.

By controlling only the H parameter, the index-based algorithms achieve a consen-
sus greater than 99%. If we only control the voting threshold C the algorithms achieve
consensus values between 49% and 52%, the routing algorithm (ALG) allows us to obtain
consensus between 39% and 48% when individually manipulated, and the TTL allows
us to achieve consensus values between 35% and 39%. Regarding the processing time
(workT), by controlling the H parameter, the algorithms report values between 109 and 125
h, controlling the parameter C reports a workT between 228 and 230 h, the TTL is between
194 and 213 h, and the routing algorithm ALG is between 228 and 231 h. Finally, controlling
the H parameter individually allows us to achieve ISP average utilization values between
47% and 48%, the ALG is between 34% and 42%, the TTL is between 58% and 62%, and the
voting threshold C is between 57% and 58%.

When controlling different combinations of parameters, including all of them together
(All), the highest percentage of consensus is 0,998, which is achieved by combining H
and the routing algorithm ALG using the IndexF approach. However, similar results are
obtained with the other metric-indexed approaches and when using the H parameter or
any combinations including H. Thus, the H parameter drastically impacts the percentage
of consensus.

On the other hand, the lower processing time, 99.167,is reported by the indexF ap-
proach with the ALG−H − TTL combination of controllable parameters. In this case, the
consensus reported is 0.994. However, the ISP utilization is higher than 60%. On the other
hand, the Index approach with the same controllable parameter configuration manages to
keep the average utilization of the ISP network close the limit of 40%, and the processing
of the tasks is completed in approximately 102 h. Finally, when all parameters are con-
trolled at the same time, the Index approach returns a high consensus value of 0.964, a
total processing time of 108 h, and the average ISP utilization is 53%. The IndexF approach
reports a consensus of 0.96, the processing time is 134 h, and the ISP utilization is 34%. The
IndexLimit achieves a consensus of 0.987, a processing time of 123 h, and the ISP utilization
is 42%.

Future Internet 2024, 1, 0 19 of 29

Table 2. Impact of the controllable parameters (Routing algorithm, C, H, TTL) on the output metrics:
consensus (Cons.), working time (workT), and the ISP utilization (USP_Util), for the index-based
dynamic optimization approaches. For each output metric we also show the standard deviation (std).
We highlight the best results in bold.

Params Algorithm Cons. std workT std ISP_Util std

ALG Index 0.414 0.202 228,000 6.481 0.399 0.112

ALG IndexF 0.478 0.262 227,333 7.202 0.420 0.069

ALG IndexLimit 0.395 0.217 230,667 8.571 0.346 0.060

ALG-C Index 0.437 0.293 231,333 8.892 0.368 0.057

ALG-C IndexF 0.387 0.163 227,500 4.764 0.414 0.114

ALG-C IndexLimit 0.513 0.231 226,000 3.950 0.455 0.096

ALG-H Index 0.997 0.001 102,167 14.470 0.465 0.211

ALG-H IndexF 0.998 0.002 128,167 25.810 0.285 0.067

ALG-H IndexLimit 0.992 0.007 111,833 17.429 0.403 0.254

ALG-H-C Index 0.972 0.023 104,500 13.531 0.517 0.245

ALG-H-C IndexF 0.993 0.012 122,333 31.602 0.414 0.228

ALG-H-C IndexLimit 0.980 0.008 126,833 24.425 0.277 0.033

ALG-H-TLL Index 0.998 0.001 102,333 14.264 0.465 0.208

ALG-H-TLL IndexF 0.963 0.091 180,000 68.230 0.547 0.241

ALG-H-TLL IndexLimit 0.994 0.007 99.167 8.353 0.623 0.334

ALG-TTL Index 0.169 0.060 166,333 18.970 0.630 0.267

ALG-TTL IndexF 0.210 0.087 179,500 19.087 0.658 0.314

ALG-TTL IndexLimit 0.297 0.145 188,667 7.711 0.491 0.098

ALG-TTL-C Index 0.187 0.144 170,333 19.336 0.690 0.300

ALG-TTL-C IndexF 0.285 0.116 194,333 20.432 0.522 0.226

ALG-TTL-C IndexLimit 0.319 0.143 195,667 27.259 0.560 0.223

All Index 0.964 0.022 108,667 14.720 0.535 0.214

All IndexF 0.960 0.060 134,000 29.604 0.349 0.056

All IndexLimit 0.987 0.009 123,667 21.417 0.421 0.144

C Index 0.490 0.307 228,667 33.146 0.578 0.313

C IndexF 0.496 0.319 229,667 33.068 0.575 0.316

C IndexLimit 0.515 0.317 228,833 32.443 0.575 0.316

H Index 0.997 0.002 124,167 47.864 0.477 0.313

H IndexF 0.998 0.001 118,667 42.908 0.471 0.294

H IndexLimit 0.992 0.005 109,667 24.080 0.472 0.326

H-C Index 0.980 0.019 136,833 46.893 0.462 0.301

H-C IndexF 0.976 0.013 132,167 42.832 0.455 0.281

H-C IndexLimit 0.987 0.023 113,833 25.143 0.429 0.267

H-TTL Index 0.776 0.331 114,000 36.006 0.505 0.279

H-TTL IndexF 0.900 0.148 113,833 36.191 0.492 0.279

Future Internet 2024, 1, 0 20 of 29

Table 2. Cont.

Params Algorithm Cons. std workT std ISP_Util std

H-TTL IndexLimit 0.993 0.004 109,167 23.507 0.482 0.323

H-TTL-C Index 0.774 0.286 121,000 25.675 0.502 0.259

H-TTL-C IndexF 0.921 0.142 122,833 26.739 0.480 0.258

H-TTL-C IndexLimit 0.991 0.013 114,000 20.986 0.438 0.269

TTL Index 0.350 0.339 194,333 44.148 0.615 0.291

TTL IndexF 0.384 0.329 199,500 24.882 0.582 0.309

TTL IndexLimit 0.384 0.312 213,000 37.709 0.586 0.309

TTL-C Index 0.236 0.105 189,500 50.919 0.616 0.292

TTL-C IndexF 0.240 0.116 190,167 11.548 0.591 0.297

TTL-C IndexLimit 0.379 0.323 197,833 27.709 0.602 0.297

Therefore, in Table 2 we show that controlling some parameters in isolation, like the
TTL and C, does not help to achieve efficient results. On the other hand, the parameter H
allows one—in most cases—to achieve a high level of consensus. When controlling H and
ALG at the same time, we can reduce the average utilization of the ISP.

Figure 8 shows the average consensus obtained with different dynamic optimization
approaches and when no optimization is applied (None). The x-axis shows the name of the
routing algorithm used at the beginning of the experiment. At the top, we show the results
obtained when H = 30 at the beginning of the experiment, and at the bottom we show the
results obtained when H = 50. The results show that the Baseline routing algorithm obtains
a 100% consensus for the case without optimization when the initial value of H = 30, but
with H = 50 it reports a low consensus close to 30%. On the other hand, all dynamic
parameter optimization approaches achieve consensus levels between 90% and 100%, with
DQL − Act being the one that obtains the lowest values.

Figure 8. Percentage of consensus reported with different dynamic optimization approaches and
with no optimization (None).

Figure 9 shows the average utilization of the ISP network. The x-axis shows the name
of the routing algorithm used at the beginning of the experiment. Again, at the top we
show the results obtained when H = 30 at the beginning of the experiment, and at the
bottom we show when H = 50. The results show that the ISP utilization tends to be higher
than 40% when the experiment begins with the Baseline routing algorithm, which uses
point-to-point communication between the server and the peers through the ISP. If the
initial value H = 30, only the dynamic optimization approaches based on a metric index
can keep the average utilization of the ISP below 40%. Meanwhile, when the initial value

Future Internet 2024, 1, 0 21 of 29

H = 50, the DQL-O approach drastically reduces the ISP utilization. When we use the
Centralized or Distributed routing algorithms at the beginning of the experiment and
H = 30, the results show that the DQL − o − Act dynamic optimization approach reports
the highest utilization. All the remaining approaches tend to keep the ISP utilization below
40%. With H = 50, again the dynamic optimization approaches tend to keep the ISP
utilization below 40%. Only the IndexLimit approach, initializing the execution with the
Centralized algorithm, and the Index approach, using Distributed as the initial routing
algorithm, report a high ISP utilization.

Figure 9. Average ISP network utilization obtained with different dynamic optimization approaches
and with no optimization (None).

Figure 10 shows the time required to process the nQ images. With an initial value
H = 30, we can reduce the processing time by 20% when applying a dynamic optimization
approach. In this case, the IndexLimit approach reports the lowest processing times. With
H = 50 and stating with the Baseline routing algorithm, we can reduce the processing time
by 80% by using a dynamic optimization approach. In this case, the DQL approach presents
the lowest processing time when the experiment begins with the Baseline or with the
Centralized routing algorithms. The index-based approaches present competitive results.
Otherwise, when starting with the Distributed routing algorithm, the Index approach
presents the lowest processing time.

Figure 10. Processing time (workTime) obtained with the different dynamic optimization approaches
and with no optimization (None).

Overall, the analytical approach reports a good percentage of consensus and low
processing times, but the ISP utilization tends to be high. Regarding the metric index-based

Future Internet 2024, 1, 0 22 of 29

approaches, all the proposed versions report a high percentage of consensus and an ISP
utilization below 40%, but the IndexLimite version reports lower processing times with
H = 30 and the Index version with H = 50. Finally, the DQL approach is the one that
generally obtains the best results for all the metrics among the reinforcement-learning-
based approaches.

7.2. Execution Time of the Dynamic Optimization Approaches

Figure 11 shows the CPU time of the actions performed by the parameter optimization
approaches with the metric index (Index) and with DRL (DQL). The intervals in which
the signal is 1 correspond to the intervals where the CPU is used by the Index or the DQL,
that is, the active intervals of the optimization algorithms. In periods when the signal is 0,
only the crowdsoursing platform is active. The graph shows the results obtained for 10,000
images, an initial value of H = 50, and applying the Distributed routing algorithm. Similar
results were obtained for other configurations.

Figure 11. Execution time reported by the Index and DQL optimization approaches when processing
10,000 images. We set the Distributed algorithm as the initial routing algorithm with an initial
parameter H = 50.

The results show that the DQL reports a larger number of optimization actions, but
each one is very fast. On the other hand, the Index approach reports a lower number of
optimization actions but each one consumes more time than in the case of the DQL. The
result of accumulating the CPU time of the optimization actions of each algorithm is 23.86
seconds for the metric index-based approach and 11.73 milliseconds for the optimization
with DQL. However, the execution time of the simulation with both approaches tends to
be similar, close to 108 s. Notice that the time of the crowdsourcing campaign is higher than
90 h; therefore, the execution times of both dynamic optimization approaches are negligible
when operating on a real system.

Regarding the time required to set up the index-based dynamic optimization engine,
it is important to notice that the database and the index are only built once, and it depends
on the size of the database, but generally it takes a couple of hours at most. When using
the DQL-based approach, we also have to build the configuration vectors (databases) from
previous simulations and then we have to train the model. The training process can take
several days, and it must be repeated for each trained model until the desired result is
obtained. So, there is a higher uncertainty in the amount of time required to fine-tune the
accuracy of the DQL-based approach.

7.3. Scalability

Figure 12 shows the percentage of consensus obtained with the dynamic optimization
engine as we increase the value of nQ. The black bars represent the variation. The results

Future Internet 2024, 1, 0 23 of 29

show that with a larger number of images the approaches tend to present a lower consensus.
This is more evident for the DQL −O, DQL − Act, and DQL −O − Act approaches, while
the percentage of consensus remains high—above 80%—for IndexF, IndexLimit, Index,
and DQL.

Figure 12. Percentage of consensus obtained with the dynamic optimization approaches. We set
H = 50 and the platform received 5000, 10,000, and 15,000 images.

Figure 13 shows the processing time (workTime) obtained for all the dynamic optimiza-
tion approaches with different numbers of nQ. Again, results show that the IndexLimit,
Index and DQL report the best results. The IndexF, presents a slightly lower performance.
More importantly, the processing time reported by the dynamic optimization approaches
for the case of 15,000 images is 42% lower than the approach without optimization (None).

Figure 13. Processing time reported by the dynamic optimization approaches. We set the initial value
of H = 50 and the platform receives 5000, 10,000 and 15,000 images.

7.4. Size of the Control Window

This section discusses the impact of using different time intervals (called control
intervals or control windows) to run the dynamic optimization engine. That is, as the
crodwsourcing platform processes images, the dynamic optimization algorithm is activated
every ∆t units of time. We show the results obtained with H = 30 and using the Baseline
routing algorithm at the beginning of the experiment. In Figure 14, we show the ISP
utilization obtained with an interval of ∆t = {2, 4, 8, 16, 32} hours. Figure 15 shows the
average consensus obtained and Figure 16 shows the processing time (workTime). We show
the results for the IndexLimit, Index, and DQL approaches, since similar trends have been
observed for the other variants.

Figure 14. Average ISP utilization obtained with different values of the control interval.

Future Internet 2024, 1, 0 24 of 29

Figure 15. Consensus percentage obtained with different control interval values.

Figure 16. Processing time obtained with different control interval values.

The results show that a larger ∆t tends to increase the IPS utilization (Figure 14). This
is mainly because as we increase the time in which the changes are made in the parameters,
it takes more time to correctly adjust the values of the parameters. Then, as expected, a
larger value of ∆t increases the processing time (Figure 16) and decreases the consensus
percentage not only because the parameter control takes more time to correctly adjust the
values but also because a higher ISP utilization creates a bottleneck between the peers and
the server and therefore the tasks take more time to be processed.

Therefore, a large value of ∆t delays the parameter adjustment and can affect the
performance of the platform. On the other hand, a small value of ∆t changes the parameters
of the platform more frequently, making the platform unstable (some tasks are solved with
more peers than others, the routing algorithm can change every time interval, etc.). The
results show that with a ∆t = {2, 4, 8} all approaches achieve high consensus, low ISP
utilization, and small processing times.

Additionally, using a small ∆t time interval increases the CPU time of the metric
index-based dynamic optimization approach by 66%. In the case of the DQL, the CPU time
increases four times with the smallest ∆t = 2. In other words, using small intervals allows
one to obtain good estimates for the metrics evaluated at the cost of a longer simulation
execution time. However, as shown in previous sections (in Figure 11), the execution time
of the simulations is close to 100 s.

7.4.1. Constants R1, R2, and R3

In this section, we evaluate the impact of the constants R1, R2, and R3 that multiply
the groups of variables in the vectors of the metric index. To this end, we use a ratio,
RangeMult. If RangeMult = 10, then, in stressful situations, R1 = 100, R2 = 1, and
R3 = 10. If the situation is not stressed, R1 = 100, R2 = 10 , and R3 = 1. To assess the
influence of RangeMult, we search for 1000 vectors in the index using different values of
RangeMult = {0.5, 1, 2, 5, 10}, for situations with and without stress.

Figure 17 shows the distance between the subset of elements of the configuration
vectors. That is, given a search vector Vs, the index searches the top-k closest configuration

Future Internet 2024, 1, 0 25 of 29

vector to Vs. Then, we report the distance between the subset formed of the non-controllable
parameters of Vs and the non-controllable parameters of the top-k vectors (blue bars). We
also report the distance between the subset formed of the controllable parameters of Vs
and the controllable parameters of the top-k vectors (dark green bars). Finally, we report
the distance between the subset formed of the metrics of Vs and the metrics of the top-k
vectors (light green bars). The x-axis indicates that the evaluated scenario is under stress, 1,
or without stress, 0.

Figure 17. Number of distance evaluations for different values for the constants R1, R2, and R3 in the
metric indices.

To retrieve configuration vectors that match the non-controllable parameters, it is
expected to obtain the smallest distances between the values of this subset of elements of
search vector Vs and the top-k vectors. That is, we want to retrieve configurations with simi-
lar arrival rates and numbers of volunteers as in the current situation. In Figure 17, we show
this is true when RangeMult ≥ 1, since the blue bars report the lowest average distance.

In non-stress situations, it is expected that the distance reported by the subset of
controllable parameters is less than the distances of the subset of metrics. On the other
hand, under stress situations, it is expected that the distances of the subset of metrics is less
than the distances reported by the subset of controllable parameters. This is fulfilled when
RangeMult ≥ 2. With larger values of RangeMult this tendency is amplified. Therefore, to
grant the appropriate priority to each subset of variables in stress and non-stress situations,
we have to set RangeMult ≥ 1.

7.4.2. Metric Index Evaluation

In this section, we analyze the impact of using different metric indices on the dynamic
optimization engine. Figure 18 shows the average number of distance evaluations for a
total of 1.000 images. In this experiment, we use different metric space indices like the
pivot index with 6 and 10 pivots and the Sparse Spatial Selection (SSS) [58] method with
different values of the α parameter. We also evaluate the List of Clusters [59] index with
different cluster sizes.

Figure 18. Number of computations (distance evaluations) achieved with different metric space indices.

The results show that the performance of the List of Clusters (Lcluster) is highly
dependent on the cluster size, reporting better results for larger cluster sizes. On the other
hand, the results show that a six-pivot index—the configuration used in this work—obtains

Future Internet 2024, 1, 0 26 of 29

the best results. Nevertheless, if necessary, the metric index can be easily changed to a new
one.

8. Conclusions

In this paper, we present and evaluate a metric space-based approach for the dynamic
optimization of parameters. The proposed approach is devised to improve the performance
of a crowdsourcing platform built with a P2P network designed to operate in the context
of natural disasters and to deal with unexpected bursts of incoming requests. The context
requires that the deployment of crowdsourcing campaigns achieves results in the shortest
possible time and without saturating the platform’s resources.

The proposal incorporates the concept of similarity to give the platform more adequate
parameter configurations according to the characteristics of the current workload and the
size of the volunteer network. The proposal uses a metric database formed of vectors with
elements describing the non-controllable parameters, controllable parameters, and metrics.
We used a pivot index for the evaluation of the proposal, but other metric indices can be
easily incorporated.

We presented two versions of the dynamic parameter optimization algorithm with
metric indices and compared them with an analytical optimization approach and with
different algorithms using deep reinforcement learning. We evaluated the processing time,
the utilization of resources, and the voting consensus with different routing algorithms. The
results show that the metric index dynamic optimization approach achieves competitive
processing times, high voting consensus, and is capable of keeping the utilization below
40%. Additionally, we showed that the proposal can scale for a high number of tasks
and that incorporating dynamic parameter optimization allows us to fulfill the platform’s
performance requirements and also reduces the processing time by 40% when the platform
is under a high workload.

As future work, we plan to incorporate other deep reinforcement learning algorithms
to the platform. Furthermore, it would be interesting to incorporate more complex network
topologies involving different communities of volunteers.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by CONICYT Basal funds FB0001, Fondef ID15I10560.

Data Availability Statement: Data were contained within the article.

Acknowledgments: This research was supported by the supercomputing infrastructure of the
NLHPC Chile.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jamal, A.; Al-Ahmadi, H.M.; Butt, F.M.; Iqbal, M.; Almoshaogeh, M.; Ali, S. Metaheuristics for Traffic Control and Optimization:

Current Challenges and Prospects. In Search Algorithm—Essence of Optimization; Harkut, D.D.G., Ed.; IntechOpen: Rijeka, Croatia,
2021; Chapter 2. https://doi.org/10.5772/intechopen.99395.

2. Li, F.; Su, Z.; ming Wang, G. An effective integrated control with intelligent optimization for wastewater treatment process. J. Ind.
Inf. Integr. 2021, 24, 100237. https://doi.org/https://doi.org/10.1016/j.jii.2021.100237.

3. Song, D.; Liu, J.; Yang, Y.; Yang, J.; Su, M.; Wang, Y.; Gui, N.; Yang, X.; Huang, L.; Hoon Joo, Y. Maximum wind energy extraction
of large-scale wind turbines using nonlinear model predictive control via Yin-Yang grey wolf optimization algorithm. Energy
2021, 221, 119866. https://doi.org/https://doi.org/10.1016/j.energy.2021.119866.

4. Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A survey of evolutionary continuous dynamic optimization over
two decades—Part A. IEEE Trans. Evol. Comput. 2021, 25, 609–629.

5. Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A survey of evolutionary continuous dynamic optimization over
two decades—Part B. IEEE Trans. Evol. Comput. 2021, 25, 630–650.

6. Wang, P.; Qin, J.; Li, J.; Wu, M.; Zhou, S.; Feng, L. Dynamic Optimization Method of Wireless Network Routing Based on Deep
Learning Strategy. Mob. Inf. Syst. 2022, 2022.

https://doi.org/10.5772/intechopen.99395
https://doi.org/https://doi.org/10.1016/j.jii.2021.100237
https://doi.org/https://doi.org/10.1016/j.energy.2021.119866

Future Internet 2024, 1, 0 27 of 29

7. Tuli, S.; Poojara, S.R.; Srirama, S.N.; Casale, G.; Jennings, N.R. COSCO: Container Orchestration Using Co-Simulation and
Gradient Based Optimization for Fog Computing Environments. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 101–116. https:
//doi.org/10.1109/TPDS.2021.3087349.

8. Karthick, T.; Charles Raja, S.; Jeslin Drusila Nesamalar, J.; Chandrasekaran, K. Design of IoT based smart compact energy meter
for monitoring and controlling the usage of energy and power quality issues with demand side management for a commercial
building. Sustain. Energy Grids Netw. 2021, 26, 100454.

9. Marín, M.; Gil-Costa, V.; Inostrosa-Psijas, A.; Bonacic, C. Hybrid capacity planning methodology for web search engines. Simul.
Model. Pract. Theory 2019, 93, 148–163. https://doi.org/10.1016/j.simpat.2018.09.016.

10. Gosavi, A. Simulation-Based Optimization; Springer: Berlin/Heidelberg, Germany, 2015.
11. Shi, Y.; Sagduyu, Y.E.; Erpek, T. Reinforcement learning for dynamic resource optimization in 5G radio access network slicing. In

Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

12. Mosavi, A.; Faghan, Y.; Ghamisi, P.; Duan, P.; Ardabili, S.F.; Salwana, E.; Band, S.S. Comprehensive review of deep reinforcement
learning methods and applications in economics. Mathematics 2020, 8, 1640.

13. Loor, F.; Manriquez, M.; Gil-Costa, V.; Marín, M. Feasibility of P2P-STB based crowdsourcing to speed-up photo classification for
natural disasters. Clust. Comput. 2022, 25, 279–302. https://doi.org/10.1007/s10586-021-03381-6.

14. Chávez, E.; Navarro, G.; Baeza-Yates, R.; Marroquín, J.L. Searching in metric spaces. ACM Comput. Surv. 2001, 33, 273–321.
https://doi.org/http://doi.acm.org/10.1145/502807.502808.

15. Bebis, G., Fingerprint Indexing. In Encyclopedia of Biometrics; Li, S.Z., Jain, A., Eds.; Springer: Boston, MA, USA, 2009; pp. 491–496.
https://doi.org/10.1007/978-0-387-73003-5_57.

16. Gil-Costa, V.; Santos, R.L.; Macdonald, C.; Ounis, I. Modelling efficient novelty-based search result diversification in metric
spaces. J. Discret. Algorithms 2013, 18, 75–88.

17. Echihabi, K.; Zoumpatianos, K.; Palpanas, T. High-dimensional similarity search for scalable data science. In Proceedings of the
2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; IEEE: Piscataway, NJ,
USA, 2021; pp. 2369–2372.

18. Zezula, P.; Amato, G.; Dohnal, V.; Batko, M. Similarity Search: The Metric Space Approach; Advances in Database Systems; Springer:
New York, NY, USA, 2006; Volume 32.

19. Samet, H. Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling); Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2005.

20. Mamede, M.; Barbosa, F. Range queries in natural language dictionaries with recursive lists of clusters. In Proceedings of the
22nd International Symposium on Computer and Information Sciences, ISCIS, Ankara, Turkey, 7–9 November 2007.

21. Baeza-Yates, R.; Cunto, W.; Manber, U.; Wu, S. Proximity Matching Using Fixed-Queries Trees. In Proceedings of the 5th Annual
Symposium on Combinatorial Pattern Matching, CPM , LNCS 807, Asilomar, CA, USA, 5–8 June 1994; pp. 198–212.

22. Mico, L.; Oncina, J.; Vidal, E. A new version of the nearest-neighbor approximating and eliminating search (AESA) with linear
preprocessing-time and memory requirements. Pattern Recogn. Lett. 1994, 15, 9–17.

23. Gennaro, C.; Mordacchini, M.; Orlando, S.; Rabitti, F. A Scalable Distributed Data Structure for Multi-Feature Similarity Search.
In Proceedings of the Sixteenth Italian Symposium on Advanced Database Systems, SEBD, Mondello, PA, Italy, 22–25 June 2008;
pp. 302–309.

24. Chen, L.; Gao, Y.; Zheng, B.; Jensen, C.S.; Yang, H.; Yang, K. Pivot-based metric indexing. In Proceedings of the VLDB Endowment:
43rd International Conference, Munich, Germany, 28 August–1 September 2017.

25. Gil-Costa, V.; Marin, M.; Reyes, N. Parallel query processing on distributed clustering indexes. J. Discret. Algorithms 2009, 7, 3–17.
26. Argentina, S.; Quinteros, A.; García, R.H.; Frati, F.E.; Barrientos, R.J. A Comparative Analysis of Massive Finger-Vein Recognition

Algorithms: From Energy Consumption Perspective. In Proceedings of the 2022 41st International Conference of the Chilean
Computer Science Society (SCCC), Santiago, Chile, 21–25 November 2022; pp. 1–6.

27. Artigas-Fuentes, F.J.; Badía, J.M. Accessing very high dimensional spaces in parallel. J. Supercomput. 2017, 73, 176–189.
28. Safaee, S.; Mirabi, M.; Safaei, A.A. StreamFilter: A framework for distributed processing of range queries over streaming data

with fine-grained access control. Clust. Comput. 2024, 73, 1573–7543.
29. Novak, D.; Batko, M.; Zezula, P. Large-scale similarity data management with distributed Metric Index. Inf. Process. Manag. 2012,

48, 855–872.
30. Catalyurek, U.V.; Boman, E.G.; Devine, K.D.; Bozdağ, D.; Heaphy, R.T.; Riesen, L.A. A repartitioning hypergraph model for

dynamic load balancing. Parallel Distrib. Comput. 2009, 69, 711–724.
31. Yang, K.; Ding, X.; Zhang, Y.; Chen, L.; Zheng, B.; Gao, Y. Distributed similarity queries in metric spaces. Data Sci. Eng. 2019,

4, 93–108.
32. Gadaleta, M.; Chiariotti, F.; Rossi, M.; Zanella, A. D-DASH: A deep Q-learning framework for DASH video streaming. IEEE

Trans. Cogn. Commun. Netw. 2017, 3, 703–718.

https://doi.org/10.1109/TPDS.2021.3087349
https://doi.org/10.1109/TPDS.2021.3087349
https://doi.org/10.1016/j.simpat.2018.09.016
https://doi.org/10.1007/s10586-021-03381-6
https://doi.org/http://doi.acm.org/10.1145/502807.502808
https://doi.org/10.1007/978-0-387-73003-5_57

Future Internet 2024, 1, 0 28 of 29

33. Ding, D.; Fan, X.; Zhao, Y.; Kang, K.; Yin, Q.; Zeng, J. Q-learning based dynamic task scheduling for energy-efficient cloud
computing. Future Gener. Comput. Syst. 2020, 108, 361–371.

34. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.C.; Kim, D.I. Applications of deep reinforcement learning in
communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174.

35. Wang, L.; Pan, Z.; Wang, J. A review of reinforcement learning based intelligent optimization for manufacturing scheduling.
Complex Syst. Model. Simul. 2021, 1, 257–270.

36. Yang, H.; Li, W.; Wang, B. Joint optimization of preventive maintenance and production scheduling for multi-state production
systems based on reinforcement learning. Reliab. Eng. Syst. Saf. 2021, 214, 107713.

37. Rabault, J.; Ren, F.; Zhang, W.; Tang, H.; Xu, H. Deep reinforcement learning in fluid mechanics: A promising method for both
active flow control and shape optimization. J. Hydrodyn. 2020, 32, 234–246.

38. Yu, C.; Liu, J.; Nemati, S.; Yin, G. Reinforcement learning in healthcare: A survey. ACM Comput. Surv. (CSUR) 2021, 55, 1–36.
39. Kompella, V.; Capobianco, R.; Jong, S.; Browne, J.; Fox, S.; Meyers, L.; Wurman, P.; Stone, P. Reinforcement learning for

optimization of COVID-19 mitigation policies. arXiv 2020, arXiv:2010.10560.
40. Boulesnane, A.; Meshoul, S. Reinforcement learning for dynamic optimization problems. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, Lille, France, 10–14 July 2021; pp. 201–202.
41. Forootani, A.; Zarch, M.G.; Tipaldi, M.; Iervolino, R. A stochastic dynamic programming approach for the machine replacement

problem. Eng. Appl. Artif. Intell. 2023, 118, 105638. https://doi.org/https://doi.org/10.1016/j.engappai.2022.105638.
42. Rowstron, A.; Druschel, P. Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In

Proceedings of the Middleware 2011, Lisbon, Portugal, 12–16 December 2011; Guerraoui, R., Ed.; Springer: Berlin/Heidelberg,
Germany, 2001; pp. 329–350.

43. Corradi, A.; Fanelli, M.; Foschini, L. VM consolidation: A real case based on OpenStack Cloud. Future Gener. Comput. Syst. 2014,
32, 118–127.

44. Marzolla, M. Libcppsim: A Simula-like, portable process-oriented simulation library in C++. In Graham Horton, editor, Proc. of
ESM Magdeburg, Germany, 2004, 222–227.

45. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale Dataset for Object
Detection in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, UT, USA, 18–23 June 2018.

46. Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016,
117, 11–28.

47. Alam, F.; Ofli, F.; Imran, M. Crisismmd: Multimodal twitter datasets from natural disasters. In Proceedings of the Twelfth
International AAAI Conference on Web and Social Media, Palo Alto, CA, USA, 25–28 June 2018.

48. Bhavaraju, S.K.T.; Beyney, C.; Nicholson, C. Quantitative analysis of social media sensitivity to natural disasters. Int. J. Disaster
Risk Reduct. 2019, 39, 101251.

49. Imran, M.; Mitra, P.; Castillo, C. Twitter as a lifeline: Human-annotated twitter corpora for NLP of crisis-related messages. arXiv
2016, arXiv:1605.05894.

50. Kurkcu, A.; Zuo, F.; Gao, J.; Morgul, E.F.; Ozbay, K. Crowdsourcing incident information for disaster response using twitter. In
Proceedings of the 65th Annual Meeting of Transportation Research Board, 2017; pp. 1–17.

51. Murthy, D.; Gross, A.J. Social media processes in disasters: Implications of emergent technology use. Soc. Sci. Res. 2017,
63, 356–370.

52. Danylo, O.; Moorthy, I.; Sturn, T.; See, L.; Laso Bayas, J.C.; Domian, D.; Fraisl, D.; Giovando, C.; Girardot, B.; Kapur, R.; et al. The
Picture Pile tool for rapid image assessment: A demonstration using Hurricane Matthew. ISPRS Ann. Photogramm. Remote Sens.
Spat. Inf. Sci. 2018, 4, 27–32.

53. Rogstadius, J.; Vukovic, M.; Teixeira, C.A.; Kostakos, V.; Karapanos, E.; Laredo, J.A. CrisisTracker: Crowdsourced social media
curation for disaster awareness. IBM J. Res. Dev. 2013, 57, 4–1.

54. Salk, C.F.; Sturn, T.; See, L.; Fritz, S. Limitations of majority agreement in crowdsourced image interpretation. Trans. GIS 2017,
21, 207–223.

55. Falcão, I.W.; Seruffo, M.C.; Souza, D.D.S.; Cardoso, D.L.; Ferreira, J.J.; Da Silva, M.S. A Comparative Analysis of Local and Cloud
Access Assessment for Multimodal Interactive Application. In Proceedings of the 2018 4th International Conference on Cloud
Computing Technologies and Applications, Cloudtech Brussels, Belgium, 26–28 November 2018.

56. Qarout, R.K.; Checco, A.; Bontcheva, K. Investigating stability and reliability of crowdsourcing output. In Proceedings of the
CEUR Workshop Proceedings, Zürich, Switzerland. 2018; Volume 2276, pp. 83–87.

57. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533.

https://doi.org/https://doi.org/10.1016/j.engappai.2022.105638

Future Internet 2024, 1, 0 29 of 29

58. Pedreira, O.; Brisaboa, N.R. Spatial selection of sparse pivots for similarity search in metric spaces. In Proceedings of the
International Conference on Current Trends in Theory and Practice of Computer Science, Harrachov, Czech Republic, 20–26
January 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 434–445.

59. Chávez, E.; Navarro, G. A compact space decomposition for effective metric indexing. Pattern Recognit. Lett. 2005, 26, 1363–1376.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Research Objectives
	Contribution
	Outline

	Metric Spaces
	Previous Work
	P2P-Based Crowdsourcing Platform
	P2P-Based Platform Architecture
	Routing Algorithms

	Dynamic Optimization of the Crowdsourcing Platform
	Dynamic Optimization Engine Based on Metric Indices
	Crowdsourcing Platform Parameter Configuration: Scheme of Two Metric Indices

	Experimental Settings
	Results
	Effectiveness Evaluation
	Execution Time of the Dynamic Optimization Approaches
	Scalability
	Size of the Control Window
	Constants R1,R2, and R3
	Metric Index Evaluation

	Conclusions
	References

