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Tidal marshes present profound adaptive challenges to terrestrial vertebrates. For example, North American
sparrows have relatively longer and thinner bills and darker dorsal plumage in coastal saltmarshes than in interior
marshes. Bay-capped wren-spinetail (Furnariidae; Spartonoica maluroides) show a strong association with South
American saltmarshes. We hypothesized that bay-capped wren-spinetail have similar morphological adaptations to
North American sparrows to the saltmarsh environment, which would be indicative of the generality of selection
on these traits in the coastal saltmarsh ecosystem. We captured individuals of S. maluroides from coastal
saltmarshes and interior marshes. Populations were compared based on morphology and molecular markers. We
found significant phenotypic differences in bill shape and plumage coloration (melanism) between S. maluroides
populations from coastal and inland marshes. The low levels of genetic variation, weak geographical structure and
shallow divergences, based on mitochondrial DNA and microsatellite data, suggest that coastal populations had a
recent demographic expansion. Our results are consistent with the pattern of morphological divergence found
between North American Emberizids. The possibility of convergent evolutionary adaptations between saltmarsh
North American Emberizids and South American Furnariids suggests that there are strong selective pressures
associated with saltmarsh environments on the beak, leading to adaptations for food acquisition, and on plumage
coloration for better camouflage for predator avoidance (melanism). © 2013 The Linnean Society of London,
Biological Journal of the Linnean Society, 2013, 109, 78-91.
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INTRODUCTION

Tidal marshes present profound adaptive challenges
to the terrestrial vertebrates that attempt to colonize
them. The physical flux of tidal cycles and the chemi-
cal influence of seawater combine to create a wetland
ecosystem where the benthic environment has strong

*Corresponding author. E-mail: acardoni@mdp.edu.ar

marine characteristics, yet the vegetative structure
resembles that of inland marsh habitats (Chan et al.,
2006). Tidal marshes have been relatively unstable
in time and space throughout the Pleistocene
(Malamud-Roam et al., 2006). Because of this
instability of tidal marshes through geological time,
colonizing species must adapt rapidly to the environ-
mental challenges posed by tidal marsh life. Birds
of North American tidal marshes often show a high
degree of local morphological differentiation even
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when divergence is recent and gene flow ongoing
(Avise & Zink, 1988; Greenberg et al., 1998, 2006;
Chan et al., 2006). Ten species of birds are either
endemic or have well-marked subspecies that are
largely restricted to North American tidal marshes
(Marshall, 1948; Chan et al., 2006; Greenberg &
Maldonado, 2006). To date, this emerging picture of
relatively rapid adaptation to a dynamic ecosystem
among saltmarsh vertebrates is based almost exclu-
sively on work in North American saltmarshes, and
primarily on one group of birds, the sparrows (Green-
berg & Droege, 1990; Greenberg et al., 1998; Grenier
& Greenberg, 2005, 2006). One poorly understood
fact of tidal marsh biogeography is that very few
endemic subspecies or species have been described
for coastlines along other continents (Greenberg &
Maldonado, 2006). Yet, tidal marshes are widely
distributed along the mid- to high-latitude coasts of
the major continents (Adam, 1990).

Saltmarshes along the south-eastern coast of South
America are less extensive (2133 km?) than those
along the east coast of North America (15 000 km?
Isacch et al., 2006), but with high floristic similarity
(Isacch et al., 2006). Tidal marshes in both regions are
dominated by various species of cordgrass (Spartina
spp.). Thus, the relatively unstudied fauna of South
American marshes provides an excellent opportunity
to test adaptive hypotheses for the evolution of salt-
marsh specialization developed exclusively for North
American taxa (e.g. Greenberg et al., 2006).

As in other regions of the world, the saltmarshes of
Argentina support a relatively low number of breed-
ing bird species (Isacch et al., 2004; Cardoni, Isacch &
Iribarne, 2007; Cardoni et al., 2011). Two bird species
that show the strongest association with South
American salt marshes are the bay-capped wren-
spinetail (Spartonoica maluroides referred to as Spar-
tonoica throughout), a member of the predominantly
South American Furnariidae, and the spot-winged
crake (Porzana spiloptera), a small relative of the coot
(Isacch et al., 2004; Cardoni et al., 2007; Isacch &
Cardoni, 2011). Spartonoica has relatively high den-
sities in saltmarshes (>5 individuals ha™; Isacch
et al., 2004; Cardoni et al., 2007; Isacch & Cardoni,
2011), but it can also use other interior tall grass
habitats (Canevari et al., 1991) with densities always
much lower than in saltmarshes (0.2 individuals ha™;
Comparatore et al., 1996; Isacch & Martinez, 2001).
Porzana spiloptera was almost exclusively recorded in
saltmarshes, but are far less common than Sparto-
noica (Taylor, 1996; Martinez, B6 & Isacch, 1997;
Cardoni, 2011). Therefore, we decided to use Sparto-
noica as the model species for this study.

Spartonoica is a near-threatened species (BirdLife
International, 2012) of salt- and brackish marshes
along the coast as well as locally in humid grasslands

in the interior of Argentina, Uruguay, and southern
Brazil (Canevari et al., 1991; Isacch & Martinez,
2001; Isacch et al., 2004). Spartonoica is a partial
migrant, with most birds disappearing from breeding
sites in central and southern Argentina along with a
substantial winter augmentation of populations both
in the interior and the coastal marshes in the north-
ern part of its range (Di Gidcomo, 2005; D. A. Cardoni
& J. P. Isacch, pers. obs.). Spartonoica resembles the
many species of spinetails, but it is streaked dorsally.
This species is found within the same subfamily as
the various spinetail genera, but it is not closely
related to any extant species and its sister taxon is
the genus Pseudoseisura, comprising relatively large,
jay-like species (Derryberry et al., 2011).

In this paper we investigated if Spartonoica popu-
lations inhabiting coastal and interior marshes have
differences at both the morphological and the molecu-
lar level. Specifically, first we focus on differences in
morphological measurements (bill, wing, tarsus, and
tail), plumage coloration and weight. Second, we
examine both nuclear and mitochondrial molecular
genetic markers in an attempt to determine the
genetic structure among habitat. We test if geographi-
cal structure is related to morphological and genetic
variation. Finally, we test whether Spartonoica popu-
lations in coastal marsh habitats are morphologically
distinct from interior populations in a similar way as
coastal Emberizid sparrows have diverged from their
interior sister taxa. If Spartonoica shares similar
morphological characteristics with unrelated taxa
under similar selective pressures, this would support
the generality of the selective regime of coastal
marshes and would reflect convergent evolution.

MATERIALS AND METHODS
STUDY AREA

We captured 140 individuals of Spartonoica by flush-
ing birds into single mist-nets (12 x 2.5 m, 30-mm
mesh) during the summer from six geographically
separated populations. The study included coastal
saltmarshes, and interior marshes within the Rio
de la Plata grasslands (sensu Soriano et al., 1991).
Specific sampling localities were selected from
sites described by Bilenca & Minarro (2004) and Di
Giacomo (2005). We captured birds from three main
coastal tidal saltmarshes from Argentina (Isacch
et al., 2006), Bahia Blanca (39°01'S, 56°25'W), Mar
Chiquita Lagoon (37°40’S, 57°23’'W) and Bahia Sam-
borombén (36°21’S, 57°12'W), and from three inland
brackish marshes, La Picasa Lake (34°14’S, 62°50'W),
Saladillo river (35°38’S, 59°46'W) and Punta Lara
Reserve (34°47’'S, 58°00'W) (Fig. 1). We surveyed for
birds in two other sites described within the summer
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Figure 1. Study area and populations of Spartanoica sur-
veyed (BB, Bahia Blanca; MCh, Mar Chiquita Lagoon; BS,
Bahia Samborombén; PLa, Punta Lara; Sal, Saladillo
river; LP, La Picasa Lagoon; Mar Chiquita lagoon and La
Felipa from Cérdoba province). Black dots indicated sites
where birds were sampled and white dots are sites where
few or no birds were found. The map also shows the
breeding range of Spartonoica (in dark grey) and occa-
sional or winter range (in light grey).

distribution of Spartonoica in interior lowland grass-
lands similar to those used by this species in Saladillo
and La Picasa. However, after searching likely sites
for 8 field days during the breeding season, we
recorded only three individuals in Mar Chiquita
Lagoon in Cérdoba Province (30°55’S, 62°40'W) and
no individuals were recorded in La Felipa Lagoon in
Cordoba (33°06’S, 63°33'W) nor from any of the other
brackish marshes in the surrounding areas (sites
where the species has been recorded in substantial
numbers during the winter). Therefore, due to the
small sample size, data from individuals from Mar
Chiquita (Cérdoba) were removed from all of the
analyses presented here.

MORPHOLOGICAL AND PLUMAGE VARIATION

We took ten measurements from each individual: bill
length, from the anterior point of the nostril to the tip
of the bill; bill width, across the base of the bill under
the proximal point of the nostrils; bill depth, at the
anterior point of the nostrils; length of the reddish
cap patch through the mid-line of the crown; length of
black on cap, from the end of the reddish cap until to
the end of the black cap; tarsus length, from the joint
of the tibiotarsus and tarsometatarsus to the distal
edge of the most distal unbroken scute overlying the

middle toe; tail length, from the base of central rec-
trices to the end of the longest feather; length of third
toe; unflattened wing chord taken from the carpal
joint to tip of the longest primary; and body mass. We
used a digital calliper (+0.01 mm) for bill, cap and
tarsus measurements, a ruler (x1 mm) for tail and
wing measurements, and a spring scale (100 g pesola)
to record weight. Additionally, we took digital photo-
graphs (saved as JPEG format) of every individual
that was captured using a Cannon® 35-mm camera.
Digital photographs were then analysed using the
masking tool of Corel Paint photo editing software
version 2003 (Corel Corporation) to estimate the
amount of black coloration in the dorsal plumage of
each individual (Ballentine & Greenberg, 2010). Sec-
tions of digital photographs were sampled from the
dorsal part, a roughly rectangular area (from behind
the head to the beginning of the rump feathers), and
the masking tool was used to quantify the number of
black pixels for each section. All photographs used for
the plumage analysis were uploaded to morphbank
(Collection # 801515, http:/www.morphbank.net).
The amount of black was estimated as the number
of black pixels/total number of pixels of the section.
We restricted our morphological analysis to adults,
which are easily distinguished from juveniles based
on the darker plumage, a well-defined rufous cap, and
clearer iris coloration typical of adult Spartonoica.
Sex was determined wusing genetic techniques
(Cardoni et al., 2009).

DNA EXTRACTION

Blood samples were obtained by pricking the basilica
vein using 25G /s needles and immediately stored in
lysis buffer (2 M Tris HCI, 0.5 M sodium, 0.01 M NaCl
and EDTA, 20% sodium dodecyl sulfate; pH 8.0). DNA
was isolated from the blood samples using protocols
established in the DNeasy Kit® (Qiagen, Inc., Valen-
cia, CA, USA).

MITOCHONDRIAL DNA AND
MICROSATELLITE ANALYSES

We amplified sections of three gene regions of the
mtDNA using PCR, performed by a PTC-100 Pro-
grammable Thermal Cycler (MJ Research Inc.): (1)
control region amplifications were conducted using
primers that we developed specifically for this study
DLSP754R (5"-GGTTTAGGGGGAAAGAATGG-3")
and DLSP754F (5-GAAGCCAACCAGTAGAACA-3");
(2) NADH-dehydrogenase subunit 3 (ND3) amplifica-
tions were conducted using primers L10755 (5-GA
CTTCCAATCTTTAAAATCTGG-3") and HI1151 (5'-
GATTTGTTGAGCCGAAATCAAC-3’; Chesser, 1999);
and (3) cytochrome-b was amplified using primers
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2SH (5-GAATCTACTACGGCTCATAC) and wow
(5"-ATGGGTGGAATGGAATTTTGTC-3; Dumbacher,
Pratt & Fleischer, 2003).

Amplification reactions for all primer sets were
carried out in a total volume of 25 uL. The final
reaction conditions were as follows: 13.8 uL. ddH-O,
0.2 uLL of AmpliTag Gold® DNA polymerase (Applied
Biosystems), 1 uL, 10 uM of both primers, 2 uL 25 mM
of MgCl,, 2.5 uLL 10x PCR Gold Buffer (Applied Bio-
systems), 2.5 uL 2 uM of dNTPs, and 2 uL of BSA.
Cycle parameters for ND3 and cytochrome b primers
were 45 cycles of 1 min at 92 °C, 1 min at 50 °C and
1min at 72°C. Cycle parameters for the control
region were 35 cycles of 1 min at 92 °C, 1 min at
49 °C, and 1 min at 72 °C. PCR products were then
purified using the Qiaquick kit® following the manu-
facturer’s protocol (Qiagen, Inc., Valencia, CA, USA).
Sequencing reactions of the PCR products were con-
ducted using the same primers for each mtDNA
region and the Big Dye® Terminator v3.1 cycle
sequencing kit (Applied Biosystems). These products
were sequenced directly in a 3130XL genetic analyser
(Applied Biosystems). The resulting sequences were
analysed using Sequencher version 4.1® (Genecodes
Corp., Ann Arbor, MI, USA). These sequences were
cleaned by direct alignment, inspected, and corrected
by eye.

As microsatellite primers specific for Spartonoica
were not available, we screened a total of 49 micros-
atellite loci that had been proven to be polymorphic in
other passerine species and found only three to be
polymorphic for this species. We screened 128 indi-
viduals for the following primers: D09 (Thamnophilus
cryptoleucus; Agreda et al., 2006), Man3 (Manacus
manacus; Piertney, Shorey & Hoglund, 2002), and
LTMRS8 (from McDonald & Potts, 1994).

PCR amplifications were conducted in 10-uL reac-
tion volumes following the conditions described in
the original studies. These reactions consisted of an
initial denaturation step at 94 °C for 5 min, followed
by 35 cycles of 94 °C for 20 s, annealing temperature
(T,: 50 °C for DO09; 52 °C for MANS3; and 57 °C for
LTMRS8) for 20 s, 72 °C for 45 s; and a final amplifi-
cation step of 5 min at 72 °C.

The resulting PCR products were analysed on a
3130XL Genetic Analyzer using GeneScan ROX 500®
size standard and genotyped with GeneMapper 4
software (Applied Biosystems). Fragment analysis
reactions consisted of 0.5-1 uL. PCR product, 0.5 uL
size standard, and HiDi Formamide (Applied Biosys-
tems) to 11 pL.

STATISTICAL ANALYSIS

We used a nested ANOVA test to determine morpho-
logical differentiation between habitats and among

sites/population (Zar, 1999). To study the patterns of
bill size differentiation, we performed a principal com-
ponent analysis (PCA) for the three beak dimensions
(length, width, depth) and then examined PC1 (PC
Bill) for overall differences in beak size. Spartonoica
shows subtle but statistically significant sexual
dimorphism in several morphological characters
(Cardoni et al., 2009). Therefore, to consider the
effects of the individual’s sex in the morphological
variables, we performed a nested ANOVA using three
factors: habitat, population, and sex. If a variable was
found to be significantly different between habitats,
we performed a Mantel test (Mantel, 1967) with
10 000 permutations to assess the relationship of the
morphological distance of this variable with geo-
graphical distances among pairwise comparisons.
Morphological distance was calculated using the Euc-
lidian distance using the software PRIMER 5.2.9.v
(Clarke & Gorley, 2001).

To estimate the genetic variability within popula-
tions for the three mtDNA gene regions, we calculated
the haplotype diversity and the nucleotide diversity of
each population. In addition, Fu’s Fs values (Fu,
1997) and the Ramos-Onsins and Rozas’s R, (Ramos-
Onsins & Rozas, 2002) statistics were calculated to
verify the null hypothesis of selective neutrality in
relation to mtDNA sequences. These statistics were
all computed using the software DnaSP 4.10 (Rozas
et al., 2003). We constructed a haplotype network to
infer haplotype relationships with the program TCS
v1.21 (Clement, Posada & Crandall, 2000), which
uses the principle of parsimony statistics, following
the links more parsimonious with a probability equal
to or greater than 0.95 (95%), as described by Tem-
pleton (1998). We assessed hierarchical levels of
genetic structure in the mtDNA data for habitat
(inland versus coastal marshes), populations within
habitat, and all populations using an analysis of
molecular variance (AMOVA) with 10 000 permuta-
tions to test the significance of pairwise population
comparison (ARLEQUIN 3.11, Excoffier, Laval & Sch-
neider, 2005). We estimated isolation by distance
(IBD) by plotting the mean genetic distance (Nei’s)
versus geographical distance values with a Mantel
test (Mantel, 1967) with 10 000 permutations using
the program FSTAT 2.9.3.2. (Goudet, 2002). Finally,
in order to estimate the age of expansion of Sparto-
noica population we investigated their demographic
signature using the mtDNA haplotypes based on coa-
lescence theory. We used a pairwise mismatch distri-
bution to test for population expansion (Rogers &
Harpending, 1992). The parameter of demographic
expansion (1) was estimated with a generalized non-
linear least squares approach and approximate
confidence intervals were obtained with 10 000
parametric bootstrap replicates in the program
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Arlequin (Excoffier, Laval & Schneider, 2005). The
goodness-of-fit of the observed data to a simulated
model of expansion was tested with Harpending’s
raggedness index (r) (Harpending, 1994), as imple-
mented in Arlequin. The age of expansion was esti-
mated with the formula t =2 utk, where u is mutation
rate, k£ is the number of bases analysed, and ¢ is the
expansion time in generations.

For microsatellite loci, we estimated the number of
alleles per locus (Ay), allelic richness per locus (Ag), a
measure of allele number independent of sample size
(El Mousadik & Petit, 1996), Nei’s gene diversity (Hs)
averaged over loci (Nei, 1987), observed heterozygos-
ity (Ho), and the index Fis using FSTAT version
2.9.3.2. (Goudet, 2002). Hardy—Weinberg Equilibrium
(HWE) departures over all loci within each population
were determined by examining deficiency of hetero-
zygotes (Fis) and generating P values with 800 per-
mutations, after controlling for multiple tests using
sequential Bonferroni correction (Rice, 1989). We
tested if genetic structure was present within versus
among populations with an AMOVA with 10 000 per-
mutations. We then tested our hypothesis of IBD
based on geographical locality and also by coastal
versus inland habitat. We determined the significance
of genetic structure among local and regional popu-
lation groupings using an AMOVA with Weir & Cock-
erham, 1984) Fsr as the measurement of genetic
distance included in ARLEQUIN 3.11 (Excoffier et al.,
2005). Significance was obtained after 10 000 permu-
tations to determine the probability of a random Fgr
value being greater than or equal to the observed
value (Excoffier et al., 2005). The Mantel test (Mantel,
1967) with 10 000 permutations was performed to
assess the relationship between geographical and
genetic distances using the program FSTAT version
2.9.3.2. (Goudet, 2002). Finally, we performed a
rarefaction analysis for allelic richness over the
three microsatellite loci and conducted comparisons
between the number of individuals and number of
molecular markers used in order to determine the
reliability of our sampling effort, using the software
HP-Rare (Kalinowski, 2005).

RESULTS
MORPHOLOGICAL AND PLUMAGE VARIATION

We found significant differences in morphology and
plumage coloration between Spartonoica populations
from coastal and inland marshes. Both bill width and
length were greater for individuals from inland
marshes than individuals from coastal marshes. Bill
length also showed differences among population
within habitat (Table 1). Bill depth, the size of the
rufous cap, and the wing chord show differences only

Table 1. Morphological and plumage measurements (mean and standard deviation) for bay-capped wren spinetail individuals that inhabit costal and inland

habitats; nested ANOVA statistical values F and P, for habitat, population controlled by habitat [Pop(Habitat)], and sex controlled by population and habitat

[Sex(Habitat*Pop)]

Sex (Habitat*Pop)

Pop(Habitat)

Coastal Habitat

Inland

SD

Mean

SD

Mean

F6,68

F4,68

F1,68

Morphology

0.24
0.59

1.36
0.78
4.14
1.23
3.18
0.12

3.79

0.017*
0.15
0.09
0.47
0.12
0.27

3.26
1.

0.009%*
0.034*
0.11
0.46
0.91
0.22

7.22
4.67
2.65
0.53
0.01

0.43
0.26
0.14

8.23
2.43
2.94
19.47

49.37

38
38
38
38
38
37
38

0.34
0.23
0.16

0.

8.40
2.52
3.00
19.22

42
49.57

Bill length (mm)
Bill width (mm)

Bill depth (mm)

74

42

0.001%*
0.29

2.05
0.89
1.89
1.33
5.18

42

44
1.28
6.19

0.
1.

65

42

Tarsus length (mm)

Wing chord (mm)

0.008*
0.99

1.38
6.94

0.

42

1.51
12.25

63.38

65.54
-0.26

41

Tail length (mm)
PC bill (mm)

Plumage

0.003*

0.001*

0.001*

05

0.29

89

42

0.51

0.90
2.52
0.21

0.061

2.92
0.88

0.

0.001%*
0.331

19.45
0.96
0.01

10.00
2.41
2.06

43.00

38
38
38

12.00
2.83
1.87

32.00

12.42

34
42

Dorsal black (%)

0.03*

0.482

11.48
6.44

Size rufous cap (mm)

0.973

0.623

66

0.931

6.31

42

Size black cap (mm)

*P < 0.05.
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between sexes (Table 1). The PC Bill shows differ-
ences both at the habitat level as well as at the
population and sex level (Table 1). For those variables
that presented differences only between habitat, the
Mantel test showed that geographical distance does
not predict differentiation among populations for bill
width (R%=0.20, P=0.09) nor for tail length meas-
urements (R?>=0.07, P=0.33). The percentage of
dorsal black plumage was significantly higher in
coastal populations than in populations from inland
marshes (Table 1 and Fig. 2).

MOLECULAR VARIATION

Mitochondrial DNA: We amplified and obtained
sequences for three mtDNA regions: a 330-bp frag-
ment of the cytochrome-b gene (N =124); a 552-bp
fragment of the control region (N = 107); and a 332-bp
fragment of the ND3 gene (N = 93). We determined 12
haplotypes for cytochrome-b, five of them restricted
to coastal marshes (CM), four restricted to inland

\,Qc'iastal '

Figure 2. Male Spartanoica from interior and costal
marshes. Dotted squares denote image section used for the
plumage analysis.

marshes (IM), and only one common for both habitats
(Fig. 3). The control region had 22 haplotypes, six of
them restricted to coastal marsh (CM), nine to inte-
rior marsh (IM) and seven for both habitats (Fig. 3).
The ND3 region had seven haplotypes, three for CM,
one for IM, and two for both habitats (Fig. 3). Hap-
lotype diversity was 0.974, 0.986, and 0.978 for
cytochrome-b, control region, and ND3, respectively
(Table 2).

The comparison of genetic differentiation between
habitats revealed that the CM and IM populations
were not genetically differentiated for the three
mtDNA regions analysed (Table 3). A higher percent-
age of genetic variation was recorded among popula-
tions (range 95-100%) than between habitats (range
0.11 to 4%; Table 4). Geographical distance did not
predict the genetic differentiation among populations
(Mantel test; cytochrome-b, R?=0.18, P=0.11; ND3,
R?=0.14, P = 0.17; control region, R?=0.13, P = 0.19).
The three mitochondrial gene regions showed a star-
shaped pattern of haplotype networks with most
haplotype pairwise comparisons differing by single
substitutions suggesting shallow divergences or
recent demographic changes (Fig. 3). In addition, a
signature of population expansion was detected for all
mitochondrial regions and for the three statistics esti-
mated, Fs (Fu, 1997), R; (Ramos-Onsins & Rozas,
2002), and Harpending’s raggedness index (Harpend-
ing, 1994) (Table 2). Following the equation ¢ = 1/2uk,
the time since population expansion was estimated
to be 12500, 15000 and 21 000 years before the
present for cytochrome-b, ND3, and control region,
respectively.

MICROSATELLITE LOCI

The number of alleles ranged from seven to 30 at the
three microsatellite loci screened for Spartonoica
(Table 4). Tests conducted for each locus in each
population revealed only three cases of significant
deviation from HWE (D09 locus at Punta Lara popu-
lation, and Man3 locus at Mar Chiquita and La
Picasa Lagoon populations). No population departed

Table 2. Number of haplotypes (INV), haplotype diversity (Hd), nucleotide diversity (Pi), and Fu’s (Fs), Ramos-Onsins and
Rozas’s R,, and Harpending’s raggedness index (r), estimates of demographic change for each of the mtDNA regions
(cytochrome-b, ND3, and control region) and for all three regions combined; the parameter t (tau) used for the age of

expansion is also reported

N Hd Pi Fs R, r T
Cytochrome-b 12 0.974 0.0069 0.1897#* 0.1697%#* 0.305 2.345
ND3 8 0.978 0.006 0.289%* 0.210%* 0.501 4.582
Control region 22 0.986 0.0057 0.0217%%*%* 0.130%** 0.152 1.967

*P < 0.05, P < 0.01, ***P < 0.001.
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Cyt-b

. Coastal marsh
. Interior marsh

ND3

I.‘/ \l =20
Yo i
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%

hJ 59
24
(f)f' 1

Control region

Figure 3. The star-like network represents the haplotype relationships of Spartonoica for three mitochondrial DNA
markers. Each line between haplotypes was one mutation step. The size of circles indicates the haplotype frequency.

TCS software was used in this analysis.

significantly from HWE at more than one locus.
Observed heterozygosity (Ho) ranged from 0.72 to
0.97 among the six populations. The gene diversity
showed the lowest values in saltmarsh populations
(Table 4). Saltmarsh populations were not genetically

differentiated from inland populations (AMOVA, Fgr =
-0.002, P=0.8, Table 3). The correlation between
the genetic distances based on microsatellites and
geographical distances for the six populations also
did not show a pattern consistent with isolation by
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Table 3. Results from hierarchical AMOVA testing variation between coastal and inland habitats among individuals
within habitats and among overall populations using mitochondrial DNA (cytochrome-b, ND3, and Control region) and

microsattelite markers

Sum of Percentage Fixation
d.f. squares Variance variation index P
Cytochrome b
Among groups 1 0.61 0.007 4.020 0.04 (Fcr) 0.06
Among population within groups 5 0.80 -0.001 -0.690 —-0.007 (Fsc) 0.14
Within populations 117 21.04 0.180 96.660 0.033 (Fgr) 0.7
Total 123 22.45 0.186
ND3
Among groups 1 0.51 0.000 -0.110 —-0.001 (Fer) 0.38
Among population within groups 4 2.00 0.015 5.120 0.051 (Fsc) 0.08
Within populations 85 23.74 0.279 94.990 0.05 (Fst) 0.14
Total 90 26.24 0.294
Control region
Among groups 1 1.08 0.007 0.620 0.006 (Fcr) 0.46
Among population within groups 5 4.21 -0.016 -1.540 —-0.016 (Fsc) 0.6
Within populations 100 105.38 1.054 100.920 —0.009 (Fsr) 0.59
Microsatellite
Among groups 1 0.92 -0.003 0.25 —0.002 (Fcr) 0.8
Among population within groups 4 4.97 0.004 0.37 0.004 (Fsc) 0.13
Within populations 262 281.71 107.52 99.87 0.001 (Fsy) 0.15
Total 267 287.60 107.65

Table 4. Location, habitat, sample size (IN), and summary of genetic diversity for six bay-capped wren-spinetail
populations at three microsatellite loci; measures of genetic diversity include average number of alleles per locus (Ay),
allelic richness (Agr), expected heterozygosity (Hg), observed heterozygosity (Ho), and inbreeding coefficient (Fis), and
values of significance (P) for Hardy—Weinberg equilibrium (HWE) based on the average of three polymorphic loci (LTMRS,

Man3, and D09)

Population Habitat N Ax Ag Hy, H, Fig HWE
Bahia Blanca Saltmarsh 13 6.33 3.63 0.757 0.728 -0.29 0.0005
Mar Chiquita Saltmarsh 40 12 3.70 0.748 0.972 0.023 0.7324
Bahia Samborombén Saltmarsh 19 7.67 3.6 0.723 0.745 0.03 0.7414
Saladillo Inland 19 8.67 3.83 0.788 0.866 -0.11 0.04
La Picasa Inland 21 9.33 3.94 0.791 0.73 0.08 0.9457
Punta Lara Inland 19 9 3.78 0.767 0.894 -0.17 0.0038

distance (Mantel test, R? = 0.047, P = 0.81). A rarefac-
tion analysis of allelic richness over the three micro-
satellite loci for Spartonoica populations corroborated
the reliability of our sampling effort (Fig. 4), suggest-
ing that our microsatellite data could be enough to
determinate real allelic richness.

DISCUSSION
GENERAL PATTERNS

We found significant phenotypic differences in bill and
plumage coloration (melanism) between Spartonoica
populations from coastal and inland marshes. This is

the first study to document morphological differentia-
tion in a South American saltmarsh vertebrate taxon.
The low levels of genetic variation, weak geographical
structure, and shallow divergences, based on both
mtDNA and microsatellite data, suggest that this
population underwent a recent and rapid demo-
graphic expansion. Morphological differentiations
without genetic structure between populations have
also been reported between coastal marsh and inte-
rior populations of other North American birds (e.g.
Avise & Zink, 1988; Greenberg et al., 1998; Chan
et al., 2006; Greenberg & Maldonado, 2006) and
among populations of migratory birds in general
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Figure 4. Rarefaction analysis for allelic richness over
the three microsatellite loci for Spartonoica populations
(MCh, Mar Chiquita Lagoon; LP, La Picasa Lagoon; PLa,
Punta Lara; Sal, Saladillo river; BS, Bahia Samborombon;
BB, Bahia Blanca).

(Mila, Smith & Wayne, 2006). Furthermore, the lack
of underlying genetic divergence combined with par-
allel or convergent adaptations in bill and plumage
suggest that similar processes have shaped the evo-
lution of coastal populations of certain North Ameri-
can sparrows and a South American Furnariid.

BILL VARIATION

Bill shape diversity among bird species has long been
evidence of the power of natural selection on bill
function (Darwin, 1859; Smith, 1987; Grant & Grant,
2002). Population-level or subspecific divergence in
bill morphology can reflect local ecological adaptation
(Badyaev et al., 2008; Ballentine & Greenberg, 2010)
and may even contribute to incipient speciation (de
Leo6n et al., 2010). Therefore, bill morphology is an
evolutionarily mutable feature in birds that is sensi-
tive to selection following changes in foraging sub-
strate or diet (Grant & Grant, 2002). North American
saltmarsh sparrows have longer and narrower bills
than their inland counterparts, while Spartonoica’s
bills are only narrower. However, the fact that we are
comparing bird species from different families should
be taken into consideration. Spartonoica belongs to a
typical insectivorous family (Furnariidae) with a nar-
rower and longer bill relative to the typical seed-
eating family of North American saltmarsh sparrows
(Emberizid). Thus, the overall pattern of saltmarsh
birds is to have an acute bill, being narrower and
longer in sparrows and narrower in Spartonoica. That
could indicate that there is a selective pressure on the
bill to forage on infaunal invertebrates, as an acute
bill could be an advantage to probe into the mud
(Greenberg & Droege, 1990). Anecdotally, we observed

the presence of a substantial amount of mud on the
upper mandible of 13 individuals from coastal
marshes (and none from interior sites) suggesting
that they may be feeding predominantly on the
muddy ground and hence a thinner bill may be
advantageous in probing for mud-dwelling inverte-
brates. Although foraging in Spartonoica is difficult to
observe, further observation and diet data should be
gathered to evaluate this hypothesis.

Saltmarshes are continental ecosystems that seem-
ingly have similar processes to those found on islands
(Greenberg & Olsen, 2010), and coastal marsh biotas
display many of the features characteristic of true
islands, including low species diversity and high
population densities. Common features of vertebrate
populations on islands have led to the development
and refinement of ‘the island syndrome’, which is
characterized by low levels of interspecific competi-
tion and predation, high population densities, and
ecological niche expansion (Blondel, 2000). Sparto-
noica presents all of the characteristics of an island
inhabitant species, such as high population density
(Cardoni et al., 2007, 2011; Cardoni, 2011), low pre-
dation rate (Llambias et al., 2009; Cardoni, Isacch &
Iribarne, 2012), and low interspecific competition
(Cardoni, 2011). The general pattern among passerine
birds that inhabit islands versus continental habitats
is a trend toward increasing bill size (Scott et al.,
2003). This pattern was also documented for bird
species that inhabit saltmarshes (Greenberg & Olsen,
2010) and mangrove habitats (Luther & Greenberg,
2011), habitats that resemble island ecosystems.
Greater bill size of island birds may be associated
with a shift toward greater generalization in resource
use, but specialization in diet (invertebrates) or for-
aging behaviour (probing in tidal mud) are legitimate
alternatives (Greenberg & Olsen, 2010). For example,
North American sparrows show a pattern where
populations have relatively longer and thinner bills in
coastal saltmarshes than interior habitats. This could
be an adaptation for increased consumption of animal
foods, particularly marine invertebrates, and a con-
comitant decrease in eating seeds. Additionally, spar-
rows in tidal marshes may use their narrower bills to
probe the muddy substrate more than their counter-
parts in inland marshes (Grenier & Greenberg, 2006;
but see Greenberg et al., 2012). For Spartonoica,
coastal populations have narrower bills, but not
longer, than those found in inland marshes; so the
morphological bill pattern was different from that
found for North American birds (e.g. Emberizid
species), and perhaps the island syndrome, as an
explanation for greater generalization in resource use
may not apply to Spartonoica. Other alternative proc-
esses could be influencing the bill morphology in
saltmarsh birds. Recently, Greenberg et al. (2012)
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found that bill size was positively correlated with
high summer temperature in saltmarsh sparrows,
suggesting that bills may also have a thermoregula-
tory function.

PLUMAGE VARIATION

Saltmarsh melanism (e.g. a tendency towards a
darker dorsal plumage or pelage) has long been
documented in North American birds and mammals
(Grinnell, 1913; Von Bloeker, 1932; Greenberg &
Droege, 1990). Our study confirms a darker dorsal
plumage in the saltmarsh population of Spartonoica
than in inland populations. Furthermore, coastal
marsh populations of Spartonoica had darker dorsal
plumage than inland populations, despite their
genetic similarity. This pattern is similar to what
is found in North American sparrows and other ver-
tebrates and supports the hypothesis that strong
selection favours dark individuals in saltmarshes
(Greenberg & Droege, 1990). Greenberg et al. (1998)
articulated the argument that substrates in tidal
marshes contain more iron sulphides than iron oxides
and tend to be greyer and darker that the bird would
have to match in order to provide for better camou-
flage. Moreover, the feather is more prone to deterio-
ration by physical abrasion and ultraviolet irradiation
in tidal marshes (Bergmann, 1982; Burtt, 1986). Fur-
thermore, bacteria that commonly occur in the soil
(Bacillus licheniformis; Wood, 1995) are an important
biological cause of feather deterioration (Burtt &
Ichida, 1999). Peele et al. (2009) recently found that
populations of the coastal plain swamp sparrow
(Melospiza georgiana nigrescens), which breed in
coastal saltmarshes, have significantly more active
feather-degrading bacilli than the swamp sparrows
(Melospiza georgiana georgiana), which breed in
freshwater marshes and fens. Such a difference could
be the result of a considerable selection pressure
for dark plumage in coastal marsh birds so that
they are better able to resist bacterial degradation
(Peele et al., 2009). However, population phenotypic
responses to habitat change could be explained
by other processes, such as phenotypic plasticity
(Charmantier et al., 2008).

POSSIBLE CAUSES FOR LACK OF CONCORDANCE
IN GENETIC MARKERS AND MORPHOLOGY

The lack of concordance between patterns of genetic
and morphological variation could simply be an arte-
fact caused by the small number of microsatellite
markers screened in this study. However, the rarefac-
tion analysis of the three mircosatellite loci used in
this study suggests that they yielded enough allelic
diversity to reliably assess genetic diversity of our

populations at a gross scale. Furthermore, the low
level of differentiation revealed by our mircrosatellite
data was also confirmed using three of the fastest
evolving mtDNA genes and totalling more than
1000 bp of sequence data. As mtDNA is better suited
to study historical patterns of genetic differentiation
(Avise & Zink, 1988), we can only infer that there is
no signature of historical differentiation between
coastal and inland populations. Therefore, it would be
very useful to develop a larger suite of highly poly-
morphic microsatellites that may provide more power
to detect patterns of fine-scale genetic structure over
the recent past.

On the other hand, phenotypic differences in
integument coloration, body size, and other morpho-
logical characters may be primarily an environment/
genotype interaction during development rather than
genetic in origin (Smith & Wayne, 1996; Maldonado,
Vila & Hertel, 2004; but see Ballentine & Greenberg,
2010). Alternatively, evolutionary patterns at neutral
loci and loci under selection may differ. With strong
selection on quantitative trait loci, phenotypes could
diverge rapidly, while neutral loci diverge at a rate
proportional to the effective population size. This -
established species (Funk & Omland, 2003; Chan
etal., 2006). Our data suggest that Spartonoica
underwent a recent and rapid demographic expan-
sion, and due to the geographical proximity of the
populations, high levels of gene flow are expected
among those populations.

Other explanations than those related to neutral
loci could be applied, such as phenotypic plasticity,
age-related variation, and intersexual competition.
The possibility of phenotypic plasticity, the ability to
change and modify phenotype in response to environ-
mental cues (Stearns, 1989), could be the origin of
the morphological and plumage differences between
coastal and inland Spartonoica populations. Invasion
into a new environment results in selection pressures
favouring divergence from the ancestor, inducing
changes in an individual’s behaviour, morphology, and
physiology. Therefore, if individuals can attain high
fitness in the new environment as a consequence of a
plastic response, there would then be no adaptive
genetic differentiation from the source (Price, Qvarn-
strom & Irwin, 2003). Tidal marsh ecosystems (e.g.
Spartina densiflora marshes) are relatively new habi-
tats in terms of geological time (Malamud-Roam
et al., 2006), and such habitats are governed by par-
ticular environmental conditions, such as high salin-
ity (Goldstein, 2006), periodic flooding (Reinert, 2006),
high temperature (Greenberg et al., 2012), substrate
colour, and available food (Grenier & Greenberg,
2006). Entry into a new environment results in selec-
tion pressures favouring divergence from the ances-
tor, and could be accompanied by behavioural and
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other plastic forms of accommodation, and this will
usually be followed by selection in the context of
these changes (Price et al., 2003). Considering these
aspects, it is not surprising that there are differences
in phenotypic characters (e.g. plumage melanism, bill
morphology) among inland (ancestral) and saltmarsh
populations, where plastic responses to environmen-
tal pressures are expected for those animals living in
saltmarsh habitat.

CONVERGENT PATTERN BETWEEN SOUTH AND
NORTH AMERICAN SALTMARSH BIRDS?

The hypothesis of convergence states that under
similar environmental conditions, species have become
more similar in certain characteristics than their
ancestors (Schluter, 2000). Such similarities, e.g. in
morphology, are caused by common selection pressures
(Grant et al., 1976; Futuyma, 1998). Phenotypic con-
vergence among saltmarsh birds was documented for
several species inhabiting North American salt-
marshes (Grenier & Greenberg, 2006), and such con-
vergences are related to plumage colour (saltmarsh
melanism), and longer and thinner bills (Murray, 1969;
Greenberg et al., 2006). However, to date, no study
outside North American saltmarshes had demon-
strated phenotypic convergence. South and North
American saltmarsh habitats were shaped by similar
geological and environmental evolutionary process
during the late Pleistocene. Rapid change in the avail-
ability of habitat with the receding of Pleistocene
glaciers is thought to have driven rapid and extensive
expansion of populations, resulting in a lack of genetic
structure. At the same time, the rapid availability of
novel habitats, such as boreal forest and estuarine
tidal marsh, might select for rapid morphological
divergence (Mild et al., 2006; Ruegg, Hijmans &
Moritz, 2006). Although glaciers were less extensive in
the Southern Cone, global climatic fluctuations during
the Pleistocene produced cyclical advance and retreat
of glaciers that caused a marked and concurrent
expansion and retraction of arid and humid conditions,
particularly in the Pampas region (Isla & Espinosa,
1995; Violante & Parker, 2004). Moreover, South and
North American saltmarshes present similar flora
(dominated by cordgrass species such as Spartina spp.;
Isacch et al., 2006), and high abundance of inverte-
brate food items (Mitsch & Gosselink, 2000; Greenberg
et al., 2006). Saltmarshes are governed by extreme
environmental condition, such as high salinity and
frequent flooding events. Considering all of these
aspects, it is not surprising that phenotypic characters
(e.g. plumage melanism, bill) have undergone conver-
gent evolution between South and North American
saltmarsh birds, responding in common to the chal-
lenges associated with saltmarsh ecosystems.

Morphological convergence was also documented
for other habitats among unrelated bird taxa, such
as boreal fern habitats (between North America
and northern Europe), high-altitude alpine habitats
(Landmann & Winding, 1995), and conifer habitats
(Korner-Nievergelt & Leisler, 2004). Such examples of
habitat-specific convergence demonstrated that selec-
tive forces associated with feeding are strong enough
to select for particular traits across species. Ecomor-
phological studies in birds have demonstrated that
subtle differences in shape of external morphology
can have profound ecological effects (Leisler &
Winkler, 1985, 2001). Therefore, the differences that
we found in Spartonoica could be suggesting an evo-
lutionary process for adaptation related to foraging
behaviour (bill) and camouflage (plumage) which
would be important for their survival in the salt-
marsh environment.
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