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Automorphisms of non-singular nilpotent Lie algebras
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Abstract. For a real, non-singular, 2-step nilpotent Lie algebra n, the
group Aut(n)/ Autg(n), where Autg(n) is the group of automorphisms which
act trivially on the center, is the direct product of a compact group with the
1-dimensional group of dilations. Maximality of some automorphisms groups
of n follows and is related to how close is n to being of Heisenberg type. For
example, at least when the dimension of the center is two, dim Aut(n) is maximal
if and only if n is of Heisenberg type. The connection with fat distributions is
discussed.
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1. Introduction

A 2-step nilpotent real Lie algebra n with center 3 is called non-singular [E], or
said to satisfy hypothesis (H) [M], or be the Lie algebra of a Métivier group [MS], if
adz : n — 3 is onto for any = ¢ 3. Equivalently, the bracket defines a vector-valued
antisymmetric form

[,]:0x0—>3,

v = n/3, such that the 2-forms A([u,v]) on v are non-degenerate for all A € 3*,
A # 0. Here we shall call such algebras fat for short, since they are the symbols of
fat distributions (as opposite to "flat”, or integrable, ones [Mo]), which motivate
the questions.

Let m = dim(3). While for m = 1 there is only one fat algebra up to
isomorphisms, for m > 2 there is an uncountable number of isomorphism classes
and for m > 3 they form a wild set.

In this paper we study the size of groups of automorphisms of n. Aut(n)
itself is the semidirect product of the group G(n) of graded automorphisms of
n = v @3 with the abelian group Hom(b,3), times the group of dilations (¢,%?).
Hence, we concentrate on G = G(n).

We prove that there is an exact sequence

1 — Gy — G — O(m)

where Gy is the subgroup of G of elements that act trivially on the center. In
other words, there are positive-definite inner products on 3 which are invariant
under all of Aut(n).
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If a metric g is also given on v, as in the case of the nilpotentization
of a subriemannian structure, we also consider the subgroups Ky, K, of graded
automorphisms that leave ¢ invariant, which define a compatible exact sequence

1 = Ky — K — O(m).

Next, we compute the terms in this sequence and the images G/Gy and K/Kj,
proving that the exactness of

1 — Lie(Ky) — Lie(K) — so(m) — 1
is equivalent to n being of Heisenberg type, while the exactness of
1 — Lie(Gy) — Lie(G) — so(m) — 1

is strictly more general. As to Gy(n), we describe it in detail for the case m = 2,
leading a proof that, at least in that case, dim Aut(n) is maximal if and only if n
is of Heisenberg type.

In the last section we explain the connection with the Equivalence Problem
for fat subriemannian distributions.

Algebras of Heisenberg type are defined as follows [K]. If v is a real unitary
module over the Clifford algebra Cl(3) associated to a quadratic form on 3, the
identity

<z, [u,v] >=< 2 - u, v >,

with z € 3 C Cl(3), u,v € v, defines a fat [, | : v x b — 3. Alternatively, they
are characterized by possessing a positive-definite metric such that the operator
z- defined by the above equation satisfies z - (z - v) = —|z|*v.

It follows from Adam’s theorem on frames on spheres [H| that for any fat
algebra there is an Heisenberg type algebra with the same dim 3 and dimv. That
these were, in some sense, the most symmetric, was expected from the properties
of their sublaplacians [BTV] [CGN] [GV] [K], but we found no explicit statements
in this regard.

Related properties of the automorphism groups of nilpotent Lie groups are

studied in [P] and [MS].

2. Automorphisms of fat algebras
Let n be a 2-step Lie algebra with center 3 and let v = n/3, so that
n=0dj (1)
and the Lie algebra structure is encoded into the map
[, ]:A% — 3.

Let n = dimv and m = dimj. Relative to a basis compatible with (1), the
bracket becomes an R™-valued antisymmetric form on R” and an automorphism
is a matrix of the form

(‘CL 2) ., acGL(n), be GL(m), ¢ € R™™
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such that
b([u,v]) = [au, av].

Aut(n) always contains the normal subgroup ®(n) of dilations and translations

(ﬂ” 0 ), t e R*, ce R™™,

c tI,
Let

G=G(n) = {(g 2) , a € SL(n), b € GL(m), b([u,v]) = [au, av]}.

Then Aut(n) is the semidirect product of G(n) with ©(n). Let

Go = Go(n) = {(g ;;) a€SL(n), [au, av] = [u, 0]},

the subgroup of automorphisms that act trivially on the center. These are Lie
groups, G is normal in GG, and the quotient group

G /Gy

can be identified with the group of b € GL(3) such that b([u,v]) = [au, av] for
some a € SL(v). Obviously,

dim Aut(n) = nm + 1 + dim(G/Gy) + dim(Gj). (2)

Theorem 2.1.  Let n be a fat algebra with center 3. Then there is a positive
definite metric on 3 invariant under G(n).

Proof. Fix arbitrary positive inner products on v and 3. For z € 3, u,v € v
(Lo, )0 = (2 [u,0]),

defines a linear map z — 7T, from 3 to End(v). Clearly,

n fat < T, € GL(v) Vz # 0.
Hence the hypothesis insures that the Pfaffian

P(z) = det(T)
is non-zero on 3\ {0}. This is a homogeneous polynomial of degree n, so it satisfies
Klzl” < |P(2)] < K=" (3)

where k, K are the minimum and maximum values of |P| on the unit sphere,
which are positive.

Let now g, == (8 2) € Aut(n). Then

Tbtz = atha
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because (Tye,u,v), = (b2, [u,v]); = (2,b([u,v])); = (2, [au, av)), = (TLau, av), =
(a*T,au,v),. Consequently

P(b*2) = (det a)?P(z).
In particular, if g € G then P(b*z) = P(z). This implies
k62" < |P(b°z)| = |P(2)| < K||z|]"

for all z, therefore ||b]] < {/K/k. The group of b € GL(3) such that g,; € Aut(n)
for some a € SL(v), is therefore bounded in End(R™). Its closure is a compact
Lie subgroup of GL(3), necessarily contained in O(3) for some positive definite
metric.

From now on 3 will be assumed endowed with such invariant metric. If a
metric g on v is also fixed, as in the case of the nilpotentization of a subriemannian
structure, define the groups

K =K(n,g) = {(3 2) , a €SO(b), be O3), [au, av] = bu, v]}

Ko = Ko(n, g) = {(g ?) . a € SO(v), [au, av] = [u,v]}.

Let g, g,,8 ¢ be the Lie algebras of G, Gy, K, K, respectively. Then there
is the commutative diagram with exact rows

0 — 8% — § >so(m)

(R )

0 > € > ¢t >so(m)

where the vertical arrows are the inclusions. Below we prove that the bottom
sequence extends to
00—t —t—so(m)—0

if and only if n is of Heisenberg type. This is not the case for the top one: the
condition that
0—=go > g—so(m)—0

is exact defines a class of fat algebras strictly larger than Heisenberg type algebras.
We describe it in the next section for m = 2.

Proposition 2.2. Let n = v + 3 be an algebra of Heisenberg type. There is a
metric on § such that g/g, = so(m).

Proof. There is an inner product in v such that the J; = T;’s satisfy the
Canonical Anticommutation Relations

Jod + LoJy = -2 < z,w> 1.
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For ||z|]| =1 let r, € O(3) be the reflection through the hyperplane orthogonal to
z and J, € SL(v) be as above. Then

J., 0
9(Je—r2) = (O ) € Aut(n).

z

Indeed,

(w, [Jou, J,v)) = (Jpdou, Jov) = (= Jyu — 2(z,w)u, J,v)
= — (L. Jpu, J,v) — 2(z,w)(u, J,v) = (Jyu, J,J,v) + 2(z,w)(Ju,v)
= —(Jwu,v) + 2(z, w)(Jou, v) = (J_wio(zw):U, V)
= (—w + 2(z,w)z, [u,v]) = (—=r.(w), [u,v])

= (w, =r=([u, v])),

so that
_TZ([U7 U]) = [JZU, sz]-

The Lie group generated by the —r, has finite index in O(3). n
Corollary 2.3.  Let n be a fat algebra with center of dimension m. Then
dim(K/Kp) < dim(G/Gp) < m(m —1)/2

with equality achieved for any Heisenberg type algebra of the same dimension with
center of the same dimension.

Since Aut(n)/ Auty(n) = (G/Gy)x (dilations), one obtains

Corollary 2.4.  Let n be a fat algebra with center of dimension m. Then
dim(Aut(n)/ Auto(n)) <1+ m(m—1)/2,

with equality achieved for any Heisenberg type algebra of the same dimension and

with center of the same dimension.

A converse for Corollary 2.3 is

Theorem 2.5.  If n is fat with center of dimension m and
dim(K/Ky) =m(m —1)/2

for some metric on v, then n is of Heisenberg type.
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Proof.  The hypothesis implies that /¢, = g/g, = so(m), so that K/K, acts

o 0\ . )
transitively among the |z| = 1. For 8 p) I this group, —T3, = al,a™!,
hence T2 = aT?a'. Since T, is invertible, we can choose the metric such that
T2 = —I for any given z. Therefore T? = —I for all |z| = 1, which implies the
assertion. ]

Maximal dimension means there are isomorphisms

Lie(K/Ky) = Lie(G/Gy) = so(m).
Therefore the simply connected covers are isomorphic: Spin(m) = (G//\(_};)e. The
induced homomorphism

Spin(m) — (G/Go).

may or may not extend to a homomorphism
Pin(m) — G/Gy.

If it does extend, it may or may not be injective, in which case it is an isomorphism.
Therefore, among the algebras for which dim(G/Gy) is maximal, those for which
Pin(m) = G/Gy can be regarded as the most symmetric.

Theorem 2.6.  Suppose n is a 2-step graded algebra such that Aut(n) contains
a copy of Pin(m) inducing the standard action on 3. Then n is of Heisenberg

type.

Proof.  The assumption implies that there is a linear map 3 — End(v), denoted
by z + J, such that J?> = —|z|?] for all 2z and

[Ju, Jv] = r,([u,v])

for u,v € v, z €3, |2| =1, where r, is the reflection in 3 with respect of the line
spanned by z. Pin(m) is the group generated by the J,’s with ||z|| = 1, which
acts linearly on v and is compact. Fix a metric on v invariant under it.

“ O) € Aut(n), then

We get, as in the proof of Theorem 2.1, that if (0 b

t
Tbtz =a TZCL.

In particular:

If v =2, weget T, = —J,T.J,, thus T.J, = —J'T, = JT,. If x L 2, we get
T, = J,T.J,, thus T,J, = J7'T, = —J,T,. Tt follows that T2 commutes with .J,
and with J,, w L z.
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Now, let z € 3 and w L z. Let R,(t) the 2¢-rotation from z towards w.
Then Ry, (t) = r.rww, with w(t) = cos(t)z + sin(t)w. It follows that

szw(t) 0
0 Ru(t)

is an orthogonal automorphism and, therefore, satisfies
TRw(t)z = (Jsz(t))th(Jsz(t))-
Since (J.Juwn)® = (JoTuww) ",
T}%w(t)z - (Jsz(t))thQ(Jsz(t)) - Jw(t)JszQt]sz(t)
Since T? commutes with J, and J,,

Thuw= = T2 J=eTuy = =T Juw Juo)- (4)

z

But Ji(t) = —1, so that (4) implies that

Téw(t)z == T2.

z

For all 2/ € 3 we can choose w € 3,t € R such that R, (t)z = 2/, so we get
T5 =T?, forall 2/ €3, || =1.

The antisymmetry of the bracket implies that T, is skew-symmetric. Rescaling
the scalar product on v we obtain that 72 = —I, so T2 = —I for all 2’ € 3,
|z'| = 1. Therefore n is of Heisenberg type.

[

3. The case of center of dimension 2

In this section we compute the groups G, Gy, G/G in the case m = 2. The various
types are parametrized by pairs

(c,r) € (U/SL(2,R)) x Z

where U is the upper-half plane and 2¢ =2 r; = dimn — 2. As a corollary we
conclude that Aut(n) is maximal if and only if n is of Heisenberg type. These are
complex Heisenberg algebras of various dimensions regarded as real Lie algebras.

First we recall the normal form for fat algebras with m = 2 deduced from
[LT]. Given ¢ =a+bi € C, let

It reZ,, set
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a 2r x 2r-matrix. If ¢ = (c1,...,¢0) € C* and r = (ry, ..., ry) € N, set

A(Cl, 7’1)

A Co,T9
Ac,r) = ( )

A(Cg, ’f‘g)
which is a 2s x 2s matrix, s =r; + ... + rp.
Let now ¢, ¢(cy) be the 2-forms on R* whose matrices in the standard

basis are
[¢]=<IZS _0128) [wc,r)]:(_ Afgcyr) A(g’r)). (5)

[, V](er) = (0(1, V), Yicr)(u,v)) =< u,[P|lv > e1+ < u, [Yer|v > e
is an R%-valued antisymmetric 2-form on R**. Let

n(c,r) — R4s D R2

Then

be the corresponding Lie algebra.
Define Mcr) € End(v) by

¢(M(c,r)ua U) = w(c,r) (U, U),

whose matrix is

—A? 0
= (cr)
Mien) ( 0 —A<c,r)) '
then we have
[, V](er) = d(u,v)er + (M pyu, v)es, for u,v € RY. (6)

One can deduce [LT]

Proposition 3.1.

(a) Every fat algebra with center of dimension 2 is isomorphic to some n(cy)
with ¢ € U*.

(b) Two of these are isomorphic if and only if the r’s coincide up to permu-
tations and the c’s differ by some Mobius transformation acting componentwise.

(¢) ner) is of Heisenberg type if and only if c = (c,...,c) andr = (1,...,1)

Let now
n = Ner)
be fat and let G = G(n), etc. We denote n the algebra obtained by replacing the
matrices A(c,r) by their semisimple parts and setting all ¢; = v/—1. The resulting

~

A(c,r) consists of blocks (_01 (1)) along the diagonal and f is isomorphic to the
Heisenberg type algebra n(,.. i),a,..,1))- The correspondence
ne—n

is functorial and seems extendable inductively to fat algebras of any dimension,
although here we will maintain the assumption m = 2.



KAPLAN AND TIRABOSCHI 9

Lemma 3.2.  Gy(n) C Gy(n) and dim Aut(n) < dim Aut(n).
Proof.  Let ¢, ¢, M, € End(v) be as above, so that

¢(M(C7r)u, 1}) = Qﬂ(c,r) (u, U).

By formula (6), g € Go(n(cr)) if and only if

¢(U, U) = gb(gu, gv)7 ¢(M(c,r)ua U) = ¢(M(c,r)gu7 gU) = ¢(g_1M(c,r)gua U),

i.e., if and only if g € Sp(¢) and commutes with M ,y. In particular it commutes
with the semisimple part M ). This is conjugate to a matrix having blocks

{ R(e) (e : :
Z(c) = (_% (©) R(e) for various ¢ € C along the diagonal, and zeros elsewhere.

Every matrix commuting with such a matrix will surely commute with that having
all ¢ = 1. It follows that g also preserves ¢(Myu,v) and, therefore, it is an
automorphism of n as well. Thus,

Go (I‘l) C Go(ﬁ) .

From Corollary 2.3, dim(G(n)/Gp(n)) < dim(G(n)/Gy(n)), and therefore

dim G(n) = dim(G(n)/Go(n))+dim Gp(n) < dim(G(n)/Go(n))+dim Gp(n) =
dim G(n).

Formula (2) implies dim Aut(n) < dim Aut(n), as claimed. ]

Next we will describe go(n(.)) for ¢ € U and r € N4, i.e., the case when
the matrices A consist of a single block. Since ¢ is SL(2,C)—conjugate to i, it is
enough to take ¢ = i. Define the 2 x 2-matrices

(10 . (0 -1 (01 (-1 0
“\o 1) '\t o) *Tl10) Y=o 1)

and let M,.(R(1,1)) and M, (R(x,y)) denote the real vector spaces of rxr matrices
with coefficients in the span of 1,i and x,y respectively. Then the vector space

R(r) = {(g g) . A,D € M,(R(1,i)), B,C € MT(R(X,y))} |

is a actually a matrix algebra.
Note that
1°=1, i*=-i, x*=x%x, y'=y.

Letting A* denote the transpose or an R-matrix and A’, A* the transpose and
conjugate transpose of R[i, x,y|-matrices, one obtains

At = A

for A € M,(R(1,i)) while
A=A



10 KAPLAN AND TIRABOSCHI

for A e M, (R(x,y)).
With the notation

Ji=1[¢]  Jo= [P
go(f) = {X eR™ . J1X + X*J; =0, X + X*Jo = 0}.

From [S] we know that
go(R) = sp(r, C)"

Changing basis,

go(ﬁ) = {X € R(’/’) : J1X+Xt<]1 = 0, Jo X +XtJ2 = O}

0 I (0 il
Jl:(—[,, o)’ ‘]2_<ilr o)‘

This gives an alternative description of this algebra:

where

go(f) = {(é _i) . Ae MJ(R(1,1), B,C € M.(R(x,y)), B' = B, C" = c}

: : . A B\ . .
We now restrict our attention to matrices ( o A*> in go(n) where

A, B, C have the respective forms

a; QA (7% bl br,1 br 0 0 C1
0 0 C2
a9 br—l . : 0
0 0 aj br 0 0 C1 Co Cr
. . . 2><2 A . .
with coefficients in R“* . Let Ay = 0 _A* having a;, = 1 and zero otherwise

and A}, the matrix of the same form but with a;, = i and zeros elsewhere. Similarly,
0
0
to x and zeros elsewhere, and B (resp. C} ) with by (resp. ¢x) equal to y and
zeros elsewhere.

let By (resp. Cj) the matrix (8 §) (resp., (g )) with by (resp. ¢x) equal

Theorem 3.3.  Let n=n(,), (¢,7) € UxN, and regard go(n) as a subalgebra
of gl(v). Then,

1. go(n) is the R-span of A;, A, B;, B}, C;,C. for 1 <i<r.
2. The semisimple part of go(n) is the span of Ay, A}, Bq,B],Cy,C|.
3. The solvable radical is the span of A;, A}, B;, B, C;,C, with 1 <1 <r.

In particular, the R-dimension the go(n) is equal to 6r and the semisimple part
of go(n) is isomorphic to sp(1,C).
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Proof. It is enough to consider the case n =n;,). Let To = [i)(;,y] and write
TQ = J2 -+ N2 where

0 0 0

0 N 1 0 0
NQ—(_Nt 0),W1thN— .

0 1 0

From Lemma 3.2, go(n) = {X € go(nt) : ToX + X*Tp = 0}. As go(n) C go(nt) one
obtains
go(n) ={X € go(n) : No X + X*N, =0} .

The conditions on (é _i*) € go(n) are, explicitly,

0=NC —C'N*=NC — (NC)' (7)
0=N'A— AN (8)
0=N'B—B'N =N'B - (N'B)". (9)

For the first equation, note that NC' symmetric if and only if ¢; ;11 = ¢ji41
and ¢, ; = 0 for ¢, 7 < n. Since C' is symmetric, ¢; j41 = Cjip1 = Ciy1; and ¢ 5 =0
for ¢, 7 < mn. We conclude:

fi+tj=k<r, cj=Ciri=Ciih—it1 = Ci—2k—it2 " = Clj—1 = 0

Ifi+j=Fk>r, Ci,j = Cik—i = Cit1k—i—1 = Ciy2k—i—2" """ = Crk—iti—r =
Cr k—r

Thus, the strict upper antidiagonals are zero and each lower antidiagonal
have all its elements equal.

For the second equation, note that N* and A commute. This is equivalent
to ¢;; = ¢t s when j—i=s—t and ¢;; =0 for ¢ > 1. The first condition implies
that each diagonal have all its elements equal, while the second implies that the
strict lower diagonals are zero.

Equation (9) is analogous to equation (7): the condition N'B symmetric
is equivalent to each antidiagonal have all its elements equal and that the strict
lower antidiagonals are 0.

From all this we conclude that the span of A;, A, B;, B., C;,C, with 1 <
i <ris go(n) and (1) follows.

(2) and (3) follow from (1) and the explicit presentation of the matrices
A, Al,B;,B,,C,;,C..

[

Corollary 3.4.  (of the proof) Let n be fat. Then dim(go(n)) is mazimal if and
only if n is of Heisenberg type.

Proof.  Let (c,r) = ((c1,...,¢),(r1,...,7)) be such that n =n( ). We know
that go(n) C go(n). If ¢; # ¢; for some 4, j, then there is not intertwining operator
between the blocks corresponding to these invariants, so go(n) # go(n).
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When ¢; = ¢y = -+ = ¢ we can consider ¢; = ¢ for all j. Let r =) "r;.

: . (A B
In this case if (C e

with N such that coefficients n;,1; are 0 or 1. Suppose now that go(n) is not of
Heisenberg type, then some n;; ; is equal to 1. We assume that ny; = 1 and let
A e M,(R(1,i)) such that a1 =1 and 0 otherwise, then

A0
(6 )

belongs to go(n) but is not in go(n).

) € go(n) must be satisfy the equations (7), (8), (9) but

It can be shown in general that the semisimple part of go(n) is isomorphic
to @;sp(m;, C), where m; is the multiplicity of the pair (¢;,r;) in (c,r).

In the case m = 2, g/g, is either 0 or isomorphic to s0(2).
Theorem 3.5.  g(n)/go(n) = s0(2) if c; =--- = ¢, and 0 otherwise.

Proof. 9/9, is a compact subalgebra of gl(2), hence of the form gso(2)g~* for
some g € SL(2,R) and it is nonzero if and only if there exists X € sl(v) such
that, in the notation of the proof of Theorem 3.3,

X 0
0 gig™!

is a derivation of n. For g = 1, if 71,75 correspond to the standard basis of 3,
the equations for X become

(o) X+ X'Th=T, (b)) LX+X'Th=-T

In normal form, and for a single block Ay,

0 I B 0 i +N
ﬂ_h—(q;o) B‘(m—Nt 0 )'

We decompose

. 0 il 0 N
T2:J2+N2, with JZ:(iI 0), NZ:(-Nt O>

and regard Jy, Jo, T}, Ty, N5 as matrices with coefficients in R?*2. Note that J;, J,
correspond to 1, of Heisenberg type. Let

00 0 0 0O
02 0 0 O
01 4 0 0 0
0 0 21 61 0 O
0 0 0 31 8i

W W W »w »
S O oo oo

00 0 : : 0 (n—=2)1 2n-1)i
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A straightforward calculation shows that

_ (W 0
XO_( 0 —YOt+iJ,+N)

is a solution of (a), (b). We conclude that

()

is a derivation of n(,), which lies in g(n(,)) but not in go(ng,)-
For any ¢ € U, ng, = n(,), hence they have the same g/g, up to
isomorphisms. In fact, for any g € SL(2,R), the algebra n(.;, has a derivation

of the form
X 0
0 gigt)"

For a fixed g, these X are unique modulo gy, and come in normal form. Clearly,
¢ determines the 2 x 2 matrix ¢gig~! and the complex number ¢ - 7.
In the case of an arbitrary fat n(,), each block (ck, ) determines a

corresponding X} such that
Xk 0
0 grigy'

is a derivation of n(, ). If n(cr) has a derivation in g that is not in g, then its
must have one which is combination of such, acting on v as X; + Xy +---. This
forces all the gkigk’1 to be the same and all the ¢; to be the same. The reciprocal
is clear. [ |

In particular, all algebras n( ) with ¢; = ... = ¢, and r; > 1 maximize the
dimension of g/g,, but they are not Heisenberg type.

Lauret had pointed out to us that there were non Heisenberg type algebras
such that g(n)/go(n) # 0. Independently, Oscari proved that this holds whenever
the ¢;’s all agree.

4. Fat distributions

Let D be a smooth vector distribution on a smooth manifold M, i.e., a subbundle
of the tangent bundle T(M). Its nilpotentization, or symbol, is the bundle on M

with fiber ‘
NP, - @ Df)/Dy
J

where DSV = D, and DY™ = DY) +[I'(D), T(D7)],. The Lie bracket in [(T(M))
induces a graded nilpotent Lie algebra structure on each fiber of NP(M). If
DU =T (M) for some j, D is called completely non-integrable. If D = T(M),
the nilpotentization is 2-step, which in the notation of the previous section, is

Dy, +[0(D), I'(D)]
DP

n, = Np(M), =D, ® p:t’p+3p7
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It is also easy to see that D is fat in the sense of Weinstein [Mo] if and only if
n, = v + 3 is non-singular, i.e., fat in the sense defined in the section 1.

A subriemannian metric g defined on D determines a metric on v. On }
we put a metric ¢ invariant under G. Let {¢1, ..., o1, ..., 1} be a coframe on
M such that

D = Nker ¢;,

with {1, ..., 0} and {¥1,...,,} orthonormal with respect to g + o. Define
T, € End(D) as before, by

o(z,u,v]) = g(T,u,v).

Then D is fat if and only if T, is invertible for all non-zero z € 3. The structure
equations for the coframe can be written

doy = Z(Tkwi) N mod(¢y)

7

with the T} ’s having the property that any non-zero linear combination of them
is invertible. This is deduced from the fact that if u,v € v, then d¢[u,v] =
—¢([u,v]), since u(¢(v)) = u(0) = 0. The dip’s are essentially arbitrary.

Let now M be a the simply connected Lie group with a fat Lie algebra n,
D the left-invariant distribution on M such that D, = v. For a left-invariant
coframe, the structure equations take the form

dop =Y (i) AN, dipi =0

7

where Jyp, ..., J,, are anticommuting complex structures on D.
The results from the previous sections lead to consider fat distributions
satisfying

(4.1) dox =Y (Jewi) Ay mod(¢r)

)

where the J; are sections of End(7'(M)*) satisfying the Canonical Commutation
Relations

The Equivalence Problem for these systems has been discussed for distri-
butions with growth vector (2n,2n + 1), (4n,4n + 3) and (8,15). In these cases
n is parabolic, i.e., isomorphic to the Iwasawa subalgebra of a real semisimple Lie
algebra g of real rank one. The Tanaka [T]| subriemannian prolongation of such
algebra is g, while in the non-parabolic case is just

n+¢(n) +a(n)

where a(n) the 1-dimensional Lie algebra of dilations [Su]. In this case,Tanaka’s
theorem implies that, in the notation of [Z], the first pseudo G-structure P° already
carries a canonical frame.

As this paper was being written, E. van Erp pointed out to us his article
[Er], where fat distributions are called polycontact and those satisfying (4.1) arise
by imposing a compatible conformal structure.
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