Automorphisms of non-singular nilpotent Lie algebras

Aroldo Kaplan and Alejandro Tiraboschi

Abstract

For a real, non-singular, 2-step nilpotent Lie algebra \mathfrak{n}, the group $\operatorname{Aut}(\mathfrak{n}) / \operatorname{Aut}_{0}(\mathfrak{n})$, where $\operatorname{Aut}_{0}(\mathfrak{n})$ is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of \mathfrak{n} follows and is related to how close is \mathfrak{n} to being of Heisenberg type. For example, at least when the dimension of the center is two, $\operatorname{dim} \operatorname{Aut}(\mathfrak{n})$ is maximal if and only if \mathfrak{n} is of Heisenberg type. The connection with fat distributions is discussed. Mathematics Subject Classification 2000: 17B30,16W25. Key Words and Phrases: Lie groups, Lie algebras, Heisenberg type groups.

1. Introduction

A 2-step nilpotent real Lie algebra \mathfrak{n} with center \mathfrak{z} is called non-singular [E], or said to satisfy hypothesis $(H)[\mathrm{M}]$, or be the Lie algebra of a Métivier group [MS], if ad $x: \mathfrak{n} \rightarrow \mathfrak{z}$ is onto for any $x \notin \mathfrak{z}$. Equivalently, the bracket defines a vector-valued antisymmetric form

$$
[,]: \mathfrak{v} \times \mathfrak{v} \rightarrow \mathfrak{z},
$$

$\mathfrak{v}=\mathfrak{n} / \mathfrak{z}$, such that the 2-forms $\lambda([u, v])$ on \mathfrak{v} are non-degenerate for all $\lambda \in \mathfrak{z}^{*}$, $\lambda \neq 0$. Here we shall call such algebras fat for short, since they are the symbols of fat distributions (as opposite to "flat", or integrable, ones [Mo]), which motivate the questions.

Let $m=\operatorname{dim}(\mathfrak{z})$. While for $m=1$ there is only one fat algebra up to isomorphisms, for $m \geq 2$ there is an uncountable number of isomorphism classes and for $m \geq 3$ they form a wild set.

In this paper we study the size of groups of automorphisms of \mathfrak{n}. Aut(\mathfrak{n}) itself is the semidirect product of the group $G(\mathfrak{n})$ of graded automorphisms of $\mathfrak{n}=\mathfrak{v} \oplus \mathfrak{z}$ with the abelian group $\operatorname{Hom}(\mathfrak{v}, \mathfrak{z})$, times the group of dilations $\left(t, t^{2}\right)$. Hence, we concentrate on $G=G(\mathfrak{n})$.

We prove that there is an exact sequence

$$
1 \rightarrow G_{0} \rightarrow G \rightarrow \mathrm{O}(m)
$$

where G_{0} is the subgroup of G of elements that act trivially on the center. In other words, there are positive-definite inner products on \mathfrak{z} which are invariant under all of $\operatorname{Aut}(\mathfrak{n})$.

If a metric g is also given on \mathfrak{v}, as in the case of the nilpotentization of a subriemannian structure, we also consider the subgroups K_{0}, K, of graded automorphisms that leave g invariant, which define a compatible exact sequence

$$
1 \rightarrow K_{0} \rightarrow K \rightarrow \mathrm{O}(m) .
$$

Next, we compute the terms in this sequence and the images G / G_{0} and K / K_{0}, proving that the exactness of

$$
1 \rightarrow \operatorname{Lie}\left(K_{0}\right) \rightarrow \operatorname{Lie}(K) \rightarrow \mathfrak{s o}(m) \rightarrow 1
$$

is equivalent to \mathfrak{n} being of Heisenberg type, while the exactness of

$$
1 \rightarrow \operatorname{Lie}\left(G_{0}\right) \rightarrow \operatorname{Lie}(G) \rightarrow \mathfrak{s o}(m) \rightarrow 1
$$

is strictly more general. As to $G_{0}(\mathfrak{n})$, we describe it in detail for the case $m=2$, leading a proof that, at least in that case, $\operatorname{dim} \operatorname{Aut}(\mathfrak{n})$ is maximal if and only if \mathfrak{n} is of Heisenberg type.

In the last section we explain the connection with the Equivalence Problem for fat subriemannian distributions.

Algebras of Heisenberg type are defined as follows [K]. If \mathfrak{v} is a real unitary module over the Clifford algebra $\mathrm{Cl}(\mathfrak{z})$ associated to a quadratic form on \mathfrak{z}, the identity

$$
<z,[u, v]>_{\mathfrak{z}}=<z \cdot u, v>_{\mathfrak{v}}
$$

with $z \in \mathfrak{z} \subset \mathrm{Cl}(\mathfrak{z}), u, v \in \mathfrak{v}$, defines a fat [,]: $\mathfrak{v} \times \mathfrak{v} \rightarrow \mathfrak{z}$. Alternatively, they are characterized by possessing a positive-definite metric such that the operator $z \cdot$ defined by the above equation satisfies $z \cdot(z \cdot v)=-|z|^{2} v$.

It follows from Adam's theorem on frames on spheres [H] that for any fat algebra there is an Heisenberg type algebra with the same $\operatorname{dim} \mathfrak{z}$ and $\operatorname{dim} \mathfrak{v}$. That these were, in some sense, the most symmetric, was expected from the properties of their sublaplacians [BTV] [CGN] [GV] [K], but we found no explicit statements in this regard.

Related properties of the automorphism groups of nilpotent Lie groups are studied in [P] and [MS].

2. Automorphisms of fat algebras

Let \mathfrak{n} be a 2 -step Lie algebra with center \mathfrak{z} and let $\mathfrak{v}=\mathfrak{n} / \mathfrak{z}$, so that

$$
\begin{equation*}
\mathfrak{n} \cong \mathfrak{v} \oplus \mathfrak{z} \tag{1}
\end{equation*}
$$

and the Lie algebra structure is encoded into the map

$$
[,]: \Lambda^{2} \mathfrak{v} \rightarrow \mathfrak{z} .
$$

Let $n=\operatorname{dim} \mathfrak{v}$ and $m=\operatorname{dim} \mathfrak{z}$. Relative to a basis compatible with (1), the bracket becomes an \mathbb{R}^{m}-valued antisymmetric form on \mathbb{R}^{n} and an automorphism is a matrix of the form

$$
\left(\begin{array}{ll}
a & 0 \\
c & b
\end{array}\right), \quad a \in \operatorname{GL}(n), b \in \mathrm{GL}(m), c \in \mathbb{R}^{n \times m}
$$

such that

$$
b([u, v])=[a u, a v] .
$$

$\operatorname{Aut}(\mathfrak{n})$ always contains the normal subgroup $\mathfrak{D}(\mathfrak{n})$ of dilations and translations

$$
\left(\begin{array}{cc}
t I_{n} & 0 \\
c & t^{2} I_{m}
\end{array}\right), \quad t \in \mathbb{R}^{*}, c \in \mathbb{R}^{n \times m}
$$

Let

$$
G=G(\mathfrak{n})=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), a \in \mathrm{SL}(n), b \in \mathrm{GL}(m), b([u, v])=[a u, a v]\right\} .
$$

Then $\operatorname{Aut}(\mathfrak{n})$ is the semidirect product of $G(\mathfrak{n})$ with $\mathfrak{D}(\mathfrak{n})$. Let

$$
G_{0}=G_{0}(\mathfrak{n})=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & I_{m}
\end{array}\right), a \in \operatorname{SL}(n),[a u, a v]=[u, v]\right\}
$$

the subgroup of automorphisms that act trivially on the center. These are Lie groups, G_{0} is normal in G, and the quotient group

$$
G / G_{0}
$$

can be identified with the group of $b \in \mathrm{GL}(\mathfrak{z})$ such that $b([u, v])=[a u, a v]$ for some $a \in \operatorname{SL}(\mathfrak{v})$. Obviously,

$$
\begin{equation*}
\operatorname{dim} \operatorname{Aut}(\mathfrak{n})=n m+1+\operatorname{dim}\left(G / G_{0}\right)+\operatorname{dim}\left(G_{0}\right) . \tag{2}
\end{equation*}
$$

Theorem 2.1. Let \mathfrak{n} be a fat algebra with center \mathfrak{z}. Then there is a positive definite metric on \mathfrak{z} invariant under $G(\mathfrak{n})$.

Proof. Fix arbitrary positive inner products on \mathfrak{v} and \mathfrak{z}. For $z \in \mathfrak{z}, u, v \in \mathfrak{v}$

$$
\left(T_{z} u, v\right)_{\mathfrak{v}}=(z,[u, v])_{\mathfrak{z}}
$$

defines a linear map $z \mapsto T_{z}$ from \mathfrak{z} to $\operatorname{End}(\mathfrak{v})$. Clearly,

$$
\mathfrak{n} \text { fat } \Leftrightarrow T_{z} \in \operatorname{GL}(\mathfrak{v}) \forall z \neq 0
$$

Hence the hypothesis insures that the Pfaffian

$$
P(z)=\operatorname{det}\left(T_{z}\right)
$$

is non-zero on $\mathfrak{z} \backslash\{0\}$. This is a homogeneous polynomial of degree n, so it satisfies

$$
\begin{equation*}
k\|z\|^{n} \leq|P(z)| \leq K\|z\|^{n} \tag{3}
\end{equation*}
$$

where k, K are the minimum and maximum values of $|P|$ on the unit sphere, which are positive.

Let now $g_{a, b}:=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \in \operatorname{Aut}(\mathfrak{n})$. Then

$$
T_{b^{\mathrm{t}} z}=a^{\mathrm{t}} T_{z} a
$$

because $\left(T_{b^{\mathrm{t}} z} u, v\right)_{\mathfrak{v}}=\left(b^{\mathrm{t}} z,[u, v]\right)_{\mathfrak{z}}=(z, b([u, v]))_{\mathfrak{z}}=(z,[a u, a v])_{\mathfrak{z}}=\left(T_{z} a u, a v\right)_{\mathfrak{v}}=$ $\left(a^{\mathrm{t}} T_{z} a u, v\right)_{\mathfrak{v}}$. Consequently

$$
P\left(b^{\mathrm{t}} z\right)=(\operatorname{det} a)^{2} P(z) .
$$

In particular, if $g \in G$ then $P\left(b^{\mathrm{t}} z\right)=P(z)$. This implies

$$
k\left\|b^{\mathrm{t}} z\right\|^{n} \leq\left|P\left(b^{\mathrm{t}} z\right)\right|=|P(z)| \leq K\|z\|^{n}
$$

for all z, therefore $\|b\| \leq \sqrt[n]{K / k}$. The group of $b \in \mathrm{GL}(\mathfrak{z})$ such that $g_{a, b} \in \operatorname{Aut}(\mathfrak{n})$ for some $a \in \operatorname{SL}(\mathfrak{v})$, is therefore bounded in $\operatorname{End}\left(\mathbb{R}^{m}\right)$. Its closure is a compact Lie subgroup of $\mathrm{GL}(\mathfrak{z})$, necessarily contained in $\mathrm{O}(\mathfrak{z})$ for some positive definite metric.

From now on \mathfrak{z} will be assumed endowed with such invariant metric. If a metric g on \mathfrak{v} is also fixed, as in the case of the nilpotentization of a subriemannian structure, define the groups

$$
\begin{gathered}
K=K(\mathfrak{n}, g)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right), a \in \mathrm{SO}(\mathfrak{v}), b \in \mathrm{O}(\mathfrak{z}),[a u, a v]=b[u, v]\right\} \\
K_{0}=K_{0}(\mathfrak{n}, g)=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & I
\end{array}\right), a \in \mathrm{SO}(\mathfrak{v}),[a u, a v]=[u, v]\right\} .
\end{gathered}
$$

Let $\mathfrak{g}, \mathfrak{g}_{0}, \mathfrak{k}, \mathfrak{k}_{0}$ be the Lie algebras of G, G_{0}, K, K_{0} respectively. Then there is the commutative diagram with exact rows

$$
\begin{aligned}
0 & \rightarrow \mathfrak{g}_{0} \rightarrow \\
\uparrow & \mathfrak{g} \rightarrow \mathfrak{s o}(m) \\
0 & \rightarrow \mathfrak{k}_{0}
\end{aligned} \rightarrow \mathfrak{k} \rightarrow \mathfrak{k o}(m)
$$

where the vertical arrows are the inclusions. Below we prove that the bottom sequence extends to

$$
0 \rightarrow \mathfrak{k}_{0} \rightarrow \mathfrak{k} \rightarrow \mathfrak{s o}(m) \rightarrow 0
$$

if and only if \mathfrak{n} is of Heisenberg type. This is not the case for the top one: the condition that

$$
0 \rightarrow \mathfrak{g}_{0} \rightarrow \mathfrak{g} \rightarrow \mathfrak{s o}(m) \rightarrow 0
$$

is exact defines a class of fat algebras strictly larger than Heisenberg type algebras. We describe it in the next section for $m=2$.

Proposition 2.2. Let $\mathfrak{n}=\mathfrak{v}+\mathfrak{z}$ be an algebra of Heisenberg type. There is a metric on \mathfrak{z} such that $\mathfrak{g} / \mathfrak{g}_{0} \cong \mathfrak{s o}(m)$.

Proof. There is an inner product in \mathfrak{v} such that the $J_{i}=T_{i}$'s satisfy the Canonical Anticommutation Relations

$$
J_{w} J_{z}+J_{z} J_{w}=-2<z, w>I
$$

For $\|z\|=1$ let $r_{z} \in \mathrm{O}(\mathfrak{z})$ be the reflection through the hyperplane orthogonal to z and $J_{z} \in \mathrm{SL}(\mathfrak{v})$ be as above. Then

$$
g_{\left(J_{z},-r_{z}\right)}=\left(\begin{array}{cc}
J_{z} & 0 \\
0 & -r_{z}
\end{array}\right) \in \operatorname{Aut}(\mathfrak{n}) .
$$

Indeed,

$$
\begin{aligned}
\left(w,\left[J_{z} u, J_{z} v\right]\right) & =\left(J_{w} J_{z} u, J_{z} v\right)=\left(-J_{z} J_{w} u-2(z, w) u, J_{z} v\right) \\
& =-\left(J_{z} J_{w} u, J_{z} v\right)-2(z, w)\left(u, J_{z} v\right)=\left(J_{w} u, J_{z} J_{z} v\right)+2(z, w)\left(J_{z} u, v\right) \\
& =-\left(J_{w} u, v\right)+2(z, w)\left(J_{z} u, v\right)=\left(J_{-w+2(z, w) z} u, v\right) \\
& =(-w+2(z, w) z,[u, v])=\left(-r_{z}(w),[u, v]\right) \\
& =\left(w,-r_{z}([u, v])\right),
\end{aligned}
$$

so that

$$
-r_{z}([u, v])=\left[J_{z} u, J_{z} v\right] .
$$

The Lie group generated by the $-r_{z}$ has finite index in $\mathrm{O}(\mathfrak{z})$.
Corollary 2.3. Let \mathfrak{n} be a fat algebra with center of dimension m. Then

$$
\operatorname{dim}\left(K / K_{0}\right) \leq \operatorname{dim}\left(G / G_{0}\right) \leq m(m-1) / 2
$$

with equality achieved for any Heisenberg type algebra of the same dimension with center of the same dimension.

$$
\text { Since } \operatorname{Aut}(\mathfrak{n}) / \operatorname{Aut}_{0}(\mathfrak{n})=\left(G / G_{0}\right) \times(\text { dilations }), \text { one obtains }
$$

Corollary 2.4. Let \mathfrak{n} be a fat algebra with center of dimension m. Then

$$
\operatorname{dim}\left(\operatorname{Aut}(\mathfrak{n}) / \operatorname{Aut}_{0}(\mathfrak{n})\right) \leq 1+m(m-1) / 2
$$

with equality achieved for any Heisenberg type algebra of the same dimension and with center of the same dimension.

A converse for Corollary 2.3 is

Theorem 2.5. If \mathfrak{n} is fat with center of dimension m and

$$
\operatorname{dim}\left(K / K_{0}\right)=m(m-1) / 2
$$

for some metric on \mathfrak{v}, then \mathfrak{n} is of Heisenberg type.

Proof. The hypothesis implies that $\mathfrak{k} / \mathfrak{k}_{0}=\mathfrak{g} / \mathfrak{g}_{\mathrm{o}} \cong \mathfrak{s o}(m)$, so that K / K_{0} acts transitively among the $|z|=1$. For $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ in this group, $-T_{b z}=a T_{z} a^{-1}$, hence $T_{b z}^{2}=a T_{z}^{2} a^{-1}$. Since T_{z} is invertible, we can choose the metric such that $T_{z_{0}}^{2}=-I$ for any given z_{0}. Therefore $T_{z}^{2}=-I$ for all $|z|=1$, which implies the assertion.

Maximal dimension means there are isomorphisms

$$
\operatorname{Lie}\left(K / K_{0}\right)=\operatorname{Lie}\left(G / G_{0}\right) \cong \mathfrak{s o}(m)
$$

Therefore the simply connected covers are isomorphic: $\operatorname{Spin}(m) \cong\left(\widetilde{\left.G / G_{0}\right)_{e}}\right.$. The induced homomorphism

$$
\operatorname{Spin}(m) \rightarrow\left(G / G_{0}\right)_{e}
$$

may or may not extend to a homomorphism

$$
\operatorname{Pin}(m) \rightarrow G / G_{0}
$$

If it does extend, it may or may not be injective, in which case it is an isomorphism. Therefore, among the algebras for which $\operatorname{dim}\left(G / G_{0}\right)$ is maximal, those for which $\operatorname{Pin}(m) \cong G / G_{0}$ can be regarded as the most symmetric.

Theorem 2.6. Suppose \mathfrak{n} is a 2-step graded algebra such that Aut(\mathfrak{n}) contains a copy of $\operatorname{Pin}(m)$ inducing the standard action on \mathfrak{z}. Then \mathfrak{n} is of Heisenberg type.

Proof. The assumption implies that there is a linear map $\mathfrak{z} \rightarrow \operatorname{End}(\mathfrak{v})$, denoted by $z \mapsto J_{z}$ such that $J_{z}^{2}=-|z|^{2} I$ for all z and

$$
\left[J_{z} u, J_{z} v\right]=r_{z}([u, v])
$$

for $u, v \in \mathfrak{v}, z \in \mathfrak{z},|z|=1$, where r_{z} is the reflection in \mathfrak{z} with respect of the line spanned by $z \cdot \operatorname{Pin}(m)$ is the group generated by the J_{z} 's with $\|z\|=1$, which acts linearly on \mathfrak{v} and is compact. Fix a metric on \mathfrak{v} invariant under it.

We get, as in the proof of Theorem 2.1, that if $\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right) \in \operatorname{Aut}(\mathfrak{n})$, then

$$
T_{b^{\mathrm{t}} z}=a^{\mathrm{t}} T_{z} a .
$$

In particular:

$$
T_{r_{x}(z)}=J_{x} T_{z} J_{x} .
$$

If $x=z$, we get $T_{z}=-J_{z} T_{z} J_{z}$, thus $T_{z} J_{z}=-J_{z}^{-1} T_{z}=J_{z} T_{z}$. If $x \perp z$, we get $T_{z}=J_{x} T_{z} J_{x}$, thus $T_{z} J_{x}=J_{x}^{-1} T_{z}=-J_{x} T_{z}$. It follows that T_{z}^{2} commutes with J_{z} and with $J_{w}, w \perp z$.

Now, let $z \in \mathfrak{z}$ and $w \perp z$. Let $R_{w}(t)$ the $2 t$-rotation from z towards w. Then $R_{w}(t)=r_{z} r_{w(t)}$, with $w(t)=\cos (t) z+\sin (t) w$. It follows that

$$
\left(\begin{array}{cc}
J_{z} J_{w(t)} & 0 \\
0 & R_{w}(t)
\end{array}\right)
$$

is an orthogonal automorphism and, therefore, satisfies

$$
T_{R_{w}(t) z}=\left(J_{z} J_{w(t)}\right)^{\mathrm{t}} T_{z}\left(J_{z} J_{w(t)}\right) .
$$

Since $\left(J_{z} J_{w(t)}\right)^{\mathbf{t}}=\left(J_{z} J_{w(t)}\right)^{-1}$,

$$
T_{R_{w}(t) z}^{2}=\left(J_{z} J_{w(t)}\right)^{\mathrm{t}} T_{z}^{2}\left(J_{z} J_{w(t)}\right)=J_{w(t)} J_{z} T_{z}^{2} J_{z} J_{w(t)}
$$

Since T_{z}^{2} commutes with J_{z} and J_{w},

$$
\begin{equation*}
T_{R_{w}(t) z}^{2}=T_{z}^{2} J_{w(t)} J_{z} J_{z} J_{w(t)}=-T_{z}^{2} J_{w(t)} J_{w(t)} . \tag{4}
\end{equation*}
$$

But $J_{w(t)}^{2}=-I$, so that (4) implies that

$$
T_{R_{w}(t) z}^{2}=T_{z}^{2} .
$$

For all $z^{\prime} \in \mathfrak{z}$ we can choose $w \in \mathfrak{z}, t \in \mathbb{R}$ such that $R_{w}(t) z=z^{\prime}$, so we get

$$
T_{z^{\prime}}^{2}=T_{z}^{2}, \quad \text { for all } z^{\prime} \in \mathfrak{z},\left|z^{\prime}\right|=1 .
$$

The antisymmetry of the bracket implies that T_{z} is skew-symmetric. Rescaling the scalar product on \mathfrak{v} we obtain that $T_{z}^{2}=-I$, so $T_{z^{\prime}}^{2}=-I$ for all $z^{\prime} \in \mathfrak{z}$, $\left|z^{\prime}\right|=1$. Therefore \mathfrak{n} is of Heisenberg type.

3. The case of center of dimension 2

In this section we compute the groups $G, G_{0}, G / G_{0}$ in the case $m=2$. The various types are parametrized by pairs

$$
(\mathbf{c}, \mathbf{r}) \in\left(\mathbb{U}^{\ell} / \mathrm{SL}(2, \mathbb{R})\right) \times \mathbb{Z}_{+}^{\ell}
$$

where \mathbb{U} is the upper-half plane and $2 \ell=2 \sum r_{j}=\operatorname{dim} \mathfrak{n}-2$. As a corollary we conclude that $\operatorname{Aut}(\mathfrak{n})$ is maximal if and only if \mathfrak{n} is of Heisenberg type. These are complex Heisenberg algebras of various dimensions regarded as real Lie algebras.

First we recall the normal form for fat algebras with $m=2$ deduced from $[\mathrm{LT}]$. Given $c=a+b i \in \mathbb{C}$, let

$$
Z(c)=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) .
$$

If $r \in \mathbb{Z}_{+}$, set

$$
A(c, r)=\left(\begin{array}{cccc}
Z(c) & & & \\
I_{2} & Z(c) & & \\
& & \ddots & \\
& & I_{2} & Z(c)
\end{array}\right)
$$

a $2 r \times 2 r$-matrix. If $\mathbf{c}=\left(c_{1}, \ldots, c_{\ell}\right) \in \mathbb{C}^{\ell}$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{\ell}\right) \in \mathbb{N}_{+}^{\ell}$, set

$$
A(\mathbf{c}, \mathbf{r})=\left(\begin{array}{cccc}
A\left(c_{1}, r_{1}\right) & & & \\
& A\left(c_{2}, r_{2}\right) & & \\
& & \ddots & \\
& & & A\left(c_{\ell}, r_{\ell}\right)
\end{array}\right)
$$

which is a $2 s \times 2 s$ matrix, $s=r_{1}+\ldots+r_{\ell}$.
Let now $\phi, \psi_{(\mathbf{c}, \mathbf{r})}$ be the 2 -forms on $\mathbb{R}^{4 s}$ whose matrices in the standard basis are

$$
[\phi]=\left(\begin{array}{cc}
0 & -I_{2 s} \tag{5}\\
I_{2 s} & 0
\end{array}\right) \quad\left[\psi_{(\mathbf{c}, \mathbf{r})}\right]=\left(\begin{array}{cc}
0 & A(\mathbf{c}, \mathbf{r}) \\
-A^{\mathrm{t}}(\mathbf{c}, \mathbf{r}) & 0
\end{array}\right) .
$$

Then

$$
[u, v]_{(\mathbf{c}, \mathbf{r})}=\left(\phi(u, v), \psi_{(\mathbf{c}, \mathbf{r})}(u, v)\right)=<u,[\phi] v>e_{1}+<u,\left[\psi_{(\mathbf{c}, \mathbf{r})}\right] v>e_{2}
$$

is an \mathbb{R}^{2}-valued antisymmetric 2 -form on $\mathbb{R}^{4 s}$. Let

$$
\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}=\mathbb{R}^{4 s} \oplus \mathbb{R}^{2}
$$

be the corresponding Lie algebra.
Define $M_{(\mathbf{c}, \mathbf{r})} \in \operatorname{End}(\mathfrak{v})$ by

$$
\phi\left(M_{(\mathbf{c}, \mathbf{r})} u, v\right)=\psi_{(\mathbf{c}, \mathbf{r})}(u, v),
$$

whose matrix is

$$
\left[M_{(\mathbf{c}, \mathbf{r})}\right]=\left(\begin{array}{cc}
-A_{(\mathbf{c}, \mathbf{r})}^{\mathrm{t}} & 0 \\
0 & -A_{(\mathbf{c}, \mathbf{r})}
\end{array}\right)
$$

then we have

$$
\begin{equation*}
[u, v]_{(\mathbf{c}, \mathbf{r})}=\phi(u, v) e_{1}+\phi\left(M_{(\mathbf{c}, \mathbf{r})} u, v\right) e_{2}, \text { for } u, v \in \mathbb{R}^{4 s} . \tag{6}
\end{equation*}
$$

One can deduce [LT]

Proposition 3.1.

(a) Every fat algebra with center of dimension 2 is isomorphic to some $\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}$ with $\mathbf{c} \in \mathbb{U}^{\ell}$.
(b) Two of these are isomorphic if and only if the \boldsymbol{r} 's coincide up to permutations and the \boldsymbol{c} 's differ by some Möbius transformation acting componentwise.
(c) $\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}$ is of Heisenberg type if and only if $\mathbf{c}=(c, \ldots, c)$ and $\mathbf{r}=(1, \ldots, 1)$

Let now

$$
\mathfrak{n}=\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}
$$

be fat and let $G=G(\mathfrak{n})$, etc. We denote $\hat{\mathfrak{n}}$ the algebra obtained by replacing the matrices $A(c, r)$ by their semisimple parts and setting all $c_{j}=\sqrt{-1}$. The resulting $\hat{A}(c, r)$ consists of blocks $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ along the diagonal and $\hat{\mathfrak{n}}$ is isomorphic to the Heisenberg type algebra $\mathfrak{n}_{((i, \ldots, i),(1, \ldots, 1))}$. The correspondence

$$
\mathfrak{n} \mapsto \hat{\mathfrak{n}}
$$

is functorial and seems extendable inductively to fat algebras of any dimension, although here we will maintain the assumption $m=2$.

Lemma 3.2. $\quad G_{0}(\mathfrak{n}) \subset G_{0}(\hat{\mathfrak{n}})$ and $\operatorname{dim} \operatorname{Aut}(\mathfrak{n}) \leq \operatorname{dim} \operatorname{Aut}(\hat{\mathfrak{n}})$.
Proof. Let $\phi, \psi, M_{(\mathbf{c}, \mathbf{r})} \in \operatorname{End}(\mathfrak{v})$ be as above, so that

$$
\phi\left(M_{(\mathbf{c}, \mathbf{r})} u, v\right)=\psi_{(\mathbf{c}, \mathbf{r})}(u, v) .
$$

By formula (6), $g \in G_{0}\left(\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}\right)$ if and only if

$$
\phi(u, v)=\phi(g u, g v), \quad \phi\left(M_{(\mathbf{c}, \mathbf{r})} u, v\right)=\phi\left(M_{(\mathbf{c}, \mathbf{r})} g u, g v\right)=\phi\left(g^{-1} M_{(\mathbf{c}, \mathbf{r})} g u, v\right),
$$

i.e., if and only if $g \in \operatorname{Sp}(\phi)$ and commutes with $M_{(\mathbf{c}, \mathbf{r})}$. In particular it commutes with the semisimple part $\hat{M}_{(\mathbf{c}, \mathbf{r})}$. This is conjugate to a matrix having blocks $Z(c)=\left(\begin{array}{cc}\Re(c) & \Im(c) \\ -\Im(c) & \Re(c)\end{array}\right)$ for various $c \in \mathbb{C}$ along the diagonal, and zeros elsewhere. Every matrix commuting with such a matrix will surely commute with that having all $c=1$. It follows that g also preserves $\phi\left(\hat{M}_{(\mathbf{c}, \mathbf{r})} u, v\right)$ and, therefore, it is an automorphism of $\hat{\mathfrak{n}}$ as well. Thus,

$$
G_{0}(\mathfrak{n}) \subset G_{0}(\hat{\mathfrak{n}}) .
$$

From Corollary 2.3, $\operatorname{dim}\left(G(\mathfrak{n}) / G_{0}(\mathfrak{n})\right) \leq \operatorname{dim}\left(G(\hat{\mathfrak{n}}) / G_{0}(\hat{\mathfrak{n}})\right)$, and therefore $\operatorname{dim} G(\mathfrak{n})=\operatorname{dim}\left(G(\mathfrak{n}) / G_{0}(\mathfrak{n})\right)+\operatorname{dim} G_{0}(\mathfrak{n}) \leq \operatorname{dim}\left(G(\hat{\mathfrak{n}}) / G_{0}(\hat{\mathfrak{n}})\right)+\operatorname{dim} G_{0}(\hat{\mathfrak{n}})=$ $\operatorname{dim} G(\hat{\mathfrak{n}})$.

Formula (2) implies $\operatorname{dim} \operatorname{Aut}(\mathfrak{n}) \leq \operatorname{dim} \operatorname{Aut}(\hat{\mathfrak{n}})$, as claimed.

Next we will describe $\mathfrak{g}_{0}\left(\mathfrak{n}_{(c, r)}\right)$ for $c \in \mathbb{U}$ and $r \in \mathbb{N}_{+}$, i.e., the case when the matrices A consist of a single block. Since c is $\operatorname{SL}(2, \mathbb{C})$ - conjugate to i, it is enough to take $c=i$. Define the 2×2-matrices

$$
\mathbf{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{i}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathbf{y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),
$$

and let $M_{r}(\mathbb{R}\langle\mathbf{1}, \mathbf{i}\rangle)$ and $M_{r}(\mathbb{R}\langle\mathbf{x}, \mathbf{y}\rangle)$ denote the real vector spaces of $r \times r$ matrices with coefficients in the span of $\mathbf{1}, \mathbf{i}$ and \mathbf{x}, \mathbf{y} respectively. Then the vector space

$$
\mathcal{R}(r)=\left\{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): A, D \in M_{r}(\mathbb{R}\langle\mathbf{1}, \mathbf{i}\rangle), B, C \in M_{r}(\mathbb{R}\langle\mathbf{x}, \mathbf{y}\rangle)\right\}
$$

is a actually a matrix algebra.
Note that

$$
1^{\mathrm{t}}=1, \quad \mathrm{i}^{\mathrm{t}}=-\mathrm{i}, \quad \mathrm{x}^{\mathrm{t}}=\mathrm{x}, \quad \mathrm{y}^{\mathrm{t}}=\mathrm{y} .
$$

Letting A^{t} denote the transpose or an \mathbb{R}-matrix and A^{t}, A^{*} the transpose and conjugate transpose of $\mathbb{R}[\mathbf{i}, \mathbf{x}, \mathbf{y}]$-matrices, one obtains

$$
A^{\mathrm{t}}=A^{*}
$$

for $A \in M_{r}(\mathbb{R}\langle\mathbf{1}, \mathbf{i}\rangle)$ while

$$
A^{\mathrm{t}}=A^{t}
$$

for $A \in M_{r}(\mathbb{R}\langle\mathbf{x}, \mathbf{y}\rangle)$.
With the notation

$$
\begin{gathered}
J_{1}=[\phi] \quad J_{2}=\left[\psi_{((i, \ldots, i),(1, \ldots, 1))}\right], \\
\mathfrak{g}_{0}(\hat{\mathfrak{n}})=\left\{X \in \mathbb{R}^{4 r \times 4 r}: J_{1} X+X^{\mathrm{t}} J_{1}=0, J_{2} X+X^{\mathrm{t}} J_{2}=0\right\} .
\end{gathered}
$$

From $[\mathrm{S}]$ we know that

$$
\mathfrak{g}_{0}(\hat{\mathfrak{n}}) \cong \mathfrak{s p}(r, \mathbb{C})^{\mathbb{R}}
$$

Changing basis,

$$
\mathfrak{g}_{0}(\hat{\mathfrak{n}})=\left\{X \in \mathcal{R}(r): J_{1} X+X^{\mathrm{t}} J_{1}=0, J_{2} X+X^{\mathrm{t}} J_{2}=0\right\}
$$

where

$$
J_{1}=\left(\begin{array}{cc}
0 & I_{r} \\
-I_{r} & 0
\end{array}\right), \quad J_{2}=\left(\begin{array}{cc}
0 & \mathbf{i} I_{r} \\
\mathbf{i} I_{r} & 0
\end{array}\right) .
$$

This gives an alternative description of this algebra:
$\mathfrak{g}_{0}(\hat{\mathfrak{n}})=\left\{\left(\begin{array}{cc}A & B \\ C & -A^{*}\end{array}\right): A \in M_{r}(\mathbb{R}\langle\mathbf{1}, \mathbf{i}\rangle), B, C \in M_{r}(\mathbb{R}\langle\mathbf{x}, \mathbf{y}\rangle), B^{t}=B, C^{t}=C\right\}$
We now restrict our attention to matrices $\left(\begin{array}{cc}A & B \\ C & -A^{*}\end{array}\right)$ in $\mathfrak{g}_{0}(\hat{\mathfrak{n}})$ where A, B, C have the respective forms

$$
\left(\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{r} \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & a_{2} \\
0 & \cdots & 0 & a_{1}
\end{array}\right) \quad\left(\begin{array}{cccc}
b_{1} & \cdots & b_{r-1} & b_{r} \\
\vdots & . & . & 0 \\
b_{r-1} & . & . & . \\
b_{r} & 0 & \cdots & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & \cdots & 0 & c_{1} \\
\vdots & . & . & . \\
& c_{2} \\
0 & . & . & . \\
c_{1} & c_{2} & \cdots & c_{r}
\end{array}\right)
$$

with coefficients in $\mathbb{R}^{2 \times 2}$. Let $\mathbf{A}_{k}=\left(\begin{array}{cc}A & 0 \\ 0 & -A^{*}\end{array}\right)$ having $a_{k}=\mathbf{1}$ and zero otherwise and \mathbf{A}_{k}^{\prime} the matrix of the same form but with $a_{k}=\mathbf{i}$ and zeros elsewhere. Similarly, let \mathbf{B}_{k} (resp. \mathbf{C}_{k}) the matrix $\left(\begin{array}{cc}0 & B \\ 0 & 0\end{array}\right)$ (resp., $\left(\begin{array}{ll}0 & 0 \\ C & 0\end{array}\right)$) with b_{k} (resp. c_{k}) equal to \mathbf{x} and zeros elsewhere, and \mathbf{B}_{k}^{\prime} (resp. \mathbf{C}_{k}^{\prime}) with b_{k} (resp. c_{k}) equal to \mathbf{y} and zeros elsewhere.

Theorem 3.3. Let $\mathfrak{n}=\mathfrak{n}_{(c, r)},(c, r) \in \mathbb{U} \times \mathbb{N}$, and regard $\mathfrak{g}_{0}(\mathfrak{n})$ as a subalgebra of $\mathfrak{g l}(\mathfrak{v})$. Then,

1. $\mathfrak{g}_{0}(\mathfrak{n})$ is the \mathbb{R}-span of $\mathbf{A}_{i}, \mathbf{A}_{i}^{\prime}, \mathbf{B}_{i}, \mathbf{B}_{i}^{\prime}, \mathbf{C}_{i}, \mathbf{C}_{i}^{\prime}$ for $1 \leq i \leq r$.
2. The semisimple part of $\mathfrak{g}_{0}(\mathfrak{n})$ is the span of $\mathbf{A}_{1}, \mathbf{A}_{1}^{\prime}, \mathbf{B}_{1}, \mathbf{B}_{1}^{\prime}, \mathbf{C}_{1}, \mathbf{C}_{1}^{\prime}$.
3. The solvable radical is the span of $\mathbf{A}_{i}, \mathbf{A}_{i}^{\prime}, \mathbf{B}_{i}, \mathbf{B}_{i}^{\prime}, \mathbf{C}_{i}, \mathbf{C}_{i}^{\prime}$ with $1<i \leq r$.

In particular, the \mathbb{R}-dimension the $\mathfrak{g}_{0}(\mathfrak{n})$ is equal to $6 r$ and the semisimple part of $\mathfrak{g}_{0}(\mathfrak{n})$ is isomorphic to $\mathfrak{s p}(1, \mathbb{C})$.

Proof. It is enough to consider the case $\mathfrak{n}=\mathfrak{n}_{(i, r)}$. Let $T_{2}=\left[\psi_{(i, r)}\right]$ and write $T_{2}=J_{2}+N_{2}$ where

$$
N_{2}=\left(\begin{array}{cc}
0 & N \\
-N^{t} & 0
\end{array}\right) \text {, with } N=\left(\begin{array}{cccc}
0 & \cdots & 0 & 0 \\
1 & \ddots & 0 & 0 \\
& \ddots & \ddots & \\
0 & \cdots & 1 & 0
\end{array}\right)
$$

From Lemma 3.2, $\mathfrak{g}_{0}(\mathfrak{n})=\left\{X \in \mathfrak{g}_{0}(\hat{\mathfrak{n}}): T_{2} X+X^{\mathrm{t}} T_{2}=0\right\}$. As $\mathfrak{g}_{0}(\mathfrak{n}) \subset \mathfrak{g}_{0}(\hat{\mathfrak{n}})$ one obtains

$$
\mathfrak{g}_{0}(\mathfrak{n})=\left\{X \in \mathfrak{g}_{0}(\hat{\mathfrak{n}}): N_{2} X+X^{\mathrm{t}} N_{2}=0\right\} .
$$

The conditions on $\left(\begin{array}{cc}A & B \\ C & -A^{*}\end{array}\right) \in \mathfrak{g}_{0}(\mathfrak{n})$ are, explicitly,

$$
\begin{align*}
& 0=N C-C^{t} N^{t}=N C-(N C)^{t} \tag{7}\\
& 0=N^{t} A-A N^{t} \tag{8}\\
& 0=N^{t} B-B^{t} N=N^{t} B-\left(N^{t} B\right)^{t} \tag{9}
\end{align*}
$$

For the first equation, note that $N C$ symmetric if and only if $c_{i, j+1}=c_{j, i+1}$ and $c_{1, j}=0$ for $i, j<n$. Since C is symmetric, $c_{i, j+1}=c_{j, i+1}=c_{i+1, j}$ and $c_{1, j}=0$ for $i, j<n$. We conclude:

If $i+j=k \leq r, c_{i, j}=c_{i, k-i}=c_{i-1, k-i+1}=c_{i-2, k-i+2} \cdots=c_{1, k-1}=0$
If $i+j=k>r, c_{i, j}=c_{i, k-i}=c_{i+1, k-i-1}=c_{i+2, k-i-2} \cdots=c_{r, k-i+i-r}=$ $c_{r, k-r}$

Thus, the strict upper antidiagonals are zero and each lower antidiagonal have all its elements equal.

For the second equation, note that N^{t} and A commute. This is equivalent to $c_{i, j}=c_{t, s}$ when $j-i=s-t$ and $c_{i, 1}=0$ for $i>1$. The first condition implies that each diagonal have all its elements equal, while the second implies that the strict lower diagonals are zero.

Equation (9) is analogous to equation (7): the condition $N^{t} B$ symmetric is equivalent to each antidiagonal have all its elements equal and that the strict lower antidiagonals are 0 .

From all this we conclude that the span of $\mathbf{A}_{i}, \mathbf{A}_{i}^{\prime}, \mathbf{B}_{i}, \mathbf{B}_{i}^{\prime}, \mathbf{C}_{i}, \mathbf{C}_{i}^{\prime}$ with $1 \leq$ $i \leq r$ is $\mathfrak{g}_{0}(\mathfrak{n})$ and (1) follows.
(2) and (3) follow from (1) and the explicit presentation of the matrices $\mathbf{A}_{i}, \mathbf{A}_{i}^{\prime}, \mathbf{B}_{i}, \mathbf{B}_{i}^{\prime}, \mathbf{C}_{i}, \mathbf{C}_{i}^{\prime}$.

Corollary 3.4. (of the proof) Let \mathfrak{n} be fat. Then $\operatorname{dim}\left(\mathfrak{g}_{0}(\mathfrak{n})\right)$ is maximal if and only if \mathfrak{n} is of Heisenberg type.

Proof. Let $(\mathbf{c}, \mathbf{r})=\left(\left(c_{1}, \ldots, c_{l}\right),\left(r_{1}, \ldots, r_{l}\right)\right)$ be such that $\mathfrak{n}=\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}$. We know that $\mathfrak{g}_{0}(\mathfrak{n}) \subset \mathfrak{g}_{0}(\mathfrak{n})$. If $c_{i} \neq c_{j}$ for some i, j, then there is not intertwining operator between the blocks corresponding to these invariants, so $\mathfrak{g}_{0}(\mathfrak{n}) \neq \mathfrak{g}_{0}(\hat{\mathfrak{n}})$.

When $c_{1}=c_{2}=\cdots=c_{l}$ we can consider $c_{j}=i$ for all j. Let $r=\sum r_{i}$. In this case if $\left(\begin{array}{cc}A & B \\ C & -A^{*}\end{array}\right) \in \mathfrak{g}_{0}(\mathfrak{n})$ must be satisfy the equations (7), (8), (9) but with N such that coefficients $n_{j+1, j}$ are 0 or 1 . Suppose now that $\mathfrak{g}_{0}(\mathfrak{n})$ is not of Heisenberg type, then some $n_{j+1, j}$ is equal to $\mathbf{1}$. We assume that $n_{21}=\mathbf{1}$ and let $A \in M_{r}(\mathbb{R}\langle\mathbf{1}, \mathbf{i}\rangle)$ such that $a_{12}=\mathbf{1}$ and 0 otherwise, then

$$
X=\left(\begin{array}{cc}
A & 0 \\
0 & -A^{*}
\end{array}\right)
$$

belongs to $\mathfrak{g}_{0}(\hat{\mathfrak{n}})$ but is not in $\mathfrak{g}_{0}(\mathfrak{n})$.

It can be shown in general that the semisimple part of $\mathfrak{g}_{0}(\mathfrak{n})$ is isomorphic to $\oplus_{i} \mathfrak{s p}\left(m_{i}, \mathbb{C}\right)$, where m_{i} is the multiplicity of the pair $\left(c_{i}, r_{i}\right)$ in (\mathbf{c}, \mathbf{r}).

In the case $m=2, \mathfrak{g} / \mathfrak{g}_{0}$ is either 0 or isomorphic to $\mathfrak{s o}(2)$.
Theorem 3.5. $\mathfrak{g}(\mathfrak{n}) / \mathfrak{g}_{0}(\mathfrak{n}) \cong \mathfrak{s o}(2)$ if $c_{1}=\cdots=c_{\ell}$, and 0 otherwise.
Proof. $\quad \mathfrak{g} / \mathfrak{g}_{0}$ is a compact subalgebra of $\mathfrak{g l}(2)$, hence of the form $g \mathfrak{s o}(2) g^{-1}$ for some $g \in \operatorname{SL}(2, \mathbb{R})$ and it is nonzero if and only if there exists $X \in \mathfrak{s l}(v)$ such that, in the notation of the proof of Theorem 3.3,

$$
\left(\begin{array}{cc}
X & 0 \\
0 & g \mathbf{i} g^{-1}
\end{array}\right)
$$

is a derivation of \mathfrak{n}. For $g=\mathbf{1}$, if T_{1}, T_{2} correspond to the standard basis of \mathfrak{z}, the equations for X become

$$
\text { (a) } T_{1} X+X^{\mathrm{t}} T_{1}=T_{2}, \quad \text { (b) } \quad T_{2} X+X^{\mathrm{t}} T_{2}=-T_{1}
$$

In normal form, and for a single block $A_{(i, r)}$,

$$
T_{1}=J_{1}=\left(\begin{array}{cc}
0 & I_{r} \\
-I_{r} & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
0 & \mathbf{i} I_{r}+N \\
\mathbf{i} I_{r}-N^{\mathrm{t}} & 0
\end{array}\right) .
$$

We decompose

$$
T_{2}=J_{2}+N_{2}, \quad \text { with } \quad J_{2}=\left(\begin{array}{cc}
0 & \mathbf{i} I_{r} \\
\mathbf{i} I_{r} & 0
\end{array}\right), \quad N_{2}=\left(\begin{array}{cc}
0 & N \\
-N^{\mathbf{t}} & 0
\end{array}\right)
$$

and regard $J_{1}, J_{2}, T_{1}, T_{2}, N_{2}$ as matrices with coefficients in $\mathbb{R}^{2 \times 2}$. Note that J_{1}, J_{2} correspond to $\hat{\mathfrak{n}}$, of Heisenberg type. Let

$$
Y_{0}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & s & 0 \\
0 & 2 \mathbf{i} & 0 & 0 & 0 & & s & 0 \\
0 & \mathbf{1} & 4 \mathbf{i} & 0 & 0 & 0 & s & 0 \\
0 & 0 & 2 \mathbf{1} & 6 \mathbf{i} & 0 & 0 & s & 0 \\
0 & 0 & 0 & 3 \mathbf{1} & 8 \mathbf{i} & & s & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \vdots & \vdots & 0 & (n-2) \mathbf{1} & 2(n-1) \mathbf{i}
\end{array}\right) .
$$

A straightforward calculation shows that

$$
X_{0}=\left(\begin{array}{cc}
-Y_{0}^{\mathrm{t}} & 0 \\
0 & -Y_{0}^{\mathrm{t}}+\mathbf{i} I_{r}+N
\end{array}\right)
$$

is a solution of (a), (b). We conclude that

$$
\left(\begin{array}{cc}
X_{0} & 0 \\
0 & \mathbf{i}
\end{array}\right)
$$

is a derivation of $\mathfrak{n}_{(i, r)}$, which lies in $\mathfrak{g}\left(\mathfrak{n}_{(i, r)}\right)$ but not in $\mathfrak{g}_{0}\left(\mathfrak{n}_{(i, r)}\right)$.
For any $c \in \mathbb{U}, \mathfrak{n}_{(c, r)} \cong \mathfrak{n}_{(i, r)}$, hence they have the same $\mathfrak{g} / \mathfrak{g}_{0}$ up to isomorphisms. In fact, for any $g \in \operatorname{SL}(2, \mathbb{R})$, the algebra $\mathfrak{n}_{(g \cdot i, r)}$ has a derivation of the form

$$
\left(\begin{array}{cc}
X & 0 \\
0 & g \mathbf{i} g^{-1}
\end{array}\right) .
$$

For a fixed g, these X are unique modulo \mathfrak{g}_{0} and come in normal form. Clearly, c determines the 2×2 matrix $g \mathbf{i} g^{-1}$ and the complex number $g \cdot i$.

In the case of an arbitrary fat $\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}$, each block $\left(c_{k}, r_{k}\right)$ determines a corresponding X_{k} such that

$$
\left(\begin{array}{cc}
X_{k} & 0 \\
0 & g_{k} \mathfrak{i g}_{k}^{-1}
\end{array}\right)
$$

is a derivation of $\mathfrak{n}_{\left(c_{k}, r_{k}\right)}$. If $n_{(\mathbf{c}, \mathbf{r})}$ has a derivation in \mathfrak{g} that is not in \mathfrak{g}_{0}, then its must have one which is combination of such, acting on \mathfrak{v} as $X_{1}+X_{2}+\cdots$. This forces all the $g_{k} \mathrm{i} g_{k}^{-1}$ to be the same and all the c_{i} to be the same. The reciprocal is clear.

In particular, all algebras $\mathfrak{n}_{(\mathbf{c}, \mathbf{r})}$ with $c_{1}=\ldots=c_{\ell}$ and $r_{i}>1$ maximize the dimension of $\mathfrak{g} / \mathfrak{g}_{0}$, but they are not Heisenberg type.

Lauret had pointed out to us that there were non Heisenberg type algebras such that $\mathfrak{g}(\mathfrak{n}) / \mathfrak{g}_{0}(\mathfrak{n}) \neq 0$. Independently, Oscari proved that this holds whenever the c_{i} 's all agree.

4. Fat distributions

Let D be a smooth vector distribution on a smooth manifold M, i.e., a subbundle of the tangent bundle $T(M)$. Its nilpotentization, or symbol, is the bundle on M with fiber

$$
N^{D}(M)_{p}=\bigoplus_{j} D_{p}^{(j)} / D_{p}^{(j-1)}
$$

where $D_{p}^{(1)}=D_{p}$ and $D_{p}^{(j+1)}=D_{p}^{(j)}+\left[\Gamma(D), \Gamma\left(D^{j}\right)\right]_{p}$. The Lie bracket in $\Gamma(T(M))$ induces a graded nilpotent Lie algebra structure on each fiber of $N^{D}(M)$. If $D^{(j)}=T(M)$ for some j, D is called completely non-integrable. If $D^{(2)}=T(M)$, the nilpotentization is 2 -step, which in the notation of the previous section, is

$$
\mathfrak{n}_{p}=N_{D}(M)_{p}=D_{p} \oplus \frac{D_{p}+[\Gamma(D), \Gamma(D)]_{p}}{D_{p}}=\mathfrak{v}_{p}+\mathfrak{z}_{p}
$$

It is also easy to see that D is fat in the sense of Weinstein [Mo] if and only if $\mathfrak{n}_{p}=\mathfrak{v}+\mathfrak{z}$ is non-singular, i.e., fat in the sense defined in the section 1 .

A subriemannian metric g defined on D determines a metric on \mathfrak{v}. On \mathfrak{z} we put a metric σ invariant under G. Let $\left\{\phi_{1}, \ldots, \phi_{m} ; \psi_{1}, \ldots, \psi_{n}\right\}$ be a coframe on M such that

$$
D=\cap \operatorname{ker} \phi_{i},
$$

with $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ and $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ orthonormal with respect to $g+\sigma$. Define $T_{z} \in \operatorname{End}(D)$ as before, by

$$
\sigma(z,[u, v])=g\left(T_{z} u, v\right) .
$$

Then D is fat if and only if T_{z} is invertible for all non-zero $z \in \mathfrak{z}$. The structure equations for the coframe can be written

$$
d \phi_{k} \equiv \sum_{i}\left(T_{k} \psi_{i}\right) \wedge \psi_{i} \quad \bmod \left(\phi_{\ell}\right)
$$

with the T_{k} 's having the property that any non-zero linear combination of them is invertible. This is deduced from the fact that if $u, v \in \mathfrak{v}$, then $d \phi[u, v]=$ $-\phi([u, v])$, since $u(\phi(v))=u(0)=0$. The $d \psi$'s are essentially arbitrary.

Let now M be a the simply connected Lie group with a fat Lie algebra \mathfrak{n}, D the left-invariant distribution on M such that $D_{e}=\mathfrak{v}$. For a left-invariant coframe, the structure equations take the form

$$
d \phi_{k}=\sum_{i}\left(J_{k} \psi_{i}\right) \wedge \psi_{i}, \quad d \psi_{i}=0
$$

where J_{1}, \ldots, J_{m} are anticommuting complex structures on D.
The results from the previous sections lead to consider fat distributions satisfying

$$
\begin{equation*}
d \phi_{k}=\sum_{i}\left(J_{k} \psi_{i}\right) \wedge \psi_{i} \quad \bmod \left(\phi_{\ell}\right) \tag{4.1}
\end{equation*}
$$

where the J_{k} are sections of $\operatorname{End}\left(T(M)^{*}\right)$ satisfying the Canonical Commutation Relations

$$
J_{i} J_{j}+J_{j} J_{i}=-2 \delta_{i j} .
$$

The Equivalence Problem for these systems has been discussed for distributions with growth vector $(2 n, 2 n+1),(4 n, 4 n+3)$ and $(8,15)$. In these cases \mathfrak{n} is parabolic, i.e., isomorphic to the Iwasawa subalgebra of a real semisimple Lie algebra \mathfrak{g} of real rank one. The Tanaka $[\mathrm{T}]$ subriemannian prolongation of such algebra is \mathfrak{g}, while in the non-parabolic case is just

$$
\mathfrak{n}+\mathfrak{k}(\mathfrak{n})+\mathfrak{a}(\mathfrak{n})
$$

where $\mathfrak{a}(\mathfrak{n})$ the 1-dimensional Lie algebra of dilations [Su]. In this case,Tanaka's theorem implies that, in the notation of $[\mathrm{Z}]$, the first pseudo G-structure P^{0} already carries a canonical frame.

As this paper was being written, E. van Erp pointed out to us his article [Er], where fat distributions are called polycontact and those satisfying (4.1) arise by imposing a compatible conformal structure.

Acknowledgments

We wish to thank Professor J. Vargas for helpful discussions and M. Subils for pointing out a mistake in a previous version of this paper.

References

[BTV] J. Berndt, F. Tricerri and L. Vanhecke, Generalized Hesienberg groups and Damek-Ricci Harmonic spaces, Springer Lecture Notes, (1995).
[CGN] L. Capogna, N. Garofalo and D.M. Nhieu, Properties of harmonic measures in the Dirichlet Problem for Lie groups of Heisenberg type, Amer. J. Math 124/2, (2002).
[DG] W. de Graaf, Lie algebras:theory and algorithms, Elsevier (2000)
[E] P. Eberlein, Geometry of 2-step nilpotent groups with a left-invariant metric, Annales Scientifiques de l'E.N.S., serie 4, tome 27, No. 5 (1994)
[Er] E. van Erp, Contact structures of arbitrary codimension and idempotents in the Heisenberg algebra, arXiv:1001.5426v1 [math.DG] (2010)
[GV] N. Garofalo and D. Vassiliev, Symmetry properties of solutions of Yamabe's equation on groups of Heisenberg type, Duke Math. J., 106/3, 411-448 (2001).
[H] D. Husemoller, Fibre Bundles, Graduate texts in mathematics 20, New York, Springer- Verlag (1994).
[K] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. Vol. 258, pp. 147-153, (1980).
[LT] F. Levstein and A. Tiraboschi, Classes of 2-step nilpotent Lie algebras, Comm. in Algebra Vol. 27 (1999).
[M] G. Métivier, Hypoellipticite analytique sur des groupes nilpotents de rang 2, Duke Math. J. Vol. 47, pp. 195-221, (1980).
[Mo] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, AMS Mathematical Surveys and Monographs Vol. 91 (2002).
[MS] D. Müller and A. Seeger, Singular spherical maximal operators on a class of two step nilpotent Lie groups, Israel J. Math. Vol. 141, pp. 315-390, (2004).
[P] P. Pansu, Métriques de Carnot-Carathodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. Vol. 129, pp. 1-60, (1989).
[S] L. Saal, The automorphism group of a Lie algebra of Heisenberg type, Rend. Sem. Mat. Univ. Pol. Torino Vol. 54, 2 (1996).
[Su] M. Subils, Personal communication.
[T] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups J. Math. Kyoto. Univ. Vol. 10 (1970).
[Z] I. Zelenko, On Tanaka's prolongation procedure for filtered structures of constant type SIGMA 5 (2009).

Aroldo Kaplan
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba. CIEM - CONICET. (5000)
Ciudad Universitaria, Córdoba, Argentina
kaplan@famaf.unc.edu.ar

Alejandro Tiraboschi
Facultad de Matemática, Astronomía
y Física, Universidad Nacional de
Córdoba. CIEM - CONICET. (5000)
Ciudad Universitaria, Córdoba, Argentina
tirabo@famaf.unc.edu.ar

