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Automorphisms of non-singular nilpotent Lie algebras

Aroldo Kaplan and Alejandro Tiraboschi

Abstract. For a real, non-singular, 2-step nilpotent Lie algebra n , the
group Aut(n)/Aut0(n), where Aut0(n) is the group of automorphisms which
act trivially on the center, is the direct product of a compact group with the
1-dimensional group of dilations. Maximality of some automorphisms groups
of n follows and is related to how close is n to being of Heisenberg type. For
example, at least when the dimension of the center is two, dim Aut(n) is maximal
if and only if n is of Heisenberg type. The connection with fat distributions is
discussed.
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1. Introduction

A 2-step nilpotent real Lie algebra n with center z is called non-singular [E], or
said to satisfy hypothesis (H) [M], or be the Lie algebra of a Métivier group [MS], if
adx : n→ z is onto for any x /∈ z . Equivalently, the bracket defines a vector-valued
antisymmetric form

[ , ] : v× v→ z,

v = n/z , such that the 2-forms λ([u, v]) on v are non-degenerate for all λ ∈ z∗ ,
λ 6= 0. Here we shall call such algebras fat for short, since they are the symbols of
fat distributions (as opposite to ”flat”, or integrable, ones [Mo]), which motivate
the questions.

Let m = dim(z). While for m = 1 there is only one fat algebra up to
isomorphisms, for m ≥ 2 there is an uncountable number of isomorphism classes
and for m ≥ 3 they form a wild set.

In this paper we study the size of groups of automorphisms of n . Aut(n)
itself is the semidirect product of the group G(n) of graded automorphisms of
n = v ⊕ z with the abelian group Hom(v, z), times the group of dilations (t, t2).
Hence, we concentrate on G = G(n).

We prove that there is an exact sequence

1→ G0 → G→ O(m)

where G0 is the subgroup of G of elements that act trivially on the center. In
other words, there are positive-definite inner products on z which are invariant
under all of Aut(n).
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If a metric g is also given on v , as in the case of the nilpotentization
of a subriemannian structure, we also consider the subgroups K0 , K , of graded
automorphisms that leave g invariant, which define a compatible exact sequence

1→ K0 → K → O(m).

Next, we compute the terms in this sequence and the images G/G0 and K/K0 ,
proving that the exactness of

1→ Lie(K0)→ Lie(K)→ so(m)→ 1

is equivalent to n being of Heisenberg type, while the exactness of

1→ Lie(G0)→ Lie(G)→ so(m)→ 1

is strictly more general. As to G0(n), we describe it in detail for the case m = 2,
leading a proof that, at least in that case, dim Aut(n) is maximal if and only if n
is of Heisenberg type.

In the last section we explain the connection with the Equivalence Problem
for fat subriemannian distributions.

Algebras of Heisenberg type are defined as follows [K]. If v is a real unitary
module over the Clifford algebra Cl(z) associated to a quadratic form on z , the
identity

< z, [u, v] >z=< z · u, v >v

with z ∈ z ⊂ Cl(z), u, v ∈ v , defines a fat [ , ] : v × v → z . Alternatively, they
are characterized by possessing a positive-definite metric such that the operator
z· defined by the above equation satisfies z · (z · v) = −|z|2v .

It follows from Adam’s theorem on frames on spheres [H] that for any fat
algebra there is an Heisenberg type algebra with the same dim z and dim v . That
these were, in some sense, the most symmetric, was expected from the properties
of their sublaplacians [BTV] [CGN] [GV] [K], but we found no explicit statements
in this regard.

Related properties of the automorphism groups of nilpotent Lie groups are
studied in [P] and [MS].

2. Automorphisms of fat algebras

Let n be a 2-step Lie algebra with center z and let v = n/z , so that

n ∼= v⊕ z (1)

and the Lie algebra structure is encoded into the map

[ , ] : Λ2v→ z.

Let n = dim v and m = dim z . Relative to a basis compatible with (1), the
bracket becomes an Rm -valued antisymmetric form on Rn and an automorphism
is a matrix of the form(

a 0
c b

)
, a ∈ GL(n), b ∈ GL(m), c ∈ Rn×m
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such that
b([u, v]) = [au, av].

Aut(n) always contains the normal subgroup D(n) of dilations and translations(
tIn 0
c t2Im

)
, t ∈ R∗, c ∈ Rn×m.

Let

G = G(n) = {
(
a 0
0 b

)
, a ∈ SL(n), b ∈ GL(m), b([u, v]) = [au, av]}.

Then Aut(n) is the semidirect product of G(n) with D(n). Let

G0 = G0(n) = {
(
a 0
0 Im

)
, a ∈ SL(n), [au, av] = [u, v]},

the subgroup of automorphisms that act trivially on the center. These are Lie
groups, G0 is normal in G , and the quotient group

G/G0

can be identified with the group of b ∈ GL(z) such that b([u, v]) = [au, av] for
some a ∈ SL(v). Obviously,

dim Aut(n) = nm+ 1 + dim(G/G0) + dim(G0). (2)

Theorem 2.1. Let n be a fat algebra with center z. Then there is a positive
definite metric on z invariant under G(n).

Proof. Fix arbitrary positive inner products on v and z . For z ∈ z , u, v ∈ v

(Tzu, v)v = (z, [u, v])z

defines a linear map z 7→ Tz from z to End(v). Clearly,

n fat ⇔ Tz ∈ GL(v) ∀z 6= 0.

Hence the hypothesis insures that the Pfaffian

P (z) = det(Tz)

is non-zero on z\{0} . This is a homogeneous polynomial of degree n , so it satisfies

k‖z‖n ≤ |P (z)| ≤ K‖z‖n (3)

where k,K are the minimum and maximum values of |P | on the unit sphere,
which are positive.

Let now ga,b :=

(
a 0
0 b

)
∈ Aut(n). Then

Tbtz = atTza
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because (Tbtzu, v)v = (btz, [u, v])z = (z, b([u, v]))z = (z, [au, av])z = (Tzau, av)v =
(atTzau, v)v. Consequently

P (btz) = (det a)2P (z).

In particular, if g ∈ G then P (btz) = P (z). This implies

k‖btz‖n ≤ |P (btz)| = |P (z)| ≤ K‖z‖n

for all z , therefore ‖b‖ ≤ n
√
K/k . The group of b ∈ GL(z) such that ga,b ∈ Aut(n)

for some a ∈ SL(v), is therefore bounded in End(Rm). Its closure is a compact
Lie subgroup of GL(z), necessarily contained in O(z) for some positive definite
metric.

From now on z will be assumed endowed with such invariant metric. If a
metric g on v is also fixed, as in the case of the nilpotentization of a subriemannian
structure, define the groups

K = K(n, g) = {
(
a 0
0 b

)
, a ∈ SO(v), b ∈ O(z), [au, av] = b[u, v]}

K0 = K0(n, g) = {
(
a 0
0 I

)
, a ∈ SO(v), [au, av] = [u, v]}.

Let g, g0, k, k0 be the Lie algebras of G,G0, K,K0 respectively. Then there
is the commutative diagram with exact rows

0 g0 g so(m)

0 k0 k so(m)

...................................... ............

...................................... ............

.......

.......

.......

.................

............

...................................... ............ .............................. ............

...................................... ............ .............................. ............

.......

.......

.......

.................

............
.......
.......
.......
.................
............

where the vertical arrows are the inclusions. Below we prove that the bottom
sequence extends to

0→ k0 → k→ so(m)→ 0

if and only if n is of Heisenberg type. This is not the case for the top one: the
condition that

0→ g0 → g→ so(m)→ 0

is exact defines a class of fat algebras strictly larger than Heisenberg type algebras.
We describe it in the next section for m = 2.

Proposition 2.2. Let n = v + z be an algebra of Heisenberg type. There is a
metric on z such that g/g0 ∼= so(m).

Proof. There is an inner product in v such that the Ji = Ti ’s satisfy the
Canonical Anticommutation Relations

JwJz + JzJw = −2 < z,w > I.
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For ‖z‖ = 1 let rz ∈ O(z) be the reflection through the hyperplane orthogonal to
z and Jz ∈ SL(v) be as above. Then

g(Jz ,−rz) =

(
Jz 0
0 −rz

)
∈ Aut(n).

Indeed,

(w, [Jzu, Jzv]) = (JwJzu, Jzv) = (−JzJwu− 2(z, w)u, Jzv)

= −(JzJwu, Jzv)− 2(z, w)(u, Jzv) = (Jwu, JzJzv) + 2(z, w)(Jzu, v)

= −(Jwu, v) + 2(z, w)(Jzu, v) = (J−w+2(z,w)zu, v)

= (−w + 2(z, w)z, [u, v]) = (−rz(w), [u, v])

= (w,−rz([u, v])),

so that

−rz([u, v]) = [Jzu, Jzv].

The Lie group generated by the −rz has finite index in O(z).

Corollary 2.3. Let n be a fat algebra with center of dimension m. Then

dim(K/K0) ≤ dim(G/G0) ≤ m(m− 1)/2

with equality achieved for any Heisenberg type algebra of the same dimension with
center of the same dimension.

Since Aut(n)/Aut0(n) = (G/G0)×(dilations), one obtains

Corollary 2.4. Let n be a fat algebra with center of dimension m. Then

dim(Aut(n)/Aut0(n)) ≤ 1 +m(m− 1)/2,

with equality achieved for any Heisenberg type algebra of the same dimension and
with center of the same dimension.

A converse for Corollary 2.3 is

Theorem 2.5. If n is fat with center of dimension m and

dim(K/K0) = m(m− 1)/2

for some metric on v, then n is of Heisenberg type.
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Proof. The hypothesis implies that k/k0 = g/g0 ∼= so(m), so that K/K0 acts

transitively among the |z| = 1. For

(
a 0
0 b

)
in this group, −Tbz = aTza

−1 ,

hence T 2
bz = aT 2

z a
−1 . Since Tz is invertible, we can choose the metric such that

T 2
z0

= −I for any given z0 . Therefore T 2
z = −I for all |z| = 1, which implies the

assertion.

Maximal dimension means there are isomorphisms

Lie(K/K0) = Lie(G/G0) ∼= so(m).

Therefore the simply connected covers are isomorphic: Spin(m) ∼= ˜(G/G0)e. The
induced homomorphism

Spin(m)→ (G/G0)e

may or may not extend to a homomorphism

Pin(m)→ G/G0.

If it does extend, it may or may not be injective, in which case it is an isomorphism.
Therefore, among the algebras for which dim(G/G0) is maximal, those for which
Pin(m) ∼= G/G0 can be regarded as the most symmetric.

Theorem 2.6. Suppose n is a 2-step graded algebra such that Aut(n) contains
a copy of Pin(m) inducing the standard action on z. Then n is of Heisenberg
type.

Proof. The assumption implies that there is a linear map z→ End(v), denoted
by z 7→ Jz such that J2

z = −|z|2I for all z and

[Jzu, Jzv] = rz([u, v])

for u, v ∈ v , z ∈ z , |z| = 1, where rz is the reflection in z with respect of the line
spanned by z . Pin(m) is the group generated by the Jz ’s with ‖z‖ = 1, which
acts linearly on v and is compact. Fix a metric on v invariant under it.

We get, as in the proof of Theorem 2.1, that if

(
a 0
0 b

)
∈ Aut(n), then

Tbtz = atTza.

In particular:

Trx(z) = JxTzJx.

If x = z , we get Tz = −JzTzJz , thus TzJz = −J−1z Tz = JzTz . If x ⊥ z , we get
Tz = JxTzJx , thus TzJx = J−1x Tz = −JxTz . It follows that T 2

z commutes with Jz
and with Jw , w ⊥ z .



Kaplan and Tiraboschi 7

Now, let z ∈ z and w ⊥ z . Let Rw(t) the 2t-rotation from z towards w .
Then Rw(t) = rzrw(t) , with w(t) = cos(t)z + sin(t)w . It follows that(

JzJw(t) 0
0 Rw(t)

)
is an orthogonal automorphism and, therefore, satisfies

TRw(t)z = (JzJw(t))
tTz(JzJw(t)).

Since (JzJw(t))
t = (JzJw(t))

−1 ,

T 2
Rw(t)z = (JzJw(t))

tT 2
z (JzJw(t)) = Jw(t)JzT

2
z JzJw(t).

Since T 2
z commutes with Jz and Jw ,

T 2
Rw(t)z = T 2

z Jw(t)JzJzJw(t) = −T 2
z Jw(t)Jw(t). (4)

But J2
w(t) = −I , so that (4) implies that

T 2
Rw(t)z = T 2

z .

For all z′ ∈ z we can choose w ∈ z, t ∈ R such that Rw(t)z = z′ , so we get

T 2
z′ = T 2

z , for all z′ ∈ z, |z′| = 1.

The antisymmetry of the bracket implies that Tz is skew-symmetric. Rescaling
the scalar product on v we obtain that T 2

z = −I , so T 2
z′ = −I for all z′ ∈ z ,

|z′| = 1. Therefore n is of Heisenberg type.

3. The case of center of dimension 2

In this section we compute the groups G,G0, G/G0 in the case m = 2. The various
types are parametrized by pairs

(c, r) ∈ (U`/ SL(2,R))× Z`
+

where U is the upper-half plane and 2` = 2
∑
rj = dim n − 2. As a corollary we

conclude that Aut(n) is maximal if and only if n is of Heisenberg type. These are
complex Heisenberg algebras of various dimensions regarded as real Lie algebras.

First we recall the normal form for fat algebras with m = 2 deduced from
[LT]. Given c = a+ bi ∈ C , let

Z(c) =

(
a b
−b a

)
.

If r ∈ Z+ , set

A(c, r) =


Z(c)
I2 Z(c)

. . .

I2 Z(c)
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a 2r × 2r -matrix. If c = (c1, ..., c`) ∈ C` and r = (r1, ..., r`) ∈ N`
+ , set

A(c, r) =


A(c1, r1)

A(c2, r2)
. . .

A(c`, r`)


which is a 2s× 2s matrix, s = r1 + ...+ r` .

Let now φ, ψ(c,r) be the 2-forms on R4s whose matrices in the standard
basis are

[φ] =

(
0 −I2s
I2s 0

)
[ψ(c,r)] =

(
0 A(c, r)

−At(c, r) 0

)
. (5)

Then

[u, v](c,r) = (φ(u, v), ψ(c,r)(u, v)) =< u, [φ]v > e1+ < u, [ψ(c,r)]v > e2

is an R2 -valued antisymmetric 2-form on R4s . Let

n(c,r) = R4s ⊕ R2

be the corresponding Lie algebra.

Define M(c,r) ∈ End(v) by

φ(M(c,r)u, v) = ψ(c,r)(u, v),

whose matrix is

[M(c,r)] =

(
−At

(c,r) 0

0 −A(c,r)

)
.

then we have

[u, v](c,r) = φ(u, v)e1 + φ(M(c,r)u, v)e2, for u, v ∈ R4s. (6)

One can deduce [LT]

Proposition 3.1.

(a) Every fat algebra with center of dimension 2 is isomorphic to some n(c,r)
with c ∈ U` .

(b) Two of these are isomorphic if and only if the r’s coincide up to permu-
tations and the c’s differ by some Möbius transformation acting componentwise.

(c) n(c,r) is of Heisenberg type if and only if c = (c, . . . , c) and r = (1, . . . , 1)

Let now
n = n(c,r)

be fat and let G = G(n), etc. We denote n̂ the algebra obtained by replacing the
matrices A(c, r) by their semisimple parts and setting all cj =

√
−1. The resulting

Â(c, r) consists of blocks

(
0 1
−1 0

)
along the diagonal and n̂ is isomorphic to the

Heisenberg type algebra n((i,...,i),(1,...,1)) . The correspondence

n 7→ n̂

is functorial and seems extendable inductively to fat algebras of any dimension,
although here we will maintain the assumption m = 2.
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Lemma 3.2. G0(n) ⊂ G0(n̂) and dim Aut(n) ≤ dim Aut(n̂).

Proof. Let φ , ψ , M(c,r) ∈ End(v) be as above, so that

φ(M(c,r)u, v) = ψ(c,r)(u, v).

By formula (6), g ∈ G0(n(c,r)) if and only if

φ(u, v) = φ(gu, gv), φ(M(c,r)u, v) = φ(M(c,r)gu, gv) = φ(g−1M(c,r)gu, v),

i.e., if and only if g ∈ Sp(φ) and commutes with M(c,r) . In particular it commutes

with the semisimple part M̂(c,r) . This is conjugate to a matrix having blocks

Z(c) =

(
<(c) =(c)
−=(c) <(c)

)
for various c ∈ C along the diagonal, and zeros elsewhere.

Every matrix commuting with such a matrix will surely commute with that having
all c = 1. It follows that g also preserves φ(M̂(c,r)u, v) and, therefore, it is an
automorphism of n̂ as well. Thus,

G0(n) ⊂ G0(n̂).

From Corollary 2.3, dim(G(n)/G0(n)) ≤ dim(G(n̂)/G0(n̂)), and therefore

dimG(n) = dim(G(n)/G0(n))+dimG0(n) ≤ dim(G(n̂)/G0(n̂))+dimG0(n̂) =
dimG(n̂).

Formula (2) implies dim Aut(n) ≤ dim Aut(n̂), as claimed.

Next we will describe g0(n(c,r)) for c ∈ U and r ∈ N+ , i.e., the case when
the matrices A consist of a single block. Since c is SL(2,C)−conjugate to i , it is
enough to take c = i . Define the 2× 2-matrices

1 =

(
1 0
0 1

)
, i =

(
0 −1
1 0

)
, x =

(
0 1
1 0

)
, y =

(
−1 0
0 1

)
,

and let Mr(R〈1, i〉) and Mr(R〈x,y〉) denote the real vector spaces of r×r matrices
with coefficients in the span of 1, i and x,y respectively. Then the vector space

R(r) =

{(
A B
C D

)
: A,D ∈Mr(R〈1, i〉), B, C ∈Mr(R〈x,y〉)

}
,

is a actually a matrix algebra.

Note that
1t = 1, it = −i, xt = x, yt = y.

Letting At denote the transpose or an R-matrix and At , A∗ the transpose and
conjugate transpose of R[i,x,y]-matrices, one obtains

At = A∗

for A ∈Mr(R〈1, i〉) while
At = At
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for A ∈Mr(R〈x,y〉).

With the notation

J1 = [φ] J2 = [ψ((i,...,i),(1,...,1))],

g0(n̂) =
{
X ∈ R4r×4r : J1X +XtJ1 = 0, J2X +XtJ2 = 0

}
.

From [S] we know that
g0(n̂) ∼= sp(r,C)R

Changing basis,

g0(n̂) = {X ∈ R(r) : J1X +XtJ1 = 0, J2X +XtJ2 = 0}

where

J1 =

(
0 Ir
−Ir 0

)
, J2 =

(
0 iIr
iIr 0

)
.

This gives an alternative description of this algebra:

g0(n̂) =

{(
A B
C −A∗

)
: A ∈Mr(R〈1, i〉), B, C ∈Mr(R〈x,y〉), Bt = B, Ct = C

}

We now restrict our attention to matrices

(
A B
C −A∗

)
in g0(n̂) where

A,B,C have the respective forms
a1 a2 · · · ar

0
. . .

. . .
...

...
. . .

. . . a2
0 · · · 0 a1




b1 · · · br−1 br
... . .

.
. .
.

0

br−1 . .
.

. .
. ...

br 0 · · · 0




0 · · · 0 c1
... . .

.
. .
.
c2

0 . .
.

. .
. ...

c1 c2 · · · cr


with coefficients in R2×2 . Let Ak =

(
A 0
0 −A∗

)
having ak = 1 and zero otherwise

and A′k the matrix of the same form but with ak = i and zeros elsewhere. Similarly,

let Bk (resp. Ck ) the matrix

(
0 B
0 0

)
(resp.,

(
0 0
C 0

)
) with bk (resp. ck ) equal

to x and zeros elsewhere, and B′k (resp. C′k ) with bk (resp. ck ) equal to y and
zeros elsewhere.

Theorem 3.3. Let n = n(c,r) , (c, r) ∈ U×N, and regard g0(n) as a subalgebra
of gl(v). Then,

1. g0(n) is the R-span of Ai,A
′
i,Bi,B

′
i,Ci,C

′
i for 1 ≤ i ≤ r .

2. The semisimple part of g0(n) is the span of A1,A
′
1,B1,B

′
1,C1,C

′
1 .

3. The solvable radical is the span of Ai,A
′
i,Bi,B

′
i,Ci,C

′
i with 1 < i ≤ r .

In particular, the R-dimension the g0(n) is equal to 6r and the semisimple part
of g0(n) is isomorphic to sp(1,C).
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Proof. It is enough to consider the case n = n(i,r) . Let T2 = [ψ(i,r)] and write
T2 = J2 +N2 where

N2 =

(
0 N
−N t 0

)
, with N =


0 · · · 0 0

1
. . . 0 0
. . .

. . .

0 · · · 1 0

 .

From Lemma 3.2, g0(n) = {X ∈ g0(n̂) : T2X +XtT2 = 0} . As g0(n) ⊂ g0(n̂) one
obtains

g0(n) = {X ∈ g0(n̂) : N2X +XtN2 = 0} .

The conditions on

(
A B
C −A∗

)
∈ g0(n) are, explicitly,

0 = NC − CtN t = NC − (NC)t (7)

0 = N tA− AN t (8)

0 = N tB −BtN = N tB − (N tB)t. (9)

For the first equation, note that NC symmetric if and only if ci,j+1 = cj,i+1

and c1,j = 0 for i, j < n . Since C is symmetric, ci,j+1 = cj,i+1 = ci+1,j and c1,j = 0
for i, j < n . We conclude:

If i+ j = k ≤ r , ci,j = ci,k−i = ci−1,k−i+1 = ci−2,k−i+2 · · · = c1,k−1 = 0

If i + j = k > r , ci,j = ci,k−i = ci+1,k−i−1 = ci+2,k−i−2 · · · = cr,k−i+i−r =
cr,k−r

Thus, the strict upper antidiagonals are zero and each lower antidiagonal
have all its elements equal.

For the second equation, note that N t and A commute. This is equivalent
to ci,j = ct,s when j − i = s− t and ci,1 = 0 for i > 1. The first condition implies
that each diagonal have all its elements equal, while the second implies that the
strict lower diagonals are zero.

Equation (9) is analogous to equation (7): the condition N tB symmetric
is equivalent to each antidiagonal have all its elements equal and that the strict
lower antidiagonals are 0.

From all this we conclude that the span of Ai,A
′
i,Bi,B

′
i,Ci,C

′
i with 1 ≤

i ≤ r is g0(n) and (1) follows.

(2) and (3) follow from (1) and the explicit presentation of the matrices
Ai,A

′
i,Bi,B

′
i,Ci,C

′
i .

Corollary 3.4. (of the proof) Let n be fat. Then dim(g0(n)) is maximal if and
only if n is of Heisenberg type.

Proof. Let (c, r) = ((c1, . . . , cl), (r1, . . . , rl)) be such that n = n(c,r) . We know
that g0(n) ⊂ g0(n̂). If ci 6= cj for some i, j , then there is not intertwining operator
between the blocks corresponding to these invariants, so g0(n) 6= g0(n̂).
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When c1 = c2 = · · · = cl we can consider cj = i for all j . Let r =
∑
ri .

In this case if

(
A B
C −A∗

)
∈ g0(n) must be satisfy the equations (7), (8), (9) but

with N such that coefficients nj+1,j are 0 or 1 . Suppose now that g0(n) is not of
Heisenberg type, then some nj+1,j is equal to 1 . We assume that n21 = 1 and let
A ∈Mr(R〈1, i〉) such that a12 = 1 and 0 otherwise, then

X =

(
A 0
0 −A∗

)
belongs to g0(n̂) but is not in g0(n).

It can be shown in general that the semisimple part of g0(n) is isomorphic
to ⊕isp(mi,C), where mi is the multiplicity of the pair (ci, ri) in (c, r).

In the case m = 2, g/g0 is either 0 or isomorphic to so(2).

Theorem 3.5. g(n)/g0(n) ∼= so(2) if c1 = · · · = c` , and 0 otherwise.

Proof. g/g0 is a compact subalgebra of gl(2), hence of the form gso(2)g−1 for
some g ∈ SL(2,R) and it is nonzero if and only if there exists X ∈ sl(v) such
that, in the notation of the proof of Theorem 3.3,(

X 0
0 gig−1

)
is a derivation of n . For g = 1 , if T1, T2 correspond to the standard basis of z ,
the equations for X become

(a) T1X +XtT1 = T2, (b) T2X +XtT2 = −T1
In normal form, and for a single block A(i,r) ,

T1 = J1 =

(
0 Ir
−Ir 0

)
, T2 =

(
0 iIr +N

iIr −Nt 0

)
.

We decompose

T2 = J2 +N2, with J2 =

(
0 iIr
iIr 0

)
, N2 =

(
0 N
−Nt 0

)
and regard J1, J2, T1, T2, N2 as matrices with coefficients in R2×2 . Note that J1, J2
correspond to n̂ , of Heisenberg type. Let

Y0 =



0 0 0 0 0 0 s 0
0 2i 0 0 0 s 0
0 1 4i 0 0 0 s 0
0 0 21 6i 0 0 s 0
0 0 0 31 8i s 0
...

...
...

...
...

...
. . . 0

0 0 0
...

... 0 (n− 2)1 2(n− 1)i


.
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A straightforward calculation shows that

X0 =

(
−Y t

0 0
0 −Y t

0 + iIr +N

)
is a solution of (a), (b). We conclude that(

X0 0
0 i

)
is a derivation of n(i,r) , which lies in g(n(i,r)) but not in g0(n(i,r)).

For any c ∈ U , n(c,r) ∼= n(i,r) , hence they have the same g/g0 up to
isomorphisms. In fact, for any g ∈ SL(2,R), the algebra n(g·i,r) has a derivation
of the form (

X 0
0 gig−1

)
.

For a fixed g , these X are unique modulo g0 and come in normal form. Clearly,
c determines the 2× 2 matrix gig−1 and the complex number g · i .

In the case of an arbitrary fat n(c,r) , each block (ck, rk) determines a
corresponding Xk such that (

Xk 0
0 gkig

−1
k

)
is a derivation of n(ck,rk) . If n(c,r) has a derivation in g that is not in g0 , then its
must have one which is combination of such, acting on v as X1 +X2 + · · · . This
forces all the gkig

−1
k to be the same and all the ci to be the same. The reciprocal

is clear.

In particular, all algebras n(c,r) with c1 = ... = c` and ri > 1 maximize the
dimension of g/g0 , but they are not Heisenberg type.

Lauret had pointed out to us that there were non Heisenberg type algebras
such that g(n)/g0(n) 6= 0. Independently, Oscari proved that this holds whenever
the ci ’s all agree.

4. Fat distributions

Let D be a smooth vector distribution on a smooth manifold M , i.e., a subbundle
of the tangent bundle T (M). Its nilpotentization, or symbol, is the bundle on M
with fiber

ND(M)p =
⊕
j

D(j)
p /D(j−1)

p

where D
(1)
p = Dp and D

(j+1)
p = D

(j)
p +[Γ(D),Γ(Dj)]p . The Lie bracket in Γ(T (M))

induces a graded nilpotent Lie algebra structure on each fiber of ND(M). If
D(j) = T (M) for some j , D is called completely non-integrable. If D(2) = T (M),
the nilpotentization is 2-step, which in the notation of the previous section, is

np = ND(M)p = Dp ⊕
Dp + [Γ(D),Γ(D)]p

Dp

= vp + zp,
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It is also easy to see that D is fat in the sense of Weinstein [Mo] if and only if
np = v + z is non-singular, i.e., fat in the sense defined in the section 1.

A subriemannian metric g defined on D determines a metric on v . On z
we put a metric σ invariant under G . Let {φ1, ..., φm;ψ1, ..., ψn} be a coframe on
M such that

D = ∩ kerφi,

with {φ1, ..., φm} and {ψ1, ..., ψn} orthonormal with respect to g + σ . Define
Tz ∈ End(D) as before, by

σ(z, [u, v]) = g(Tzu, v).

Then D is fat if and only if Tz is invertible for all non-zero z ∈ z . The structure
equations for the coframe can be written

dφk ≡
∑
i

(Tkψi) ∧ ψi mod(φ`)

with the Tk ’s having the property that any non-zero linear combination of them
is invertible. This is deduced from the fact that if u, v ∈ v , then dφ[u, v] =
−φ([u, v]), since u(φ(v)) = u(0) = 0. The dψ ’s are essentially arbitrary.

Let now M be a the simply connected Lie group with a fat Lie algebra n ,
D the left-invariant distribution on M such that De = v . For a left-invariant
coframe, the structure equations take the form

dφk =
∑
i

(Jkψi) ∧ ψi, dψi = 0

where J1, ..., Jm are anticommuting complex structures on D .

The results from the previous sections lead to consider fat distributions
satisfying

(4.1) dφk =
∑
i

(Jkψi) ∧ ψi mod(φ`)

where the Jk are sections of End(T (M)∗) satisfying the Canonical Commutation
Relations

JiJj + JjJi = −2δij.

The Equivalence Problem for these systems has been discussed for distri-
butions with growth vector (2n, 2n + 1), (4n, 4n + 3) and (8, 15). In these cases
n is parabolic, i.e., isomorphic to the Iwasawa subalgebra of a real semisimple Lie
algebra g of real rank one. The Tanaka [T] subriemannian prolongation of such
algebra is g , while in the non-parabolic case is just

n + k(n) + a(n)

where a(n) the 1-dimensional Lie algebra of dilations [Su]. In this case,Tanaka’s
theorem implies that, in the notation of [Z], the first pseudo G-structure P 0 already
carries a canonical frame.

As this paper was being written, E. van Erp pointed out to us his article
[Er], where fat distributions are called polycontact and those satisfying (4.1) arise
by imposing a compatible conformal structure.
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Córdoba. CIEM – CONICET. (5000)
Ciudad Universitaria, Córdoba, Ar-
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