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Abstract

This work deals with the stability analysis of nonlinear sampled-data systems un-

der nonuniform sampling. It establishes novel relationships between the stability

property of the exact discrete-time model for a given sequence of (aperiodic) sam-

pling instants and the stability property of the continuous-time system when the

maximum admissible sampling period converges to zero. These results can be

used to infer stability properties for the sampled-data system by direct inspection

of the stability of the mentioned continuous-time system, a task which is typically

easier than the analysis of the closed-loop sampled-data system. Compared to the

literature, our results allow to prove stronger (asymptotic) sampled-data stability

properties for nonlinear systems in cases for which existing results only guarantee

practical stability.

Keywords: sampled-data systems, nonlinear systems, nonuniform sampling,

control redesign, discrete-time models.

1. Introduction

The two main approaches to design controllers for sampled-data nonlinear

systems are: a) to design a discrete-time (DT) controller based on a DT model of

the plant (Nešić et al., 1999; Nešić and Teel, 2004; Liu et al., 2008; Nešić et al.,

2009a; Üstüntürk, 2012; Üstüntürk and Kocaoğlan, 2013; Noroozi et al., 2018;

Beikzadeh et al., 2018; Vallarella and Haimovich, 2019) or b) to obtain the con-

troller by adequate discretization of a continuous-time (CT) one. In the first ap-

proach, the DT model is usually an approximation due to the impossibility of

solving nonlinear differential equations in closed form. In the second approach,

emulation of the CT controller is known to stabilize the sampled-data system un-
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der sufficiently fast sampling (Nešić et al., 2009b; Proskurnikov, 2020). In ad-

dition, controller redesign that accounts for sampling may lead to better perfor-

mance (Nešić and Grüne, 2005; Monaco and Normand-Cyrot, 2007; Grüne et al.,

2008; Postoyan et al., 2008). In both approaches, the final result is in general

a sampling period-dependent DT control law to be implemented usually under

zero-order hold.

Results along the first approach generally give conditions under which a sta-

bility property of the approximate DT model in closed loop is enough to guar-

antee (some type of) stability of the closed-loop sampled-data system under suf-

ficiently fast sampling. In many cases, only practical (not asymptotic) stability

is ensured or else strong conditions are imposed (see Vallarella et al., 2021, and

references therein). Uniform (periodic) sampling is usually considered, but some

results ensuring only practical stability also allow nonuniform (aperiodic) sam-

pling (Di Ferdinando and Pepe, 2019; Di Ferdinando et al., 2021). Works that ad-

dress asymptotic stability of sampled-data systems and do not fall within any

of the two approaches mentioned also exist (Li and Zhao, 2018; Lin and Wei,

2018; Lin, 2020; Lin and Sun, 2021). Li and Zhao (2018) shows how asymp-

totic stability can be preserved via the selection of a specific sampling period.

Lin and Wei (2018); Lin (2020); Lin and Sun (2021) give results for semiglo-

bal asymptotic stabilizability under constant sampling, where the term “semi-

global” involves possibly different convergence rates for different sets of ini-

tial conditions and upper bounds on the sampling period. By contrast, previ-

ous own works within the first approach (Vallarella and Haimovich, 2019, 2018;

Vallarella et al., 2021) address semiglobal stability properties, where “semiglo-

bal” involves the same convergence rate but possibly different maximum sampling

periods for every initial condition, and allow nonuniform sampling (Omran et al.,

2016; Hetel et al., 2017). In particular, we derived conditions under which se-

miglobal (practical or exponential) stability is carried over between different DT

models (Vallarella and Haimovich, 2019; Vallarella et al., 2021) and we provided

adequate Lyapunov-type guarantees (Vallarella and Haimovich, 2018). This al-

lows to establish the stability of the exact DT model, i.e. the model whose state

coincides with the state of the sampled-data system at sampling instants and which

is not assumed to be available.

In this context, the aim of this note is to establish a precise correspondence be-

tween asymptotic (not only practical) stability properties under nonuniform sam-

pling of the exact DT model and stability properties of a related CT system. This

CT system is just the CT open-loop system in closed-loop with the CT limit of

the control law, the latter being the value of the control action when the sampling
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period tends to zero. We provide mild conditions on the open-loop models and

(sampling period-dependent) control laws under which the closed-loop exact DT

model exhibits some asymptotic stability property if and only if the related CT

system exhibits the respective CT equivalent property. These conditions com-

plement existing results by allowing to guarantee stronger (asymptotic) stability

properties for the sampled-data system in cases where previous results only show

practical stability or apply to uniform sampling. The mild conditions required ad-

mit systems that are not globally Lipschitz and not necessarily input-affine, and

control laws that may be not differentiable with respect to the sampling period.

Notation: R, R≥0, N and N0 denote the reals, nonnegative reals, naturals and

nonnegative integers. ClassesK ,K∞ andKL of functions are defined as in Khalil

(2002). For a vector x ∈ Rn, |x| denotes its Euclidean norm. A sequence is noted

as {Ti} := {Ti}∞i=0. For any {Ti} ⊂ R≥0, we define
∑−1

i=0 Ti = 0. Given T > 0, we

define Φ(T ) := {{Ti} : {Ti} is such that Ti ∈ (0, T ) for all i ∈ N0}.

2. Problem statement

Our aim is to obtain mild conditions that preserve stability properties for

sampled-data systems that arise from nonlinear plants of the form

ẋ = f (x, u), (1)

under zero-order hold, where x(t) ∈ Rn, u(t) ∈ Rm are the state and control vectors.

A control law uc : Rn → R
m may render

ẋ = f (x, uc(x)) =: h(x) (2)

stable as per one of the following definitions.

Definition 2.1. The system (2) is said to be

i) Globally Asymptotically Stable (GAS) if there exists β ∈ KL such that for

any x0 ∈ R
n the solutions satisfy |x(t)| ≤ β(|x0|, t), ∀t ≥ 0. If additionally

β ∈ KL can be chosen as β(r, t) := Kre−λt with K ≥ 1 and λ > 0 it is said to

be Globally Exponentially Stable (GES).

ii) Locally Exponentially Stable (LES) if there exist K ≥ 1 and R, λ > 0 such

that for all |x0| ≤ R the solutions satisfy |x(t)| ≤ K|x0|e−λt, ∀t ≥ 0.

iii) GALES if it is GAS and LES.
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We consider that the function f in (1) and a control law uc in (2) fulfill the

following local Lipschitzness assumptions.

Assumption 2.2. f : Rn × Rm → R
n fulfills f (0, 0) = 0 and for every M,Mu ≥ 0

there exists L = L(M,Mu) > 0 such that for all |x|, |y| ≤ M and |u|, |v| ≤ Mu we

have | f (x, u) − f (y, v)| ≤ L(|x − y| + |u − v|).

Assumption 2.3. uc : Rn → R
m fulfills uc(0) = 0 and for every M ≥ 0 there exists

L = L(M) > 0 such that for all |x|, |y| ≤ M we have |uc(x) − uc(y)| ≤ L|x − y|.

We consider sampling instants tk, k ∈ N0, t0 = 0 and tk+1 = tk + Tk, where

Tk > 0 is the kth sampling period. The sampling periods may vary following any

possible sequence as long as they are bounded by a maximum admissible sampling

interval; we refer to this situation as Varying Sampling Rate (VSR). We assume

that Tk is either known or determined at instant tk, so that this information may

be used to perform the current control action: uk = U(xk, Tk). This is always the

case under periodic sampling (i.e. Tk ≡ T > 0), where the control law is designed

based on prior knowledge of the sampling period. The sampled-data system that

arises from (1) in feedback with uk = U(xk, Tk) under zero-order hold is

ẋ(t) = f (x(t),U(x(tk), Tk)) ∀t ∈ [tk, tk+1), k ∈ N0. (3)

We consider DT models of (3). These can be regarded as estimates of the

value xk+1 = x(tk+1), given xk and uk at the sampling instant tk, namely xk+1 =

F(xk, uk, Tk). The exact DT model is the one that generates the actual value that

x(tk+1) will have as the solution of (3), and is denoted by Fe. For nonlinear plants,

the exact DT model may be unavailable due to the difficulty or impossibility of

solving nonlinear differential equations. Thus, a suitable design approach is to

design the control law based on a sufficiently good approximate DT model of

the plant, such as Runge-Kutta models (Stuart and Humphries, 1996). The sim-

plest of these models, the Euler model, is given by FE(x, u, T ) := x + T f (x, u).

For a DT model F and control law U, we define the closed-loop DT model

F̄U(x, T ) := F(x,U(x, T ), T ). We may also simply denote a closed-loop DT model

by F̄ when the control law is not important in the context.

To state our results we need the following Equilibrium-Preserving Consistency

(EPC) property, which bounds the mismatch between any two of the previously

defined DT models’ solutions after one sampling interval. This property becomes

equivalent to the REPC property in Vallarella et al. (2021) when no errors affect

the control input.
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Definition 2.4. The DT model F̄a is said to be Equilibrium-Preserving Consistent

(EPC) with F̄b if for each M ≥ 0 there exist constants K := K(M) > 0, T ∗ :=

T ∗(M) > 0 and a function ρ ∈ K∞ such that

∣
∣
∣F̄a(x, T ) − F̄b(y, T )

∣
∣
∣ ≤ (1 + KT ) |x − y| + Tρ(T ) max{|x|, |y|} (4)

for all |x|, |y| ≤ M and T ∈ (0, T ∗). The pair (F̄a, F̄b) is said to be EPC if F̄a is

EPC with F̄b.

The EPC property is sufficient to ensure that the following stabil-

ity properties for DT models, suitable under nonuniform sampling (see

Vallarella and Haimovich, 2019, 2018; Vallarella et al., 2021), are shared between

different DT models. This fact is stated in Theorem 2.6.

Definition 2.5. The system xk+1 = F̄(xk, Tk) is said to be

i) Semiglobally Practically Stable-VSR (SPS-VSR) if there exists β ∈ KL such

that for every M ≥ 0 and R > 0 there exists T⋆ := T⋆(M,R) > 0 such

that for all k ∈ N0, {Ti} ∈ Φ(T⋆) and |x0| ≤ M the solutions satisfy |xk| ≤
β
(

|x0|,
∑k−1

i=0 Ti

)

+ R.

ii) Locally Exponentially Stable-VSR (LES-VSR) if there exist K ≥ 1 and

R, T⋆, λ > 0 such that for all k ∈ N0, {Ti} ∈ Φ(T⋆) and |x0| ≤ R the solu-

tions satisfy |xk| ≤ K|x0|e−λ
∑k−1

i=0 Ti .

iii) Semiglobally (asymptotically) and Locally Exponentially Stable (SLES-VSR)

if it is SPS-VSR and LES-VSR.

iv) Semiglobally (asymptotically) Stable-VSR (SS-VSR) if there exists β ∈ KL
such that for every M ≥ 0 there exists T⋆ := T⋆(M) > 0 such that for all

k ∈ N0, {Ti} ∈ Φ(T⋆) and |x0| ≤ M the solutions satisfy |xk| ≤ β
(

|x0|,
∑k−1

i=0 Ti

)

.

If additionally β ∈ KL can be chosen as β(r, t) := Kr exp(−λt) with K ≥ 1

and λ > 0 it is said to be Semiglobally Exponentially Stable-VSR (SES-VSR).

Theorem 2.6. Suppose that (F̄a, F̄b) is EPC. Then i) F̄a is SPS-VSR⇔ F̄b is SPS-

VSR. ii) F̄a is LES-VSR⇔ F̄b is LES-VSR. iii) F̄a is SLES-VSR⇔ F̄b is SLES-VSR.

The proof of Theorem 2.6 follows from the proofs of Vallarella et al. (2021,

Theorem 3.5, Lemma 3.7) and Vallarella and Haimovich (2019, Theorem 3.1),

imposing that no errors affect the control input and can be found in Section 6.

To establish that an approximate model Fa in closed loop with a control law
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U(x, T ) is such that F̄a
U

is EPC with the exact model F̄e
U

, one could prove EPC

of (F̄E
U
, F̄a

U
), with F̄E the Euler model, which is much simpler. This is all that is

required because EPC is a transitive property and (F̄e
U
, F̄E

U) is already known to

be EPC (Vallarella et al., 2021). Once (F̄a
U
, F̄e

U
) EPC is established, application of

Theorem 2.6 would ensure that a stability property of the approximate model also

holds for the exact model.

3. Main results

In this section, we present mild sufficient conditions under which sampled-

data stability properties as per Definition 2.5 hold if and only if the closed-loop

CT system (2), with uc equal to a specific limit of the DT control law, has a

corresponding stability property. Conditions to ensure that different open-loop

models (say Fa and Fb) in closed-loop with the same control law (say U), are

EPC, i.e. (F̄a
U
, F̄b

U
) is EPC, already exist (Vallarella et al., 2021). To derive our

main results we need an extension to the case where different control laws may be

used, for which we require the following consistency and regularity conditions.

Definition 3.1. The pair (U,V) is said to be Semiglobally small-time convergent

Consistent (StC) if for each M ≥ 0 there exist a function ρ ∈ K∞ and T ∗ :=

T ∗(M) > 0 such that for all |x| ≤ M and T ∈ [0, T ∗) we have

|U(x, T ) − V(x, T )| ≤ ρ(T )|x|. (5)

Definition 3.2. The function U is said to be Semiglobally small-time Lipschitz

(StL) if for each M ≥ 0 there exist K := K(M) > 0, T ∗ := T ∗(M) > 0 with T ∗(·)
nonincreasing such that for all |x|, |y| ≤ M and T ∈ [0, T ∗) we have U(0, T ) = 0

and

|U(x, T ) − U(y, T )| ≤ K|x − y|. (6)

Definition 3.3. The DT model Fa is said to be Semiglobally small-time Lipschitz

Consistent (StLC) if for each M, E ≥ 0 there exist K := K(M, E) > 0, T ∗ :=

T ∗(M, E) > 0 such that for all |x|, |y| ≤ M, |u|, |v| ≤ E, and T ∈ [0, T ∗)

|Fa(x, u, T ) − Fa(y, v, T )| ≤ (1 + KT )|x − y| + KT |u − v|. (7)

Theorem 3.4 gives sufficient conditions so that closed-loop models arising

from feeding back the same open-loop model with different control laws are EPC.

Theorems 2.6 and 3.4 are both needed to prove Theorem 3.5, which is our main

result. The proofs of Theorems 3.4 and 3.5 are provided in Section 6.
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Theorem 3.4 (Proof in Section 6.2). Suppose that i) Fa is StLC, ii) U is StL,

iii) (U,V) is StC. Then (F̄a
U
, F̄a

V
) is EPC.

Theorem 3.5 (Proof in Section 6.3). Consider system (1), a DT control law

U(x, T ), and the CT control law uc(x) := U(x, 0). Suppose that

i) Assumptions 2.2 and 2.3 hold.

ii) U is StL.

iii) (U,Uc) is StC, with Uc(x, T ) := uc(x) for all T ≥ 0.

Then the CT closed-loop plant (2) is

a) LES⇔ the exact model F̄e
U

is LES-VSR.

b) GALES⇔ the exact model F̄e
U

is SLES-VSR.

c) GES⇔ the exact model F̄e
U

is SES-VSR.

Previous results ensure that semiglobal practical (Nešić et al., 1999;

Vallarella and Haimovich, 2019) or semiglobal exponential (Vallarella et al.,

2021) stability exhibited by an approximate open-loop model Fa in closed-loop

with a control law U(x, T ) is carried over to the exact closed-loop model F̄e
U

. By

Theorem 3.5 it may be possible to establish even stronger stability properties of

the same exact model F̄e
U

by analyzing the stability of the CT system (2) in closed-

loop with the CT limit of U, i.e. uc(x) := U(x, 0). For example, it is known that

(2) is LES if and only if its linearization at the equilibrium is GES. If F̄e
U

is al-

ready known to be SPS-VSR, and (2) is LES, then according to Theorem 3.5 F̄e
U

is

LES-VSR and hence indeed SLES-VSR. This was not covered in previous results

and can be done without an explicit expression of the exact model. We emphasize

(Theorem 2.6) that (F̄a, F̄e) being EPC does not guarantee that if F̄a is SS-VSR

then F̄e also is, unless stability is locally exponential in addition to asymptotic. As

a side comment, note that the sampled-data control law Uc(x, T ) = uc(x) = U(x, 0)

is just the emulation of the CT law uc(x), i.e. application of the control action uc(x)

irrespective of the sampling period.

Additionally, Theorem 3.5 allows to prove stability properties of the sampled-

data setting for a broader family of control laws than the ones used in some

controller redesign approaches (Monaco and Normand-Cyrot, 2007; Grüne et al.,

2008). In particular, note that the StC property in Definition 3.1 allows U to lack

a polynomial expansion of the form U(x, T ) =
∑N

i=0 T iui(x) with uc(x) := u0(x).

For example, consider U(x, T ) := Uc(x, T ) −
√

T x which is not differentiable at

T = 0 but for which (U,Uc) is StC with ρ(T ) :=
√

T .
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4. Example

In the present example, we use the provided results to prove the SLES-VSR of

a nonlinear sampled-data system in closed-loop with a proposed sampling period-

dependent DT control law. Consider the following version of the nonlinear CT

plant of the form ẋ = f (x, u) = f̃ (x) + g(x)u presented in Nešić et al. (2009b)

[

ẋ1

ẋ2

]

=

[

−2 − x2
1

1

0 x2(1 − x2)

] [

x1

x2

]

+

[

0

1

]

u. (8)

Consider the controller uc(x) = −2x2, where x := [x1, x2]T . First, we will prove

that the resulting closed-loop plant

ẋ =

[

−2x1 − x3
1
+ x2

−2x2 + x2
2
(1 − x2)

]

= f̃ (x) + g(x)uc(x) := h(x) (9)

is GALES. Define the Lyapunov function V(x) := 1
2
(x2

1
+ x2

2
) and note that

V̇(x) =
∂V

∂x
h(x) = −x4

1 − 1.5x2
1 −

1

2
(x1 − x2)2 − 1.5x2

2 + x3
2 − x4

2

≤ −x4
1 − 1.5x2

1 −
1

2
(x1 − x2)2, (10)

thus (9) is GAS. Additionally, we have that

∂h(x)

∂x

∣
∣
∣
∣
∣
x=0

=

[

−2 1

0 −2

]

(11)

is Hurwitz. By (Khalil, 2002, Corollary 4.3) (9) is LES, and consequently

GALES.

Next, we will derive a stabilizing sampling-period dependent DT control law.

Let He(x, T ) denote the solution of (9) from initial state x, evaluated T time units

after. In other words, He denotes the exact DT model of ẋ = h(x). Additionally,

according to Section 2, Fe(x, u, T ) denotes the solution of (8) from initial state x

and under a constant input u (zero-order hold), evaluated T time units after. If a

value of u exists so that the matching equation Fe(x, u, T ) = He(x, T ) is satisfied,

then the solution of the sampled-data system would be equal to that of the desired

closed-loop CT system (9) at a sampling instant. For analytic and complete vector

fields f̃ and g, the matching equation Fe(x, u, T ) = He(x, T ) is solvable if and

only if there exists a smooth function α : Rn → R such that
∂g(x)

∂x
f̃ (x)− ∂ f̃ (x)

∂x
g(x) =

8



α(x)g(x) (Monaco and Normand-Cyrot, 2007, Theorem 3.2). This is not the case

for the present plant since we have

∂g(x)

∂x
f̃ (x) − ∂ f̃ (x)

∂x
g(x) =

[

−1

2x2(x2 − 1) + x2
2

]

,

[

0

α(x)

]

. (12)

Additionally, no sampled-data control law can satisfy |Fe(x, u, T ) − He(x, T )| ≤
CT N for order N ≥ 4 for any T > 0 sufficiently small and C > 0 (Grüne et al.,

2008).

Since the matching equation is not solvable, we will propose an approximate

matching equation based on the Heun model of (9)

HHeun(x, T ) := x +
T

2
(h(x) + h(x + Th(x))) (13)

to derive the control law. If He is approximated by HHeun and Fe by FE we obtain

FE(x, u, T ) = HHeun(x, T )

x + T [ f̃ (x) + g(x)u] = HHeun(x, T )

g(x)u =
HHeun(x, T ) − x

T
− f̃ (x). (14)

Left-multiplying both sides of (14) by g†(x) := (gT (x)g(x))−1gT (x) and oper-

ating we have UE/Heun(x, T ) := g†(x)
[

HHeun(x,T )−x

T
− f̃ (x)

]

. Replacing (13) into the

last expression and solving yields

UE/Heun(x, T ) = −2x2

+

(

1.5x5
2 − 2.5x4

2 + 5x3
2 − 3x2

2 + 2x2

)

T

+

(

−1.5x7
2 + 3.5x6

2 − 8.5x5
2 + 8.5x4

2 − 8x3
2 + 2x2

2

)

T 2

+

(

0.5x9
2 − 1.5x8

2 + 4.5x7
2 − 6.5x6

2 + 9x5
2 − 6x4

2 + 4x3
2

)

T 3. (15)

We next simulate the sampled-data system defined by (8) for two different con-

trollers: emulation given by Uc(x, T ) = uc(x) = −2x2 and UE/Heun. Note that

UE/Heun(x, 0) = uc(x), as expected.

Assumptions 2.2 and 2.3 are easy to verify. Note that f (x, u) = f̃ (x) + g(x)u

fulfills Assumption 2.2 if and only if f̃ and g are locally Lipschitz. It is easy

to prove that the pair (Uc,U
E/Heun) is StC and that Uc and UE/Heun are both StL.

Since ẋ = h(x) is GALES, Theorem 3.5 establishes that both F̄e
Uc

and F̄e

UE/Heun are

SLES-VSR.
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Figure 1 shows simulations from initial condition x0 = [−1, 1]T for both sam-

pled-data closed-loop models for a constant sampling period T = 0.75. Note that

for the used sampling instant sequence, emulation leads to unstable behaviour

while the sampled-data evolution corresponding to the controller UE/Heun is stable

and gets closer to the exact continuous-time solution He.

5. Conclusions

We presented mild consistency and regularity conditions on the plant and con-

trol laws that allow to establish novel relationships between the stability of a sam-

pled-data system fed back with sampling-period-dependent control laws with the

stability of the CT closed-loop plant obtained in the limit as the sampling period

converges to zero. The given results extend previous ones under milder assump-

tions.

6. Proofs

6.1. Proof of Theorem 2.6

i). We will use the results in Vallarella and Haimovich (2019). To do so define

Ga(x, u, T ) := F̄a(x, T ) and Gb(x, u, T ) := F̄b(x, T ) for any u. We will now prove

that the fact that (F̄a, F̄b) is EPC implies that (U,Ga) is MSEC with (U,Gb) for

any control law U(x, T ) according to (Vallarella and Haimovich, 2019, Definition

2.6).

Given X ⊂ R
n compact, define M := max{|x| : x ∈ X}. Let the EPC definition

generate K > 0, T ∗ > 0 and ρ ∈ K∞ such that

∣
∣
∣F̄a(x, T ) − F̄b(y, T )

∣
∣
∣ ≤ (1 + KT ) |x − y| + Tρ(T ) max{|x|, |y|} (16)

for all |x|, |y| ≤ M and T ∈ (0, T ∗). Define ρ0 ∈ K via ρ0 := Mρ and the constant

(hence nondecreasing) function σ : R≥0 → R≥0, σ ≡ K. Then,

|F̄a(x, T ) − F̄b(y, T )| = |Ga(x, u, T ) −Gb(y, u, T )|
≤ Tρ0(T ) + (1 + Tσ(T ))|x − y|

holds for all u and x, y ∈ X. In particular, for any control law U, if we substitute

u = U(x + e, T ), it follows that

|Ḡa
U(x, e, T ) − Ḡb

U(y, e, T )| := |Ga(x,U(x + e, T ), T ) −Gb(y,U(y + e, T ), T )|
≤ Tρ0(T ) + (1 + Tσ(T ))|x − y|,

10



where we have employed the notation Ḡa
U

(x, e, T ) according to

Vallarella and Haimovich (2019). Therefore, the pair (U,Ga) is MSEC

with (U,Gb) (Vallarella and Haimovich, 2019, Definition 2.6). By

(Vallarella and Haimovich, 2019, Theorem 3.1) this last fact is sufficient to ensure

that if xk+1 = Ḡa
U

(xk, ek, Tk) is Semiglobally Practically Input-to-State Stable un-

der nonuniform sampling (SP-ISS-VSR) as defined in (Vallarella and Haimovich,

2019, Definition 2.1) then so is xk+1 = Ḡb
U

(xk, ek, Tk) and viceversa. Note that the

property SP-ISS-VSR (Vallarella and Haimovich, 2019, Definition 2.1) becomes

SPS-VSR (Definition 2.5) in the absence of errors (inputs). Given that that

Ḡa
U

(x, e, T ) = F̄a(x, T ) and Ḡb
U

(x, e, T ) = F̄b(x, T ) for all e ∈ R
n the result

follows. ◦
ii). We will use the results in Vallarella et al. (2021). To do so de-

fine Ḡa(x, e, T ) := F̄a(x, T ) and Ḡb(x, e, T ) := F̄b(x, T ) for any e. Note

that if the pair (F̄a, F̄b) is EPC then the pair (Ḡa, Ḡb) is REPC as defined in

(Vallarella et al., 2021, Definition 3.1). Furthermore, the REPC property implies

the REPMC property (Vallarella et al., 2021, Lemma 3.7), which is required to

prove (Vallarella et al., 2021, Theorem 3.5).

The current proof is based on slight modifications of the proof of

(Vallarella et al., 2021, Theorem 3.5). We modify its first part to adapt it to the

LES-VSR property under consideration:

Let Ka ≥ 1 and Ra, T
a, λa > 0, characterize the LES-VSR property of xa

k+1
=

Ḡa(xa
k
, ek, Tk). Thus, for all k ∈ N0, {Ti} ∈ Φ(T a) and |x0| ≤ Ra the solutions

satisfy |xa
k
| ≤ Ka|xa

0
|e−λa

∑k−1
i=0 Ti ≤ KaRa =: R. Let δ ∈ (0, 1) and η ∈ (0, δ). Let

T := 1
λa

ln
(

Ka

δ−η

)

. Define T1 := T + 1 and let Vallarella et al. (2021, Lemma 3.4)

generate T L
= T L(R, 0,T1, η). Define T̄ < min{1, T a, T L}. Consider sampling

period sequences such that {Ti} ∈ Φ(T̄ ), and for every k ∈ N0 and j ∈ N define

s(k) := sup
{

r ∈ N0 : r ≥ k + 1,
∑r−1

i=k Ti ≤ T1

}

and s j(k) :=

j
︷   ︸︸   ︷

s(. . . s(s(k))). From this

expression the proof follows identically as in the proof of (Vallarella et al., 2021,

Theorem 3.5) by performing the following minor changes: a) the quantity E must

be chosen as E = 0, which implies that the error input sequence satisfies ei = 0

for all i ∈ N0, b) rename M and Ma by Ra and R, respectively. Consequently,

according to the proof of (Vallarella et al., 2021, Theorem 3.5), we obtain that

the state evolution for the model Ḡb from the initial state ξ satisfies the following

condition

|xb
k(ξ)| ≤ Kb exp



−λb

k−1∑

i=0

Ti



|ξ| (17)
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for all k ∈ N0, |ξ| ≤ R and {Ti} ∈ Φ(T̄ ), where Kb := (Ka + η) exp (λbT1) =

(Ka + η)/δ and λb := ln(1/δ)/T1 and the result follows. ◦
iii). According to definition of SLES-VSR in Definition 2.4, this result is a

direct consequence of the results in the previous items i) and ii). ◦
�

6.2. Proof of Theorem 3.4.

Consider M ≥ 0 given and |x|, |y| ≤ M. Let the StC property of (U,V) generate

T V := T V(M) > 0 and ρ̃ ∈ K∞ and the StL property of U generate KU := KU(M) >

0 and T U := T U(M) > 0. Thus |U(x, T )| ≤ KU M for all |x| ≤ M and T ∈ [0, T U).

We can bound |V(x, T )| = |V(x, T ) − U(x, T ) + U(x, T )| ≤ |V(x, T ) − U(x, T )| +
|U(x, T )| ≤ ρ̃(T V)M+KU M =: E. Let the StLC property of Fa generate K(M, E) >

0 and T ∗ := T ∗(M, E) > 0. Define K̄ := K(1 + KU ) and ρ ∈ K∞ via ρ(s) := Kρ̃.

Define T⋆ := min{T ∗, T V , T U} Then, for all |x|, |y| ≤ M and T ∈ [0, T⋆) we have

|Fa(x,U(x, T ), T ) − Fa(y,V(y, T ), T )|
≤ (1 + KT )|x − y| + KT |U(x, T ) − V(y, T )| (18)

= (1 + KT )|x − y| + KT |U(x, T ) − U(y, T ) + U(y, T ) − V(y, T )|
≤ (1 + KT )|x − y| + KKU T |x − y| + KT ρ̃(T )|y| (19)

≤ (1 + K̄T )|x − y| + Tρ(T ) max{|x|, |y|}

In (18) and (19) we have used the facts that Fa is StLC, U is StL and (U,V) is

StC, respectively. �

6.3. Proof of Theorem 3.5

To prove Theorem 3.5 we need Theorem 3.4 and the following Lemma 6.1

and Proposition 6.2, whose proofs are given at the end of this section. Lemma

6.1 establishes the relationship between CT stability properties of (2) and the DT

model He, given by its samples; i.e. He(xk, Tk) is just the solution of (2) a time Tk

ahead from initial state xk.

Lemma 6.1. The CT closed-loop plant (2) is i) GAS⇔ He is SPS-VSR. ii) LES⇔
He is LES-VSR. iii) GALES⇔ He is SLES-VSR. iv) GES⇔ He is SES-VSR.

Proposition 6.2 shows that under Assumptions 2.2 and 2.3, the checkable mild

sufficient conditions of StL for the control law U and StC for the pair (U,Uc)

ensure that the pair (He, F̄e
U

) is EPC. This establishes a correspondence between

CT and sampled-data systems via Lemma 6.1.

12



Proposition 6.2. Under the assumptions of Theorem 3.5, the pair (He, F̄e
U

) is

EPC.

Note that asymptotic stability of (2) does not imply that F̄e
U

also exhibits

asymptotic properties. Under the assumptions of Theorem 3.5, by Lemma 6.1,

Proposition 6.2 and Theorem 2.6, the system (2) is GAS if and only if F̄e
U

is SPS-

VSR (however GAS of (2) does not imply SS-VSR of F̄e
U

as one might intuitively

think). Next we use Theorem 3.4, Lemma 6.1 and the following Lemma 6.3 to

prove Proposition 6.2. Recall that Uc(x, T ) := uc(x) for all T .

Lemma 6.3. The following implications hold

i) Assumptions 2.2 and 2.3⇒ h is locally Lipschitz.

ii) h is locally Lipschitz ⇒ He is StLC. Moreover, for each M ≥ 0 there exists

T̄ := T̄ (M) such that for all |x| ≤ M and T ∈ (0, T̄ ) we have |He(x, T )| ≤ 2M.

iii) h is locally Lipschitz⇒ (He, F̄E
Uc

) is EPC.

iv) Assumption 2.2⇒ FE (Euler model) is StLC.

v) Assumption 2.3⇒ Uc is StL.

vi) FE is StLC+ U is StL+ (Uc,U) is StC⇒ (F̄E
Uc
, F̄E

U
) is EPC.

vii) Assumptions 2.2 and 2.3 +U is StL⇒ (F̄E
U
, F̄e

U
) is EPC.

Proof. i) Consider M ≥ 0 given. Define Luc
:= Luc

(M) from Assumption 2.3,

L f := L f (M, Luc
) from Assumption 2.2 and L := L f (1 + Luc

). For all |x|, |y| ≤ M

we have

|h(x) − h(y)| = | f (x, uc(x)) − f (y, uc(y))| ≤ L f (|x − y| + |uc(x) − uc(y)|)
≤ L f (1 + Luc

)|x − y| = L|x − y|.

◦
ii) Consider M ≥ 0 given. Let the locally Lipschitz property of h generate

Lh := Lh(M) > 0. Define L̄(M) := Lh(2M) > 0 and T̄ (M) := ln (2)/L̄. We claim

that |He(x, T )| ≤ 2M for all |x| ≤ M and T ∈ (0, T̄ ). For a contradiction, let x and

T ′ be such that |x| ≤ M, T ′ ∈ (0, T̄ ) and |He(x, T ′)| > 2M. Define τ := inf{T >
0 : |He(x, T )| > 2M}. Then |He(x, T )| ≤ 2M for all T ∈ (0, τ] and |He(x, τ)| = 2M

by continuity, with τ < T̄ . We have |He(x, τ)| ≤ |x| +
∫ τ

0
|h(He(x, s))|ds ≤ M +

L̄
∫ τ

0
|He(x, s)|ds. Using Gronwall inequality, then |He(x, τ)| ≤ MeL̄τ < MeL̄T̄

=
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2M, reaching a contradiction. The claim is thus true. For all |x|, |y| ≤ M and

T ∈ (0, T̄ ) then

|He(x, T ) − He(y, T )| ≤ |x − y| +
∫ T

0

|h(He(x, s)) − h(He(y, s))| ds

≤ |x − y| + L̄

∫ T

0

|He(x, s) − He(y, s)| ds.

By Gronwall inequality then |He(x, T )−He(y, T )| ≤ eL̄T̄ |x − y|, thus He is StLC. ◦
iii) Consider M > 0 given. Let the StLC property of He generate LH :=

LH(2M) and T̄ := T̄ (M). From the claim in item ii), note that |He(x, T )| ≤ 2M for

all |x| ≤ M and T ∈ (0, T̄ ). Define Lh := Lh(2M) from the fact that h is locally

Lipschitz. Thus, for all |x|, |y| ≤ M and T ∈ (0, T̄ ) we have

|He(x, T ) − F̄E
Uc

(y, T )| =
∣
∣
∣
∣
∣
∣
x +

∫ T

0

h(He(x, s))ds − y − Th(y)

∣
∣
∣
∣
∣
∣

≤ |x − y| + Lh

∫ T

0

|He(x, s) − y| ds

≤ |x − y| + Lh

∫ T

0

∣
∣
∣
∣
∣
He(x, s) − y − F̄E

Uc
(y, s) + F̄E

Uc
(y, s)

∣
∣
∣
∣
∣
ds

≤ |x − y| + Lh

∫ T

0

∣
∣
∣He(x, s) − F̄E

Uc
(y, s)

∣
∣
∣ ds + Lh

∫ T

0

T |h(y)| ds

≤ |x − y| + Lh

∫ T

0

∣
∣
∣He(x, s) − F̄E

Uc
(y, s)

∣
∣
∣ ds + LhT 2 |h(y)| .

By Gronwall inequality,

∣
∣
∣He(x, T ) − F̄E

Uc
(y, s)

∣
∣
∣ ≤

(

|x − y| + LhT 2 |h(y)|
)

eLhT

≤ |x − y|
(

1 +
eLhT − 1

T
T

)

+ L2
hT 2eLhT |y|

≤ (1 + KT ) |x − y| + ρ(T )T |y|

where K := (eLhT̄ − 1)/T̄ =

(

Lh +
∑∞

k=2

Lk
h
T̄ k−1

k!

)

and ρ ∈ K∞ is defined as ρ(s) :=

L2
heLhT̄ s. ◦

iv) Consider M,D ≥ 0 given, then |FE(x, u, T ) − FE(y, v, T )| ≤ |x − y| +
T | f (x, u)− f (y, v)| ≤ |x− y|+ T L(|x− y|+ |u− v|) ≤ (1+KT )|x − y|+KT |u− v| for

14



all |x| ≤ M, |u|, |v| ≤ D, and T ∈ [0,∞) where we have used Assumption 2.2 and

K := L. ◦
v) By Assumption 2.3 uc(x) is locally Lipschitz. Given that it does not depend

on T the result is immediate. ◦
vi) Conditions of Theorem 3.4 hold, thus the result is immediate. ◦
vii) We will prove that Assumptions 2.1-2.3 (A2.1-2.3 in the following)

and conditions i) and ii) of (Vallarella et al., 2021, Theorem 3.9) hold. Define

Ū(x, e, T ) := U(x, T ) for each q ∈ N and all e ∈ R
q. Thus, the closed-loop Eu-

ler and exact models result F̄E
U

(x, e, T ) := F̄E(x,U(x, e, T ), T ) and F̄e
U

(x, e, T ) :=

F̄e(x,U(x, e, T ), T ), respectively.

A2.1: It is a direct consequence of Assumption 2.2.

A2.2: Consider M,Cu ≥ 0 given and |x| ≤ M and |u| ≤ Cu. From Assumption

2.2 define L := L(M,Cu) and function C f (r, s) := L(r + s), then for all |x| ≤ M and

|u| ≤ Cu | f (x, u)| = | f (x, u) − f (0, 0)| ≤ L(|x| + |u|) ≤ L(M + Cu) := C f (M,Cu).

A2.3: Consider M, E ≥ 0 given. Define L := L(M) from Assumption 2.3 and

K := K(M), T ∗(M) from the fact that U is StL. Define Tu(M, E) := min{1, T ∗(M)}
and for all |x| ≤ M, |e| ≤ E and T ∈ [0, Tu), we have |Ū(x, e, T )| ≤ |U(x, T ) −
U(0, T )| + |U(0, T )| ≤ K|x| ≤ KM =: Cu(M, E).

Condition i): The result is immediate, since we have that f (0, Ū(0, e, T )) =

f (0,U(0, T )) = f (0, 0) = 0.

Condition ii): From A2.3, and T ∈ (0, Tu) we have that |Ū(x, e, T )| ≤
Cu(M, E). Define L := L(M,Cu(M, E)) from Assumption 2.2. For all |xa|, |xb| ≤
M, |e| ≤ E and T ∈ (0, Tu) we have | f (xa, Ū(xa, e, T )) − f (xb, Ū(xb, e, T ))| ≤
L(|xa− xb|+ |Ū(xa, e, T )−Ū(xb, e, T )|) ≤ L(|xa− xb|+K|xa− xb|) ≤ L(1+K)|xa− xb|.
Thus, by (Vallarella et al., 2021, Theorem 3.9) the pair (F̄RK

U
, F̄e

U
) is REPC. By as-

suming that no errors affect the control input, i.e. e = 0, REPC coincide with the

EPC property and therefore (F̄RK
U , F̄

e
U

) is EPC for any explicit Runge-Kutta (RK)

model. Given that the Euler model is the simplest RK model, (F̄E
U
, F̄e

U
) is EPC

and the result follows. ◦ �

Proof of Lemma 6.1. Proof of item i)

=⇒) Let the GAS property of (2) generate β ∈ KL from i) of Definition 2.1.

We have |x(t)| ≤ β(|x0|, t), ∀t ≥ 0. Then,

|xk| ≤ β


|x0|,
k−1∑

i=0

Tk



 (20)

for all k ∈ N0, {Ti} ∈ Φ(∞) and x0 ∈ Rn. Thus, He is SS-VSR with T ∗ := ∞, and

hence SPS-VSR by the fact that SS-VSR implies SPS-VSR.
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⇐=) Let the SPS-VSR property of He generate β ∈ KL and T ∗ := T ∗(M,R)

for every M,R > 0 such that the bound |xk| ≤ β
(

|x0|,
∑k−1

i=0 Tk

)

+ R holds for all

k ∈ N0, {Ti} ∈ Φ(T ∗) and |x0| ≤ M. We next establish GAS with function β̄ :=

2β ∈ KL.

Consider x0 ∈ R
n and t ≥ 0 given. Define M := |x0| and the constants R ∈

(0, 1) such that R ≤ β(M, t) and N ∈ N such that N ≥ 2t
T ∗(M,R)

. Define the constant

sampling period sequence as Tk ≡ t
N
≤ T ∗/2. Note that

∑N−1
i=0 Ti = t and x(t) = xN .

Thus,

|x(t)| ≤ β


|x0|,
N−1∑

i=0

Ti



 + R = β (|x0|, t) + R ≤ β̄ (|x0|, t) . (21)

Given that (21) holds for any given x0 ∈ Rn and t ≥ 0 the result follows. ◦
Proof of item ii)

=⇒) Let the LES property of (2) generate K ≥ 1 and R, λ > 0. We have

|x(t)| ≤ K|x0|e−λt, ∀t ≥ 0. Then, |xk| ≤ K|x0|e−λ
∑k−1

i=0 Ti for all k ∈ N0, {Ti} ∈ Φ(∞)

and |x0| ≤ R and thus, He is LES-VSR.

⇐=) Let the LES-VSR property of He generate K ≥ 1 and R, T ∗, λ > 0 and

consider |x0| ≤ R given such that the bound |xk| ≤ K|x0|e−λ
∑k−1

i=0 Ti holds for all

k ∈ N0, {Ti} ∈ Φ(T ∗) and |x0| ≤ R. Consider a sampling period sequence such that

Tk ≡ aT ∗

2
with a ∈ (0, 1] for all k ∈ N0. Define t(k) := aT ∗

2
k. Thus, for the given

initial condition x0 we have |xk| ≤ K|x0| exp (−λt(k)) for all k ∈ N0. Given that,

irrespectibly of x0 ∈ Rn, the previous bound holds for any a ∈ (0, 1] it also holds

for any t ∈ R≥0 and the result follows. ◦
Proof of item iii) The result follows directly from the proofs of items i) and ii)

and the GALES definition. ◦
Proof of item iv) =⇒) Let the GES property of (2) generate λ > 0 and K ≥ 1.

We have |x(t)| ≤ K|x0| exp(−λt), ∀t ≥ 0. Then

|xk| ≤ K|x0| exp



−λ
k−1∑

i=0

Tk



 (22)

for all k ∈ N0, {Ti} ∈ Φ(∞) and x0 ∈ Rn. Thus, He is SES-VSR with T ∗ := ∞.

⇐=) Consider that He is SES-VSR. Consider x0 ∈ Rn given. Define M := |x0|,
and let the SES-VSR property of He generate λ > 0, K ≥ 1 and T ∗ := T ∗(M)

such that the bound (22) holds for all k ∈ N0, {Ti} ∈ Φ(T ∗) and the given x0.

Consider a sampling period sequence such that Tk ≡ aT ∗

2
with a ∈ (0, 1] for all

k ∈ N0. Define t(k) := aT ∗

2
k. Thus, for the given initial condition x0 we have

|xk| ≤ K|x0| exp (−λt(k)) for all k ∈ N0. Given that, irrespectibly of x0 ∈ R
n, this
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last bound holds for any a ∈ (0, 1] it also holds for any t ∈ R≥0 and the result

follows. ◦
�

Proof of Proposition 6.2. By the implications in Lemma 6.3, the pairs (He, F̄E
Uc

),

(F̄E
Uc
, F̄E

U) and (F̄E
U , F̄

e
U

) are EPC. By the transitivity of the EPC property (He, F̄e
U

)

is EPC. �

Proof of Theorem 3.5. Conditions of Proposition 6.2 imply that (He, F̄e
U

) is EPC.

Consider that F̄e
U

or He fulfills the SES-VSR, LES-VSR or SLES-VSR proper-

ties. By Theorem 2.6, He or F̄e
U

fulfills the same properties, respectively. By the

implications of Lemma 6.1 the result follows. �
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Figure 1: Evolution of the continuous-time closed-loop plant with uc = −2x2 compared with the

evolution of the sampled-data system (8) in closed-loop with controllers uc and UE/Heun for a

constant sampling period T = 0.75. Blue: x1. Red: x2.
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