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Abstract

We study single random walks and the electrical resistance for fractals obtained as the limit of a
sequence of periodic structures. In the long-scale regime, power laws describe both the mean-square
displacement of a random walk as a function of time and the electrical resistance as a function of
length. We show that the corresponding power-law exponents satisfy the Einstein relation. For shorter
scales, where these exponents depend on length, we find how the Einstein relation can be generalized
to hold locally. All these findings were analytically derived and confirmed by numerical simulations.

1. Introduction

Fractals are characterized by quantities that exhibit power-law behaviour in space or time. More precisely, as
scale invariance occurs for integer powers of a characteristic length, pure power laws are modulated by
logarithmic periodic functions, that describe the departures from the main trend at intermediate scales. These
modulations have been the object of interest in the last years, and considerable effort has been devoted toward
understanding the relation between log-periodicity and discrete-scale invariance [1-13]. More recentley log-
periodic oscillations were experimentally observed in quantum topological materials [14, 15].

For a given fractal and some related observables, which show (modulated) power-law behaviours, a problem
of interest is to determine whether or not the exponents associated with these quantities are independent.
Sometimes we can expect a relation as a consequence of underlying physical laws. This is, for example, the case of
the mass m, the electric resistance R and the mean-square-displacement (MSD) Ar” for a single random walker.
On a fractal, the first two grow with length las m (I) ~ 1% and R(l) ~ I, while the last one grows with time t as
Ar2(t) ~ t2/4 The exponents dj (and d,, are known as the fractal, resistance and walk exponents, respectively,
and these power-law behaviours hold for scales large enough to ensure self-similarity. In an d-dimensional
euclidean space, the diffusion coefficient D and conductivity o are related by the Einstein equation [16]

2
o=Lp. )
ks T

Here, D = lim,_, o, Ar?(t)/2t, pand eare the density and charge of mobile particles, T'is the temperature and kg
is the Boltzmann constant. Equation (1) is one of the forms of the fluctuation-dissipation theorem, and can be
used together with simple scaling heuristic arguments, to argue that the fractal, walk, and resistance exponents
satisfy the Einstein relation [16]

df =d, — C) 2

This property has been shown to hold asymptotically for some finitely ramified fractals [17, 18]; which has been
used to analyze the periodicity of the oscillations in dynamic observables, in the first attempts to understand log-
periodic modulation[19]. Einstein relation was also investigated for random walks on weighted graphs [20], and
for karst networks structures [21].

A fractal structure can be generated by iterating a simple rule. Self-similarity is manifested in power-law
behaviours, which occur for long enough scales. However, this does not always hold for shorter lengths. Thus,
thelocal slopes of the observables as a function of time or length, in log-log scales, are variable quantities, which
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Figure 1. Two nearest-neighbor cells fand f + 1, for a periodic substrate with linear size period I. The points represent sites, which can
be occupied by mobile particles. The arrows represent hopping rates between pairs of sites. For clarity, only a few sites and hopping
rates were highlighted. 1" corresponds to the number of particles in the internal site r of cell f.

approach constant values only asymptotically. For more complex multi-scale systems, different local fractal
dimensions can be observed in different parts of the media. The study of the local fractal dimension is important
for understanding the structure and geometry of the fractals in detail, and has applications in various fields, such
as volumic texture characterization [22], differentiation of biological tissues [23], and reaction-ultraslow
diffusion on comb structures [24].

In this work we focus on deterministic fractals, obtained as the limit of a sequence of periodic structures. In
this procedure, the period increases at every stepas L (n =0, 1, 2, ...), where Lis a basic characteristic length
scale. We argue that, for these media, the local fractal, walk, and resistance exponents are related through an
equation that generalizes (2). This generalization is obtained analytically, following the steady-state method for
the calculation of the effective diffusion coefficients for periodic substrates [25]. To further strengthen our
findings we perform numerical simulations for two models of fractals; which confirm the theoretical
predictions.

The paper is organized as follows. In section 2 we relate the diffusion coefficient and the unit cell resistance
for a periodic structure. In section 3 we derive the Einstein relation for self-similar systems. In section 4 we
generalize this relation for scale-dependent exponents. In section 5 we confirm the generalized relation by

numerical simulations performed on models of asymptotic self-similar substrates. Finally, we give our
conclusions in section 6.

2. Periodic systems

In this section we address the problem of the diffusion coefficient for a periodic substrate. We follows the steady-
state method developed in reference [25]. We start by introducing the periodic substrate with unit cell of linear
dimension /, schematized in figure 1, where the points represent sites, and the arrows represent hopping rates.
On this structure, a mobile particle can jump between connected sites according to the hopping rates k’s (for the
sake of clarity only a few sites and arrows were highlighted). We focus on a steady-state of non-interacting
particles flowing with a constant current densityj.

As shown in [25], this steady-state consists of a set of microscopic particle currents distributed with the same
periodicity as the substrate. In figure 1 two nearest-neighbor (NN) unit cells are depicted schematically where,
for example, n{/” represents the number of particles in site r (internal index) of cell f. Because of the mentioned
periodicity, we get that for given pair of connected sites with internal indices s and t,

i =i/, 3)
where i/ is the particle current from site s to site r in cell f. In addition, as hopping rates do not depend on the
cell either but only on the internal indices, the last equation can be rewritten as

ksr(ns(f) _ nr(f)) _ ksr(”s(fH) _ nr(f+1)), 4)
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i:(nb—na)k l=(Vb—Va)/QR

Figure 2. Schematics of the equivalence between Fick’s law (left) and Ohm’s law (right). In the mapping, particles have charge g, while
the other quantities arerelatedas V. = #),and R = V/qk. Particle current is represented by 7, and V is a constant with units of
voltage.

or

”s(f+1) _ ns(f) — nr(f+1) _ nr(f). 5)

Therefore, in the steady-state, the difference in the occupation number for a given site and the equivalent site
ina NN cell is the same for all sites.
The relation of the steady-state problem with the diffusion coefficient D is provided by Fick’s law

j=-D—r (6)

which is valid for distances larger than I. Here An corresponds to the particle number difference for NN cells.
Note that D also determines the mean-square displacement A*x of a single random walker on the same
structure, which behaves as

Nx(t) = 2Dt; (7)

for time long enough for Ax > I.

Transforming the steady-state problem into an equivalent electrical problem is straightforward. Indeed, for
particles of electric charge g, a mapping between Fick’s law and Ohm’s law results by identifying particle number
with electrostatic potential (V, = n,)), and hopping rate with conductance (k = V/qR); where V is a constant
with units of voltage. In figure 2 we represent this mapping for every pair of connected sites. Following this
analogy, we see that in the electric problem, the potential difference for a pair of equivalent sites in NN cells takes
the constant value

AV = (n*D — 0V, (8)
and that the difference between particle populations

M
An =" (n — n) = MAV /Y, 9)
r=1
is proportional to the potential difference AV, where M corresponds to the number of sites per unit cell.
Thus, according to equation (6), we can conclude that, given a periodic substrate with unit cell of linear
dimension land M sites, the diffusion coefficient and the potential difference between two equivalent sites in NN
cells, are connected through the relation

2
bV
MAV

(10)

where j is the steady-state current density.

3. Self-similar substrates

Deterministic fractals are usually built by a recursive procedure, that results in a sequence of structures called
generations. A generation consists of a periodic array of sites connected by bonds. The process begins with a basic
periodic structure (zeroth generation). At every step the unit cell is scaled by a factor L and the building rules
ensure that self-similarity is obtained after a large number of iterations.

3
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Following equation (10), the diffusion coefficient D, for the generation p and the potential difference AV,
between two equivalent points in NN unit cells are related as
L»y

D,=—j , 11
P ]MPAVP (11)

where M,, is the number of sites in the unit cell, and L?isits linear dimension. Then, for two consecutive
generations p and p + 1, through which the same steady-state current flows, we obtain
Dp _2 MP +1 A ‘/p +1

=L . (12)
Dy M, AV,

Now, since for a fractal the number of sites in a box with linear dimension [ behaves as m (1) ~ 1 (i. e., dyis
the fractal dimension defined through box-counting), M, ;. /M, = (L'**V/LF)% = L%, and thelast equation
can be rewritten as

Dy _ Ldf—2—AVP“,

13)
Dy+1 AV

As previously shown [7, 8], a perfect diffusive self-similar structure corresponds to a ratio D, /D, ; which
does notdepend on p, i. e.,

Dy

=14+ )\ (14)
b1

with Aa positive constant. In this model, the mean-square displacement for a single random walker behaves as
Nx(t) = f (). (15)

The modulation f(#) is a log-periodic function, f(t7) = f(#), and both v and 7 can be analytically calculated in
terms of L and A:

1
V= —2 N Togl T ) (16)
log(L)
=17 (17)

The important partial conclusion in the context of this work is that, according to above discussion, a perfect
diffusive self-similar structure implies a power-law behaviour for the resistance as a function of length. Indeed,

equations (13) and (14) leads to
AVerl _ LI/V*df’ (18)
AV

where we haveused 1 + A =L/ Y72 from equation (16). Thus, for a perfect diffusive self-similar fractal the
potential difference, which corresponds to steady-state current, scales with length / as

AV ~ IS, (19)
where the exponent (is given by
¢=1/v—dg (20)
which is the Einstein relation (2), with d,, = 1/v.

4. Local exponents

We consider now a generic substrate for which diffusive self-similarity is reached only asymptotically. Let us
assume a ratio between consecutive diffusion coefficients, that depends on the generation p, as

D,

Dyt 1+ M. @1
where, {A: p=1,2, ...} isasequence of non-negative real numbers, with lim, o Ay = A

Because of this limit, at long enough times a single random walk on this substrate will show a MSD behaviour
asin equation (15), and, as pointed out before, for large enough lengths the potential difference will behave as in
equation (19); with vand { given by equations (16) and (20).

In this section we focus on local exponents, which correspond to the slopes in log-log scales for finite length
or time. As shown for example in [8], on a substrate on which diffusion coefficients for generations pand p + 1
satisfy equation (21), the MSD for a single random walker behaves as

4
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N (t) ~ t2, for LF < Ax S LPHL (22)
with thelocal exponent v, given by
1

Vp = 24 log(1 + Ap) ’ (23)
log(L)
Then, after rearranging this equationas 1 4+ X\, = L'/*»~2, which corresponds to the left hand side of
equation (13), we obtain
% — [Mw—ds, (24)
AV

Thus, we expect that the potential difference scales with length [ as

AV (D) ~ 1%, for LP <1< Lt (25)

and that the local exponents satisfy the relation
Cp = 1/Vp - df. (26)

Therefore, local slopes in log-log scales for the resistance as a function of length and for MSD of a single
random walker as a function of time are related for all scales through equation (26); which generalizes the
Einstein relation.

5. Numerical simulations

We study numerically the steady-state that corresponds to a unitary current on two models, for which diffusive
self-similarity appears asymptotically. At finite lengths, the local random-walk exponent v/, is not constant.
Thus, we expect an also variable resistance exponent ¢y, related to the former through equation (26).

The first model is a substrate built on a square lattice. A random walk consists in a particle hopping among
NN sites. If sites are connected by a bond, the hopping rate is k = 1/4. If the sites are not connected, the hopping
rateis k = 0. A fractal is obtained by deleting some bonds. The characteristic scale factor is L = 3, and the unit
cells for the first, the second and the third generations are depicted schematically in figure 3. For every generation
the unit cell can be separated from the rest by cutting four bonds. As shown in a previous work, the mass on this
structure shows a power-law behaviour with dy= 2. However, the random walk exponent v/, grows with time
and approaches a value v < 1/2 when t — oo [8].

We have run numerical simulations on the unit cell of the sixth generation, to reach the steady-state in which
aunitary current flows between the left and right extremes. In figure 4 we plot with symbols the potential
differences for lengths x = 3¢ (i=0,1,...,6), which are the unit cell linear sizes for the generations zero to six. In
the same figure, we plot a line using the relation (26) and the numerical values for v/, which are the outcomes of
random walk simulations reported in reference [8]. Notice that both data set fall on the same curve, which
confirms the relation (26).

The second model is a generalization of the one-dimensional self-similar model introduced in [7]. We start
with a single random walk on a one-dimensional lattice, with a hopping rate k, between any pair of NN sites.
This homogeneous case corresponds to generation zero. We introduce a natural number L to build the other
generations.

In the first generation, we reset to k; < ko the hopping rate for every pair of sites jand j + 1, with
mod(j, L) = 0. The other hopping rates remains as in zeroth generation.

In the second generation, we reset to k, < k; the hopping rate for every pair of sites jand j + 1, with
mod(j, L*) = 0.The other hopping rates remains as in first generation.

This recursion follows indefinitely, in such a way that generation # is obtained from generation n — 1 after
resetting to k,, < k,,_; the hopping rate for every pair of sites jand j + 1, with mod (j, L") = 0.In figure 5 we
show an schematics for L = 5.

If we ask for perfect self-similarity for diffusion, i. e. equation (14), the hopping rates are found iteratively as
in reference [7]. For the more general case of equation (21), the sequence of hopping rates is given by
LAy '

+ ——=T1] a+2x), fori=1,2,3.. (27)
j=0

L1
ki kioy ko

We test the validity of the relation (26) among the local exponents for a family of substrates given by
Ap = A1 — 2785, (28)
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Figure 3. Substrate in two dimensions, which results in scale-dependent walk and resistance exponents. The schematics correspond to
the unit cells for the first, second and third generations. The segments represent bonds between sites.

100
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z

Figure 4. Potential difference as a function of length for a unitary current flowing trough the unit cell of the sixth generation substrate
in figure 3. The symbols correspond to simulations of the steady-state. The line was plotted with the exponents ¢, from equation (26)
and the values of v, which result from random-walk numerical simulations.

Atshort enough lengths these substrates are nearly homogeneous (), ~ 0 for p < 5), while, on the other
extreme, self-similarity for diffusion is reached for lengths much larger than L°. The local random walk exponent
(23) decreases with length and approaches asymptotically v in equation (16). Thus, the variation of v/, in space
increases with X and, because of equation (26), the same should occur with the variation of Cpr Thisis an
interesting model, because the variation of the exponents with length can be adjusted through the parameter \.
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Figure 5. Schematics of the one-dimensional random-walk model. We begin with a homogeneous lattice, and a hopping rate k,
between nearest-neighbor sites. Then, hopping rates are reset to k; for transitions between sites jand j + 1 for every jsuch that
mod(j, L") = 0,andforn = 1,2, ....In this example, L = 5.
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Figure 6. Potential difference as a function of length for unitary current on the one-dimensional model with A, = A (1 — 277 /5, and
L = 2.(Main) Symbols correspond to data obtained with numerical simulations on a tenth-generation substrate. Lines were drawn
using the values of theoretical exponents. From bottom to top, A = 1 (red), A = 2 (green), A = 4 (violet), A = 5 (blue). (Inset) More
detailed structure for A = 2.

We have run numerical simulations for the steady-state that corresponds to a unitary current flowing on this
model, with L =2 and A = 1, 2, 4, 5. All substrates were built until generation 10. In figure 6-main we plot with
symbols the potential difference as a function of the length x, for x = 2/ (j = 0, 1,...,9). The lines correspond to
the exponents ¢, obtained from equations (26) and (23). Note the excellent agreement between theory and
simulations. The inset in the same figure shows substructure of AV for A = 2.

6. Conclusions

We have studied first the connection between single random walks and steady-state potential difference for
substrates with spatial periodicity. Then, by considering a sequence of periodic systems, a common procedure
for deterministic fractal construction, we find that the length dependent fractal, walk and resistance exponents,
for the substrate obtained in the infinite limit of this sequence, satisfy, at every length scale, the relation (26). This
can be considered as alocal version of the Einstein relation (2). We have tested our predictions numerically for
two models. The first model is a fractal in two dimensions, while the the second is a fractal in one dimension.
Both models lead to length-dependent exponents at intermediate scales. The excellent agreement between the
outcomes of these simulations and the theoretical predictions supports the validity of the mentioned relation
among exponents, not only in the asymptotic self-similar limit but also locally, for all length scales. Let us stress
that the schematics in figure 2 is not specially related to a particular dimension. Thus, we expect that local and
global Einstein relations hold also for deterministic fractals in three dimensions. However the issue of the
relation among exponents for random fractals is an open problem. We hope that this article estimulate further
investigation on the subject.
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