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Abstract
We study single randomwalks and the electrical resistance for fractals obtained as the limit of a
sequence of periodic structures. In the long-scale regime, power laws describe both themean-square
displacement of a randomwalk as a function of time and the electrical resistance as a function of
length.We show that the corresponding power-law exponents satisfy the Einstein relation. For shorter
scales, where these exponents depend on length, we find how the Einstein relation can be generalized
to hold locally. All these findings were analytically derived and confirmed by numerical simulations.

1. Introduction

Fractals are characterized by quantities that exhibit power-law behaviour in space or time.More precisely, as
scale invariance occurs for integer powers of a characteristic length, pure power laws aremodulated by
logarithmic periodic functions, that describe the departures from themain trend at intermediate scales. These
modulations have been the object of interest in the last years, and considerable effort has been devoted toward
understanding the relation between log-periodicity and discrete-scale invariance [1–13].More recentley log-
periodic oscillations were experimentally observed in quantum topologicalmaterials [14, 15].

For a given fractal and some related observables, which show (modulated) power-law behaviours, a problem
of interest is to determinewhether or not the exponents associatedwith these quantities are independent.
Sometimeswe can expect a relation as a consequence of underlying physical laws. This is, for example, the case of
themassm, the electric resistanceR and themean-square-displacement (MSD)Δr2 for a single randomwalker.
On a fractal, the first two growwith length l as ~( )m l ldf andR(l)∼ l ζ, while the last one growswith time t as
D ~( )r t t d2 2 w. The exponents df, ζ and dw are known as the fractal, resistance andwalk exponents, respectively,
and these power-law behaviours hold for scales large enough to ensure self-similarity. In an d-dimensional
euclidean space, the diffusion coefficientD and conductivityσ are related by the Einstein equation [16]
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= ( )e

k T
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B

2

Here, = D¥ ( )D r t tlim 2t
2 , ρ and e are the density and charge ofmobile particles,T is the temperature and kB

is the Boltzmann constant. Equation (1) is one of the forms of thefluctuation-dissipation theorem, and can be
used together with simple scaling heuristic arguments, to argue that the fractal, walk, and resistance exponents
satisfy the Einstein relation [16]

z= - ( )d d , 2f w

This property has been shown to hold asymptotically for some finitely ramified fractals [17, 18]; which has been
used to analyze the periodicity of the oscillations in dynamic observables, in thefirst attempts to understand log-
periodicmodulation[19]. Einstein relationwas also investigated for randomwalks onweighted graphs [20], and
for karst networks structures [21].

A fractal structure can be generated by iterating a simple rule. Self-similarity ismanifested in power-law
behaviours, which occur for long enough scales. However, this does not always hold for shorter lengths. Thus,
the local slopes of the observables as a function of time or length, in log-log scales, are variable quantities, which
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approach constant values only asymptotically. Formore complexmulti-scale systems, different local fractal
dimensions can be observed in different parts of themedia. The study of the local fractal dimension is important
for understanding the structure and geometry of the fractals in detail, and has applications in various fields, such
as volumic texture characterization [22], differentiation of biological tissues [23], and reaction-ultraslow
diffusion on comb structures [24].

In this workwe focus on deterministic fractals, obtained as the limit of a sequence of periodic structures. In
this procedure, the period increases at every step as Ln (n= 0, 1, 2,K), where L is a basic characteristic length
scale.We argue that, for thesemedia, the local fractal, walk, and resistance exponents are related through an
equation that generalizes (2). This generalization is obtained analytically, following the steady-statemethod for
the calculation of the effective diffusion coefficients for periodic substrates [25]. To further strengthen our
findings we performnumerical simulations for twomodels of fractals; which confirm the theoretical
predictions.

The paper is organized as follows. In section 2we relate the diffusion coefficient and the unit cell resistance
for a periodic structure. In section 3we derive the Einstein relation for self-similar systems. In section 4we
generalize this relation for scale-dependent exponents. In section 5we confirm the generalized relation by
numerical simulations performed onmodels of asymptotic self-similar substrates. Finally, we give our
conclusions in section 6.

2. Periodic systems

In this sectionwe address the problemof the diffusion coefficient for a periodic substrate.We follows the steady-
statemethod developed in reference [25].We start by introducing the periodic substrate with unit cell of linear
dimension l, schematized infigure 1, where the points represent sites, and the arrows represent hopping rates.
On this structure, amobile particle can jump between connected sites according to the hopping rates ¢k s (for the
sake of clarity only a few sites and arrowswere highlighted).We focus on a steady-state of non-interacting
particlesflowingwith a constant current density j.

As shown in [25], this steady-state consists of a set ofmicroscopic particle currents distributedwith the same
periodicity as the substrate. Infigure 1 two nearest-neighbor (NN) unit cells are depicted schematically where,
for example, ( )ns

f represents the number of particles in site r (internal index) of cell f. Because of thementioned
periodicity, we get that for given pair of connected sites with internal indices s and t,

= + ( )( ) ( )i i , 3rs
f

rs
f 1

where ( )irs
f is the particle current from site s to site r in cell f. In addition, as hopping rates do not depend on the

cell either but only on the internal indices, the last equation can be rewritten as

- = -+ +( ) ( ) ( )( ) ( ) ( ) ( )k n n k n n , 4sr s
f

r
f

sr s
f

r
f1 1

Figure 1.Twonearest-neighbor cells f and f + 1, for a periodic substrate with linear size period l. The points represent sites, which can
be occupied bymobile particles. The arrows represent hopping rates between pairs of sites. For clarity, only a few sites and hopping
rates were highlighted. ( )nr

f corresponds to the number of particles in the internal site r of cell f.

2

Phys. Scr. 98 (2023) 095008 LPadilla and J L Iguain



or

- = -+ + ( )( ) ( ) ( ) ( )n n n n . 5s
f

s
f

r
f

r
f1 1

Therefore, in the steady-state, the difference in the occupation number for a given site and the equivalent site
in aNNcell is the same for all sites.

The relation of the steady-state problemwith the diffusion coefficientD is provided by Fickʼs law

= -
D ( )j D

n

l
, 6

2

which is valid for distances larger than l. HereΔn corresponds to the particle number difference forNN cells.
Note thatD also determines themean-square displacementΔ2x of a single randomwalker on the same
structure, which behaves as

D =( ) ( )x t Dt2 ; 72

for time long enough forΔx? l.
Transforming the steady-state problem into an equivalent electrical problem is straightforward. Indeed, for

particles of electric charge q, amapping between Fickʼs law andOhmʼs law results by identifying particle number
with electrostatic potential ( =V na a ), and hopping ratewith conductance ( =k qR); where  is a constant
with units of voltage. Infigure 2we represent thismapping for every pair of connected sites. Following this
analogy, we see that in the electric problem, the potential difference for a pair of equivalent sites inNNcells takes
the constant value

D = -+( ) ( )( ) ( )V n n , 8r
i

r
i1

and that the difference between particle populations

åD = - = D
=

+( ) ( )( ) ( )n n n M V , 9
r

M

r
i

r
i

1

1

is proportional to the potential differenceΔV, whereM corresponds to the number of sites per unit cell.
Thus, according to equation (6), we can conclude that, given a periodic substrate with unit cell of linear

dimension l andM sites, the diffusion coefficient and the potential difference between two equivalent sites inNN
cells, are connected through the relation


= -

D
( )D j

l

M V
, 10

2

where j is the steady-state current density.

3. Self-similar substrates

Deterministic fractals are usually built by a recursive procedure, that results in a sequence of structures called
generations. A generation consists of a periodic array of sites connected by bonds. The process begins with a basic
periodic structure (zeroth generation). At every step the unit cell is scaled by a factor L and the building rules
ensure that self-similarity is obtained after a large number of iterations.

Figure 2. Schematics of the equivalence between Fickʼs law (left) andOhmʼs law (right). In themapping, particles have charge q, while
the other quantities are related as =V n , and =R qk. Particle current is represented by i, and  is a constant with units of
voltage.
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Following equation (10), the diffusion coefficientDp for the generation p and the potential differenceΔVp

between two equivalent points inNNunit cells are related as


= -

D
( )D j

L

M V
, 11p

p

p p

2

whereMp is the number of sites in the unit cell, and Lp is its linear dimension. Then, for two consecutive
generations p and p+ 1, throughwhich the same steady-state current flows, we obtain

=
D

D+

- + + ( )
D

D
L

M

M

V

V
. 12

p

p

p

p

p

p1

2 1 1

Now, since for a fractal the number of sites in a boxwith linear dimension l behaves as ~( )m l ldf (i. e., df is
the fractal dimension defined through box-counting), = =+

+( )( )M M L L Lp p
p p d d

1
1 f f , and the last equation

can be rewritten as

=
D

D+

- + ( )
D

D
L

V

V
, 13

p

p

d p

p1

2 1
f

As previously shown [7, 8], a perfect diffusive self-similar structure corresponds to a ratioDp/Dp+1 which
does not depend on p, i. e.,

l= +
+

( )
D

D
1 , 14

p

p 1

withλ a positive constant. In thismodel, themean-square displacement for a single randomwalker behaves as

D = n( ) ( ) ( )x t f t t . 152 2

Themodulation f (t) is a log-periodic function, f (tτ)= f (t), and both ν and τ can be analytically calculated in
terms of L andλ:

n =
+ l+

( )( )
( )

1

2
16

L

log 1

log

t = n ( )L 171

The important partial conclusion in the context of this work is that, according to above discussion, a perfect
diffusive self-similar structure implies a power-law behaviour for the resistance as a function of length. Indeed,
equations (13) and (14) leads to

D

D
= n+ - ( )

V

V
L , 18

p

p

d1 1 f

wherewe have used 1+ λ= L1/ ν−2, from equation (16). Thus, for a perfect diffusive self-similar fractal the
potential difference, which corresponds to steady-state current, scales with length l as

D ~ z ( )V l , 19

where the exponent ζ is given by

z n= - ( )d1 ; 20f

which is the Einstein relation (2), with dw= 1/ν.

4. Local exponents

Weconsider now a generic substrate for which diffusive self-similarity is reached only asymptotically. Let us
assume a ratio between consecutive diffusion coefficients, that depends on the generation p, as

l= +
+

( )
D

D
1 . 21

p

p
p

1

where, {λp: p= 1, 2,K} is a sequence of non-negative real numbers, with l l=¥limp p .
Because of this limit, at long enough times a single randomwalk on this substrate will show aMSDbehaviour

as in equation (15), and, as pointed out before, for large enough lengths the potential difference will behave as in
equation (19); with ν and ζ given by equations (16) and (20).

In this sectionwe focus on local exponents, which correspond to the slopes in log-log scales forfinite length
or time. As shown for example in [8], on a substrate onwhich diffusion coefficients for generations p and p+ 1
satisfy equation (21), theMSD for a single randomwalker behaves as

4
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D ~ Dn + ( ) ( )x t t L x L, for , 22p p2 2 1p

with the local exponent νp given by

n =
+

l+
· ( )( )

( )

1

2
23p

L

log 1

log

p

Then, after rearranging this equation as l+ = n -L1 p
1 2p , which corresponds to the left hand side of

equation (13), we obtain

D

D
= n+ - ( )

V

V
L . 24

p

p

d1 1 p f

Thus, we expect that the potential difference scales with length l as

D ~ z + ( ) ( )V l l L l L, for , 25p p 1p

and that the local exponents satisfy the relation

z n= - ( )d1 . 26p p f

Therefore, local slopes in log-log scales for the resistance as a function of length and forMSDof a single
randomwalker as a function of time are related for all scales through equation (26); which generalizes the
Einstein relation.

5.Numerical simulations

We study numerically the steady-state that corresponds to a unitary current on twomodels, for which diffusive
self-similarity appears asymptotically. Atfinite lengths, the local random-walk exponent νp is not constant.
Thus, we expect an also variable resistance exponent ζp, related to the former through equation (26).

Thefirstmodel is a substrate built on a square lattice. A randomwalk consists in a particle hopping among
NN sites. If sites are connected by a bond, the hopping rate is k= 1/4. If the sites are not connected, the hopping
rate is k= 0. A fractal is obtained by deleting some bonds. The characteristic scale factor is L= 3, and the unit
cells for thefirst, the second and the third generations are depicted schematically infigure 3. For every generation
the unit cell can be separated from the rest by cutting four bonds. As shown in a previous work, themass on this
structure shows a power-law behaviourwith df= 2.However, the randomwalk exponent νp growswith time
and approaches a value ν< 1/2when t→∞ [8].

We have run numerical simulations on the unit cell of the sixth generation, to reach the steady-state inwhich
a unitary current flows between the left and right extremes. Infigure 4we plot with symbols the potential
differences for lengths x= 3i (i= 0, 1,K,6), which are the unit cell linear sizes for the generations zero to six. In
the samefigure, we plot a line using the relation (26) and the numerical values for νp, which are the outcomes of
randomwalk simulations reported in reference [8]. Notice that both data set fall on the same curve, which
confirms the relation (26).

The secondmodel is a generalization of the one-dimensional self-similarmodel introduced in [7].We start
with a single randomwalk on a one-dimensional lattice, with a hopping rate k0 between any pair ofNN sites.
This homogeneous case corresponds to generation zero.We introduce a natural number L to build the other
generations.

In thefirst generation, we reset to k1< k0 the hopping rate for every pair of sites j and j+ 1, with
=( )mod j L, 0. The other hopping rates remains as in zeroth generation.

In the second generation, we reset to k2< k1 the hopping rate for every pair of sites j and j+ 1, with
=( )mod j L, 02 . The other hopping rates remains as infirst generation.

This recursion follows indefinitely, in such away that generation n is obtained fromgeneration n− 1 after
resetting to kn< kn−1 the hopping rate for every pair of sites j and j+ 1, with =( )mod j L, 0n . Infigure 5we
show an schematics for L= 5.

If we ask for perfect self-similarity for diffusion, i. e. equation (14), the hopping rates are found iteratively as
in reference [7]. For themore general case of equation (21), the sequence of hopping rates is given by

l
l= + + =

-

-

=

-

( ) ( )
k k

L

k
i

1 1
1 , for 1, 2, 3 ... 27

i i

i
i

j

i

j
1

1

0 0

2

We test the validity of the relation (26) among the local exponents for a family of substrates given by

l l= - -( ) ( )1 2 . 28p
p 5.

5

Phys. Scr. 98 (2023) 095008 LPadilla and J L Iguain



At short enough lengths these substrates are nearly homogeneous (λp≈ 0 for p= 5), while, on the other
extreme, self-similarity for diffusion is reached for lengthsmuch larger than L5. The local randomwalk exponent
(23) decreases with length and approaches asymptotically ν in equation (16). Thus, the variation of νp in space
increases withλ and, because of equation (26), the same should occurwith the variation of ζp. This is an
interestingmodel, because the variation of the exponents with length can be adjusted through the parameterλ.

Figure 4.Potential difference as a function of length for a unitary current flowing trough the unit cell of the sixth generation substrate
in figure 3. The symbols correspond to simulations of the steady-state. The linewas plottedwith the exponents ζp from equation (26)
and the values of νpwhich result from random-walk numerical simulations.

Figure 3. Substrate in two dimensions, which results in scale-dependent walk and resistance exponents. The schematics correspond to
the unit cells for the first, second and third generations. The segments represent bonds between sites.
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Wehave run numerical simulations for the steady-state that corresponds to a unitary currentflowing on this
model, with L= 2 andλ= 1, 2, 4, 5. All substrates were built until generation 10. Infigure 6-mainwe plot with
symbols the potential difference as a function of the length x, for x= 2j ( j= 0, 1,K,9). The lines correspond to
the exponents ζp obtained from equations (26) and (23). Note the excellent agreement between theory and
simulations. The inset in the samefigure shows substructure ofΔV forλ= 2.

6. Conclusions

Wehave studied first the connection between single randomwalks and steady-state potential difference for
substrates with spatial periodicity. Then, by considering a sequence of periodic systems, a commonprocedure
for deterministic fractal construction, wefind that the length dependent fractal, walk and resistance exponents,
for the substrate obtained in the infinite limit of this sequence, satisfy, at every length scale, the relation (26). This
can be considered as a local version of the Einstein relation (2).We have tested our predictions numerically for
twomodels. Thefirstmodel is a fractal in two dimensions, while the the second is a fractal in one dimension.
Bothmodels lead to length-dependent exponents at intermediate scales. The excellent agreement between the
outcomes of these simulations and the theoretical predictions supports the validity of thementioned relation
among exponents, not only in the asymptotic self-similar limit but also locally, for all length scales. Let us stress
that the schematics infigure 2 is not specially related to a particular dimension. Thus, we expect that local and
global Einstein relations hold also for deterministic fractals in three dimensions.However the issue of the
relation among exponents for random fractals is an open problem.Wehope that this article estimulate further
investigation on the subject.

Figure 5. Schematics of the one-dimensional random-walkmodel.We beginwith a homogeneous lattice, and a hopping rate k0
between nearest-neighbor sites. Then, hopping rates are reset to kj for transitions between sites j and j + 1 for every j such that

=( )mod j L, 0n , and for n = 1, 2,K. In this example, L = 5.

Figure 6.Potential difference as a function of length for unitary current on the one-dimensionalmodel withλp = λ (1 − 2−p/5.), and
L = 2. (Main) Symbols correspond to data obtainedwith numerical simulations on a tenth-generation substrate. Lineswere drawn
using the values of theoretical exponents. Frombottom to top,λ = 1 (red),λ = 2 (green),λ = 4 (violet),λ = 5 (blue). (Inset)More
detailed structure forλ = 2.
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