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Abstract – The efficiency of a linear kinetic energy harvester by piezoelectric transduction —when
driven by colored α-stable Lévy noise— is the focus of this study. Analytical results are obtained
for the harvested power (in the adiabatic approximation ẍ ∼= 0 and for very large load circuit’s time
constant τp), which are accurately validated by numerical simulations. In addition, an analytical
expression is obtained for the characteristic time the system takes to reach a stationary regime;
this information is crucial to calculate averaged quantities through simulations, given the large
dispersion between realizations due to the infinite variance of the Lévy noise.

Copyright c© 2023 EPLA

Introduction. – Ever since the dawn of the transistor
era, batteries have reigned in the kingdom of small-power
electronics. Today —whereas on one hand climate change
and air pollution spur the replacement of fuel engines in
cars— the decisive downscaling toward micro- and even
nano-devices (as well as the spread of embedded and re-
mote solutions) on the other, urge to feed small-power cir-
cuits otherwise, so making them lighter and more reliable.
The goal of harvesting energy from the environment has
captured the interest of researchers for many years. Var-
ious types of harvesters and applications have been stud-
ied [1–3]. A type that is widely studied due to its great
transduction capacity is piezoelectric harvesting of kinetic
energy [4–11]. This type of harvester can be modeled as a
test mass subject to a (linear or nonlinear) spring, whose
elongation is linearly transduced into an output voltage.
The mass is forced by environmental vibrations (hereafter
referred to as “noise” since they can be usually regarded
as random) [2,12]. Since early studies aimed at energy
harvesting from sea waves, they considered linear har-
monic oscillators subject to sinusoidal noises (resonant en-
ergy harvesting). However, environmental vibrations are
rarely monochromatic (i.e., have their spectrum peaked
around a dominant frequency). Rather the opposite oc-
curs: they have their frequencies distributed over a wide
enough bandwidth, causing the performance of resonant
energy harvesters to drop considerably. To counteract this
inconvenience, nonlinear oscillators have been proposed as
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an alternative [13–17]. However, for Gaussian white noise
(which is the typical representation of noises with finite
variance and wide enough bandwidth), it has been shown
that nonlinear oscillators do not outperform by much the
linear ones [13–15]. For narrower (but still wide) band-
width —what is known as “colored noise”— mono- or
bistable nonlinear oscillators can under certain circum-
stances present an advantage over linear ones [16,17].
Strictly speaking, white noise is an unphysical abstrac-

tion. Any physical source will produce colored noise of
wider or narrower bandwidth [13]. As far as the noise
variance is finite —it fulfills the Central Limit Theorem
(CLT)— and its self-correlation function decays faster
than a power of time, it can be modeled as an Ornstein-
Uhlenbeck (OU) one (namely Gaussian, exponentially cor-
related noise1).

Recall however that the CLT is a consequence of the
Gaussian distribution being stable under the addition of
independent stochastic variables. Lévy [18] found the con-
ditions for stochastic variables with infinite variance (and
still wilder ones) to keep this property. Noises of this kind
do exist in nature: The general class of non-Gaussian
processes known as α-stable Lévy noise (0 < α ≤ 2 be-
ing known as the stability parameter, with α = 2 corre-
sponding to Gaussian noise) describes with naturalness
complex environments (those in which scale separation
is not feasible, due to their strong interaction) [19–23].
These processes, featuring a power-law distribution of

1Complex sources may produce colored noises whose spectrum
decays more slowly (fα-noise).
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jump lengths, are qualitatively grouped into Lévy walks
(for α ∼ 2) and Lévy flights (for α � 2). These noises
have been found suitable to study thermoacoustic instabil-
ities (which can have catastrophic consequences) in high-
performance combustion systems [24], as well as complex
dynamics of a conceptual airfoil structure [25]. Many stud-
ies in the biological field include this type of noise [26–29],
featuring, e.g., noise-induced chimera states (here mean-
ing coexistence of coherence and incoherence) in a small-
world Hindmarsh-Rose neuronal network [28]. Also, the
heartbeat has been seen to be well modeled using the
Lévy process [30,31], and heart-mounted piezoelectric sen-
sors are being studied to power pacemakers [32–34] since
as shown in [35,36], this type of noise improves the per-
formance of piezoelectric harvesters (the more frequent
occurrence of large jumps in Lévy noises translates into
a larger r.m.s. voltage). Other recent works considering
Lévy noises are [37–39].
After characterizing the vibration harvester model and

the α-stable Lévy noise, we perform a thorough check for
α = 2 against the results in [10] and then present perfor-
mance measures for α ranging between 1.5 and 2.

Vibration harvester model. – A simple case of a me-
chanical vibration harvester is the one-degree-of-freedom
damped harmonic oscillator, forced by random mechan-
ical vibrations from external sources and coupled to a
mechanical-electrical transducer [2,10–12],

ẍ(t) = −b ẋ(t)− kV V (t)− ω2
0 x(t) + ξ(t),

V̇ (t) = kc ẋ(t)−
V (t)

τp
.

(1)

Here x represents the displacement from equilibrium posi-
tion of the oscillator, ẋ its velocity and ẍ its acceleration.
The electric potential V is generated by the transducer
(here of piezoelectric nature). Parameter b represents fric-
tion with the surrounding environment. This system has
capacitance C and is coupled to a load resistance RL,
yielding a load circuit time constant τp = RLC. Parame-
ters kc and kV are electromechanical coupling coefficients
and ω0 is the characteristic frequency of the free oscillator.
The second-order differential system of equations (1) can
be converted into a first-order one:

ẋ(t) = v(t),

v̇(t) = −b v(t)− kV V (t)− ω2
0 x(t) + ξ(t), (2)

V̇ (t) = kc v(t)−
V (t)

τp
.

Observing that the third of eqs. (2) acts as a low-pass fil-
ter (so that the smaller the load characteristic decay rate
ωp = 1/τp, the more closely voltage V “follows” the ex-
cursions of x), an approximation that somewhat simplifies
the system is to take V (t) ∼= kc x(t) [16], wherefrom the
average electrical power can be approximated by

PR =
V 2
rms

RL

∼= k2c
RL

x2
rms. (3)

However, this improvement in the tracking of Vrms to xrms

by taking τp much larger than the other characteristic
times of the system, has a cost: PR becomes depressed
by the large factor RL.

α-stable Lévy noise. – Throughout this work, we re-
gard the external forcing ξ(t) in the second of eqs. (2)
as a symmetric Ornstein-Uhlenbeck-Lévy process (OULP)
with α-stable distribution, noise amplitude σ > 0, and in-
verse characteristic correlation time λ = τ−1. The OULP
can be generated through a Langevin equation of the form

ξ̇(t) = −λ ξ(t) + σ η(t), (4)

from a symmetric and δ-correlated Lévy noise η [19,20].
Process η (determined by its stability parameter α) is de-
fined by its characteristic function

p̃ση(k, t) = p̃η(σk, t) = exp(−σα|k|αt) (5)

(p̃η(k, t) = exp(−|k|αt) if σ = 1). From eqs. (4), (5), the
characteristic function of an OULP is thus [22]

p̃ξ(k, t) = exp

[
−σα

αλ
|k|α (1− e−αλt)

]
. (6)

Defining2 a noise intensity D > 0 by means of σ := λD1/α

and taking α = 2, Gaussian OU noise is recovered, with
correlation function

C(u) = 〈ξ(t)ξ(t+ u)〉 = Dλe−λ|u|. (7)

Here 〈·〉 stands for mathematical expectation. As λ → ∞,
C(u) → D δ(u), and ξ becomes a δ-correlated noise.
The most remarkable feature of Lévy processes is that

they have infinite variance when 0 < α < 2 (and infinite
mean if 0 < α < 1). From eq. (6) we see that the OULP
reaches steady state

p̃stξ (k) = exp

(
−σα

αλ
|k|α

)

for α and λ fixed, whenever t 	 (αλ)−1. Since

〈ξn〉st = (−i)n
dnp̃stξ (k)

dkn

∣∣∣∣∣
k=0

, (8)

it turns out that 〈ξ2〉st = ∞ for 0 < α < 2. This behavior
can be hinted at when one sees a diagram of the trajec-
tory of a Brownian particle subjected to Lévy noise [22].
The large difference in scale of the jumps causes the vari-
ance to blow up. However, these large excursions could in

2Had we defined σ := (λD)1/2, then C(u) = D e−λ|u|. This
correlation function was used in [10] to show that when a linear
harmonic harvester is subjected to Gaussian colored noise with fixed
amplitude D and correlation decay rate λ, the system (2) achieves
resonance (of stochastic nature, but not stochastic resonance) when

λ is close to the natural electromechanic frequency
√

ω2
0 + kckV . We

also recover eq. (7) if D ∝ λ and λ → ∞.
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principle be used to harvest more energy by piezoelectric
transduction. According to eq. (3), once τp is set large
enough (depending on the system) and there is good syn-
chronization between V and x, the only way to increase
PR is by increasing x2

rms as much as possible, and that is
where Lévy processes come in.

Analytical results. – Using the techniques of
refs. [19–22], one can think of obtaining an approximate
solution of the characteristic function p̃x(k, t), and then
using V (t) ∼= kc x(t). To that end, τp is taken to be much
larger than the other characteristic times of the system.
From eqs. (1) and (4),

ẍ(t) ∼= −b ẋ(t)− (kV kc + ω2
0)x(t) + ξ(t),

ξ̇(t) = −λ ξ(t) + σ η(t).

Using the adiabatic approximation ẍ ∼= 0, we obtain

ẋ(t) ∼= ẋa(t) = − λ (kV kc + ω2
0)

λ b+ kV kc + ω2
0

xa(t)

+
σ

λ b+ kV kc + ω2
0

η(t).

Since this expression is similar in form to eq. (4), the char-
acteristic function for xa(t) is

p̃xa
(k, t) = exp [−σa(t) |k|α], (9)

with

σa(t) =
σα (λ b+ kV kc + ω2

0)
1−α

αλ(kV kc + ω2
0)

×
[
1− exp

(
− αλ(kV kc + ω2

0)

λ b+ kV kc + ω2
0

t

)]
. (10)

This characteristic function can be thought as that of a
free particle submitted to a white Lévy noise, eq. (5), eval-
uated at an effective time teff :

p̃xa
(k, t) = p̃ση(k, teff) = exp (−σα |k|α teff).

Of course, teff is a function of the time t measured in the
laboratory,

teff =
(λ b+ kV kc + ω2

0)
1−α

αλ(kV kc + ω2
0)

×
[
1− exp

(
− αλ(kV kc + ω2

0)

λ b+ kV kc + ω2
0

t

)]
.

For a given set of parameters, teff attains steady state
when the laboratory time t is large enough (depending
on its factor in the exponential). This gives us a rough
estimate of the laboratory time t required for the system
to reach steady state.

Fig. 1: Simulation results (in arbitrary units) for input noise
power Pin (�), mechanically dissipated power Pdiss (�), and
power delivered to the load resistance PR (◦) —together with
the theoretical curves from [10] (solid lines)— as functions of
the noise correlation decay rate λ (log scale). Parameters kc =
kV = b = C = ω0 = D = 1, τp = 2, and α = 2. The process
was averaged over 103 realizations of noise and over time at
steady state. The noise amplitude used is σ = (λD)1/α.

Numerical results. – For the numerical simulation,
symmetric white Lévy process was generated according to
the proposal of ref. [23]. Then, stochastic second-order
Runge-Kutta (Heun) integration of eq. (4) was used to
generate the OULP and finally, the system in eqs. (2)
—in the approximation of τp much larger than the other
characteristic times of the system (we have adopted
τp = 104)— was integrated by the Heun method, to be
able to reach large values of λ with confidence3.

Check for α = 2. In order to check that the symmet-
ric white Lévy process generated according to the proposal
of ref. [23] becomes Gaussian for α = 2, we attempt to re-
cover the results of [10] for OU noise. As seen in fig. 1,
the simulation results (in arbitrary units) for the noise
power input Pin to the system (
), the power Pdiss that is
mechanically dissipated (�), and the power PR delivered
to the load resistance (◦) accurately follow the analyti-
cal results quoted in [10]. A resonance phenomenon of
stochastic nature can be seen when λ is close to the nat-
ural electromechanic frequency

√
ω2
0 + kckV .

Figure 2 compares PR (filled markers) with k2cx
2
rms/RL

(empty markers) —both in log scale and as functions of λ
(also in log scale)— for different values of τp. As the lat-
ter increases by an order of magnitude, both magnitudes
become proportional (eq. (3)). Notice also the order-of-
magnitude decrease of PR as τp increases by an order of
magnitude.

3In principle, for correlated enough noise there is no need to resort
to stochastic integration. But nonetheless, it does no harm (it is just
a matter of computational efficiency) and it becomes necessary for
inverse correlation time λ → ∞. Regarding the order of the stochas-
tic Runge-Kutta algorithm, for stable systems it is again a matter
of computational efficiency (a larger time step vs. the possibility of
errors due to a cumbersome algorithm). Of course, we could have
chosen a fourth-order stochastic Runge-Kutta algorithm, as in [26].
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Fig. 2: Power delivered to the load resistance PR (filled mark-
ers) and the amount k2

cx
2
rms/RL (empty markers) as functions

of the noise correlation decay rate λ, for different values of the
load’s characteristic time: τp = 102 (�), τp = 103 (�), τp = 104

(◦). The solid lines were added only for better tracking of the
markers. Same remaining parameters as in fig. 1.

Using eq. (8) on eqs. (9), (10) for p̃xa
(k, t), we get

x2
a,rms =

〈
x2
a

〉
= 2σa(t)

=
σ2

[
1− exp

(
− 2λ(kV kc+ω2

0)

λ b+kV kc+ω2
0
t
)]

λ (λ b+ kV kc + ω2
0)(kV kc + ω2

0)
.

In order to reflect the results of [10] and [19], the
white-noise approximation is resorted to. We choose σ =
λ(D)1/α (α = 2), which yields

Pa,R =
V 2
a,rms

RL

=
Dλk2c

[
1− exp

(
− 2λ(kV kc+ω2

0)

λ b+kV kc+ω2
0
t
)]

RL (λ b+ kV kc + ω2
0)(kV kc + ω2

0)
. (11)

In the steady state, eq. (11) reduces to

P st
a,R =

Dλk2c
RL (λ b+ kV kc + ω2

0)(kV kc + ω2
0)
. (12)

Figure 3 compares the approximation in eq. (11) for
the power PR delivered to RL (as a function of λ) with
the full theoretical solution, eq. (5.4) in [10]. As ex-
pected, a large discrepancy takes place for λ close to
ω0. But also (as appreciated in the double-log-scale in-
set) when λ is small enough, due to the fact that the cho-
sen laboratory time (t = 1.5 × 103) becomes too short
to reach the steady state (so the effect of the exponen-
tial is present). This approximation becomes exact for
both λ → 0 and λ → ∞ [19], and agrees with the results
of [10]. The upper dashed straight line indicates the limit
λ → ∞. The dot-dashed line in the inset corresponds to
eq. (12), being indistinguishable of eq. (11) in the main
plot.

Results for α < 2. Even though the variance cannot
be calculated, the theoretical curves σa(t) are valid for any

Fig. 3: PR(λ). Dotted curves correspond to eq. (11); dot-
dashed ones (visible only in the inset) to eq. (12); solid curve, to
eq. (5.4) in [10] (involving no approximation); discrete points,
to the Heun numerical integration of system (2) and eq. (4);
dashed upper straight line, to the white-noise limit. Load’s
time constant is τp = 104 and lab time, t = tL, given by (13).
σ = λ(D)1/2. The remaining values are indicated in fig. 1.

Fig. 4: From bottom to top, α = 2, 1.9, 1.8, 1.7, 1.6, and 1.5.
σa(t = tL) vs. λ (log-log scale). Remaining parameters as in
fig. 1.

set of parameters. Figure 4 shows that —whereas for λ >
ω0, the harvester is essentially driven by delta-correlated
α-stable Lévy noise— a dramatic increase in σa(t = tL)
takes place for λ < ω0 as α decreases from 2. The lab time,
tL, was chosen to make the argument in the exponential
of (10) equal to 6 (a large enough value), i.e.,

tL = 6
λ b+ kV kc + ω2

0

αλ(kV kc + ω2
0)

. (13)

Figure 5 shows the numerical simulations of the har-
vested electrical power (as a function of λ) for different
values of α. The consequences of divergent variance as the
noise departs from Gaussian can be seen: The large-scale
Lévy jumps make the curves rougher as α decreases from
2. However, the existence of a definite effective time shows
the efficacy of the system’s restoring force to generate sta-
bility. Notice the difference in scale as we move away from
the Gaussian case. A fact to be stressed is that although
the analytical variance is divergent, the extracted power
is finite, and follows roughly the same behavior as σa(t)
in fig. 4.
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Fig. 5: From bottom to top, α = 2 (◦), 1.9 (�), 1.8 (�),
1.7 (�), 1.6 (�), and 1.5 (�). V 2

rms/RL vs. noise correlation
decay rate λ (log-log scale), from Heun integration (averaged
over 103 realizations) of eqs. (2) and (4). Here τp = 104, t = tL,
and σ = λ(D)1/α. Remaining parameters as in fig. 1.

Conclusions. – It was analytically and numerically
confirmed that the Ornstein-Uhlenbeck process is indeed
an exponentially correlated α-stable Lévy process, with
α = 2. The analytical and numerical results for the ef-
ficiency of the harvester —modeled as a damped linear
harmonic oscillator, submitted to colored Lévy noises—
confirm for α = 2 the conclusions of [10] and [19]. As
expected, Lévy flights greatly increase oscillator excur-
sions, this being of great benefit to energy harvesting by
piezoelectric transduction. Even though exhibiting dif-
ferences with the numerical results, adiabatic approxima-
tions yield the same behavior. The latter are handy tools
that can be used to improve the statistical averages in
upcoming works. For example, finding the suitable time
scale at which the system can be thought to have reached
steady state, given the parameters of the harvester. In a
companion work, we address the efficiency under symmet-
ric OULP of nonlinear energy harvesters obeying shallow
monostable potentials [35,36]. Also, the effect of asym-
metric OULPs [40] will be studied.
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