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Power laws in species’ biotic interaction 
networks can be inferred from  
co-occurrence data

Nuria Galiana    1,5 , Jean-François Arnoldi2,5, Frederico Mestre3, 
Alejandro Rozenfeld3,4 & Miguel B. Araújo    1,3

Inferring biotic interactions from species co-occurrence patterns has long 
intrigued ecologists. Yet recent research revealed that co-occurrences 
may not reliably represent pairwise biotic interactions. We propose that 
examining network-level co-occurrence patterns can provide valuable 
insights into community structure and assembly. Analysing ten bipartite 
networks of empirically sampled biotic interactions and associated species 
spatial distribution, we find that approximately 20% of co-occurrences 
correspond to actual interactions. Moreover, the degree distribution shifts 
from exponential in co-occurrence networks to power laws in networks 
of biotic interactions. This shift results from a strong interplay between 
species’ biotic (their interacting partners) and abiotic (their environmental 
requirements) niches, and is accurately predicted by considering 
co-occurrence frequencies. Our work offers a mechanistic understanding  
of the assembly of ecological communities and suggests simple ways to  
infer fundamental biotic interaction network characteristics from 
co-occurrence data.

Whether interactions between species can be inferred from species 
co-occurrence patterns is a contentious topic in ecology1–4. Indeed, 
the spatial distribution of species is influenced by their environmental 
tolerances and dispersal abilities, but also by the interactions they 
establish with other species5–8. This has led to a century-long debate, 
with some authors arguing that biotic interactions should leave detect-
able patterns in species co-occurrences9–12. Consequently, there have 
been expectations that biotic interactions could be inferred, at least to 
some extent, from co-occurrence data. However, this straightforward 
approach has faced criticism because of the potential blurring of signals 
by other factors that constrain species ranges and coexistence13,14. For 
instance, species that do not interact but share physiological or habitat 

requirements might lead to false inferences of biotic interactions. 
Conversely, negative interactions resulting in avoidance or exclusion 
may generate non-overlapping distributions, making it difficult to 
identify a clear signal in co-occurrence data2,13,14.

Empirically testing the predictive capacity of co-occurrences as 
a surrogate of biotic interactions presents important challenges. Few 
studies that have explored this relationship have managed to establish 
general rules for inferring connections between these two expressions 
of species ecologies. For example, Freilich et al.15 discovered a weak 
correspondence between interactions inferred from co-occurrences 
and the actual biotic interactions observed in a rocky intertidal in 
central Chile. Only approximately half of the known interactions were 
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To explore these concepts, we analysed ten well-resolved empiri-
cal bipartite networks from various terrestrial habitats around the 
globe. These networks provide data on both species distributions 
across multiple locations and their empirically sampled biotic interac-
tions. Importantly, the interactions in these networks, such as plant–
pollinator (PP) and host–parasitoid (HP) interactions, adhere to the 
premise that ‘species need to co-occur (at an appropriate scale; see 
‘Results and discussion’) to interact’. These newly available datasets 
allow us to directly compare co-occurrence and interaction networks 
in terms of their degree distribution (Fig. 1). We then examined how 
co-occurrence networks can be pruned to approximate the features of 
the realized biotic interaction network. We propose a simple model that 
uses knowledge on co-occurrence between species and the frequency 
of such co-occurrence (that is, the number of sites where co-occurrence 

accurately detected through co-occurrence data. Many interactions, 
especially negative interactions, were missed entirely, while many 
others were inaccurately classified as false or spurious interactions.

Although specific interactions may not be reliably inferred from 
co-occurrence data, there are still valuable insights to be gained 
by exploring other aspects of co-occurrence information to better 
understand how ecological networks come together. For instance, 
by establishing links between species that co-occur in space, we can 
analyse the structural properties of these co-occurrence networks2,16 
and investigate their connections with the structural properties of 
actual interaction networks (Fig. 1a). Complex ecological systems often 
exhibit well-defined patterns that can shed light on the underlying 
mechanisms17–19. In this vein, we propose that comparing the struc-
tures of co-occurrence and interaction networks can provide valuable 
information about the drivers of community assembly, circumventing 
the challenges associated with inferring specific pairwise interactions.

We focus on a fundamental aspect of network structure extensively 
studied in ecological communities: their ‘degree distribution’17,20. The 
degree distribution encodes the probability for a randomly chosen 
node of the network to possess a certain number of links. In ecology, 
this concept is crucial in describing how links are distributed between 
species, and its shape can be related to specific aspects of ecological sta-
bility17,18,20,21 (Fig. 1b and Supplementary Text 2). Scale-free (power-law) 
degree distributions are considered a hallmark of network organization, 
conferring robustness to random extinctions because highly connected 
species are relatively rare, making their removal less likely22,23. On the 
other hand, networks with an exponential degree distribution, which 
occurs when connections are established randomly, have many species 
with moderate connectivity, making the network more vulnerable to 
random species losses. The degree distribution of biotic interaction 
networks is thus a fundamental feature of ecological networks, contrib-
uting to the understanding of community structure and its response to 
environmental changes and other threats to persistence24. We propose 
that a deeper understanding can be achieved by combining the study 
of the degree distribution of co-occurrence networks because both 
types of networks may emerge from shared community assembly rules.

The simple premise on which the comparison between 
co-occurrence and interaction networks is based is that species 
need to co-occur to interact. While competitive exclusion leading 
to spatial avoidance is an exception, for many important interaction 
types (predator–prey, host–parasitoid, commensalism or mutual-
ism), co-occurrence is a necessary condition for the interaction25. 
Formally, this implies that interaction networks are a subset of 
co-occurrence networks, resulting from the removal of links between 
species that co-occur without interacting. Under the assumption 
that co-occurrence is observed at a relevant scale (if the scale con-
sidered is too broad, co-occurrence is indeed meaningless), this pro-
cess of pruning could leave subtle traces of community assembly. For 
instance, if interaction networks were the result of randomly removing 
co-occurrence links, it would suggest that interactions are mostly 
contingent, and the structure of interaction networks would be trivi-
ally subordinate to the co-occurrence network. On the other hand, if 
the structure of the interaction network differs qualitatively from the 
structure of the co-occurrence network (beyond a reduction of the 
total number of links), it is a sign that there is a systematic pruning of 
links. For instance, a change in the network degree distribution from 
exponential (co-occurrence) to power-law (biotic interaction) signals 
chance-based co-occurrence patterns but a biased pruning of links ben-
efiting generalist species (see below and Supplementary Text 2). The 
comparison between co-occurrence networks and biotic interaction 
networks thus offers a unique opportunity to investigate the interplay 
between the abiotic niche of a species (that sets the limits to its spatial 
distribution) and its biotic niche (its interacting partners, such as its 
prey or predators). Understanding such an interplay can then elucidate 
key mechanisms of community assembly.
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Fig. 1 | Visual representation of a network of co-occurrence and the 
corresponding network of biotic interactions and their degree distribution. 
a, A co-occurrence network is built based on empirical observations of presence 
and absence of each species in each spatial unit of each dataset. An interaction is 
added to the network of co-occurrences when two species from different trophic 
levels (for example, plant–pollinator or host–parasitoid) co-occur in at least 
one spatial unit. For instance, a pollinator will have as many interactions in the 
network of co-occurrences as plants found co-occurring with it in the spatial units 
analysed. Notice that the frequency of co-occurrence (that is, the number of times 
two species co-occur across spatial units) varies across species. Species coloured 
in orange have a higher frequency of co-occurrence. The network of biotic 
interactions is based on empirical observations of the interactions between species 
in each spatial unit. Thus, an interaction between two species is added to the 
network of biotic interactions if it was empirically observed in at least one spatial 
unit. b, Once both types of networks are built, we can analyse their fundamental 
characteristics. One of them is network degree distribution, which represents 
the cumulative probability of finding a species in the network with at least a given 
number of interactions. Therefore, the probability of finding a species in the 
network that has at least one interaction with another species is 1. The shape of the 
network degree distribution indicates how links are distributed among species in 
the network. For instance, an exponential shape indicates that the occurrence of a 
link in the network is independent of the presence of other links, while power-law 
distributions indicate that links are more likely to occur among species that already 
have more links (that is, the rich-gets-richer phenomenon).
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between a pair of species is known). This model estimates the number 
of interactions of a species based solely on information about species 
co-occurrence (see the Methods for further details).

Results and discussion
From exponential to power law
Using newly available high-quality data, we reveal a surprisingly con-
sistent relationship between co-occurrence and biotic interaction 
networks. Across all datasets, the proportion (f) of co-occurrences 
that correspond to actual interactions is ~20% (mean = 0.18, s.d. = 0.05; 
Fig. 2). The total number of potential links, as based on co-occurrence 
networks, ranged from 6,437 to 524, while the realized biotic interac-
tion links ranged from 967 to 90 (Supplementary Table 1). Despite 
large differences in the total number of links across datasets, the pro-
portion of potential links that are realized is strikingly similar among 
them. Furthermore, and also across datasets, the degree distribution in 
co-occurrence networks is best described by an exponential function. 
In contrast, realized interaction networks are best described by a power 
law (Fig. 2 for consumers and Extended Data Fig. 1 for resources; see 
also Supplementary Table 2), indicating that the proportion of realized 
links is not uniform across species (Fig. 3).

The prevalence of scale-free degree (that is, power law) distribu-
tions in species interaction networks is well-known in the ecological 
literature17,18. However, our results extend this understanding by 
demonstrating that co-occurrence networks, in contrast, exhibit 
exponential degree distributions. This indicates that the occurrence 
of a link in the network is largely independent of the presence of 
other links, as expected when links are randomly distributed. Yet, 
despite co-occurrence networks having random-like, exponential 
degree distributions, we reveal that assemblages of interacting 
species exhibit scale-free, power-law degree distributions. Such 
network topologies are robust to species extinctions17,23, especially 
when threats are external to natural population dynamics, such 
as those caused by human activities24. Our findings thus raise the 
critical question: How does the exponential degree distribution in 
the co-occurrence network transform into a power law when we 
remove co-occurrence links that do not correspond to actual biotic 
interactions?

The role of super-generalist species
For the degree distribution to shift from an exponential to a power law, 
the proportion of realized biotic interactions cannot be uniform across 
species. If the interaction degree of species (that is, realized biotic inter-
actions) was roughly proportional to the co-occurrence degree (that is, 
potential interactions), then the respective degree distributions would 
keep the same functional form: an exponential would remain an expo-
nential and a power law would remain a power law (grey line in Fig. 3;  
see Supplementary Text 2 for a mathematical demonstration). The 
interaction degree distribution would thus be a simple rescaling of 
the one for co-occurrences (see below where we discuss an actual null 
model of this kind). This is not what is seen in the empirical data. We 
find that the number of realized interactions increases superlinearly 
with the number of potential interactions (Fig. 4 for consumers and 
Extended Data Fig. 2 for resources). This means, in particular, that 
species co-occurring with more potential interacting partners keep 
a higher proportion of those links as biotic interactions than species 
with fewer co-occurrences. The relationship between species’ ability to 
occupy multiple sites (indicative of co-occurrence with many different 
species) and its capacity to interact with multiple potential resources 
(indicative of having broad diets) has been previously recognized26 
and is critical for understanding the patterns observed in this study 
(Fig. 3). The fact that the most generalist species in terms of habitat 
use (abiotic niche) interact with a disproportionately larger number 
of their potential resources (biotic niche) promotes the emergence of 
the fat tail in the degree distribution of the biotic interaction network 
(Supplementary Text 2), which means that there is a higher probability 
of finding species in the network with a large number of links (yellow 
line in Fig. 3). These super-generalist species thus have a crucial role 
in understanding community assembly, chiefly the emergence of 
power-law degree distributions in the realized network of interactions.

Besides their structuring role in community assembly, the exist-
ence of super-generalist species is important for conservation. The 
size of species’ geographical ranges is a well-known determinant of 
species vulnerability to extinction27–29. We demonstrate a general and 
predictable relationship between the spatial distribution of species and 
their biotic interactions. Widespread species, with large geographical 
ranges, have a vast array of interacting species, which makes them less 
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Fig. 2 | Comparison of the frequency distributions of consumer’s degree 
among co-occurrence networks and realized biotic interactions networks. The 
red lines correspond to the degree distributions of the co-occurrence networks 
and the yellow lines correspond to the degree distribution of the biotic interaction 
networks in the ten datasets investigated. Top, PP networks. Bottom, HP networks. 
The black dashed lines indicate the power law or truncated power-law  

fit, which for all datasets were the more parsimonious functions among all  
tested (Methods). The percentage shown in each plot represents the proportion 
of links realized in the network of biotic interactions from the co-occurrence 
network (f) for each dataset. See the corresponding results for resource 
species in Extended Data Fig. 1. A description of all datasets can be found in 
Supplementary Text 1.
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vulnerable to potential extinctions of their interacting partners. On the 
other hand, small-ranged species are not only threatened because of 
their restricted range size but also because they have a restricted pool 
of interacting partners.

Frequency of co-occurrences as a key predictor
The ‘super-generalist’ pattern can be elucidated further. Across 
datasets, we observed that species co-occurring with more poten-
tial resources (or consumers if we take the resource perspective) 
also co-occur with them more frequently (Fig. 5 for consumers and 

Extended Data Fig. 3 for resources). Based on this finding, and to 
predict the degree distributions of interaction networks, we pro-
pose a simple interaction rate (IR) model to prune the co-occurrence 
network. This model uses the frequency of co-occurrences between 
species to predict interactions. Specifically, the IR model makes a 
probabilistic prediction for the interaction between species based 
on a uniform per-site probability of interaction (p). The more fre-
quently two species co-occur, the more likely the model will assign 
an interaction between them (Methods). In essence, the IR model 
provides an expected number of interactions for each species of the 
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Fig. 3 | The role of super-generalist species in the emergence of power-law 
degree distributions. Top, different possibilities for the relationship between 
the number of potential interactions and the number of realized links in the 
network of biotic interactions. The yellow line shows the pattern observed in 
the data analysed in this study, where generalist species in terms of potential 
interactions realize a disproportionate large number of those links in the network 
of biotic interactions. The non-linearity of this relationship makes the non-
proportionality across species explicit. This relationship between potential and 
realized (biotic) interactions highlights the strong generalism of the species both 
in terms of their abiotic niche (that is, larger occupancy in space and thus larger 
co-occurrence with other species) and their biotic niche (that is, more biotic 
interactions among those co-occurring with them). We call these species super-
generalists. The grey and green dashed lines represent two other possible cases: a 
constant proportion of realized links across species and the case where specialist 

species would realize a larger proportion of the potential links. Bottom, the 
consequences of these patterns for the shift in the network degree distribution 
from co-occurrence to biotic interactions. Given that super-generalist species 
keep a larger proportion of their potential links than specialist species, the 
degree distribution changes from an exponential in the co-occurrence network 
to a power law in the network of biotic interactions (yellow line), where the 
probability of finding a species in the network with a large number of links is 
higher than in the other cases (grey and green dashed lines). If the interaction 
degree of species was roughly proportional to the co-occurrence degree, the 
respective degree distributions would keep the same functional form. The 
interaction degree distribution would thus be a simple rescaling of the one for 
co-occurrences. An exponential would remain an exponential, and a power 
law would remain a power law (see Supplementary Text 2 for a mathematical 
demonstration).
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network, based on the frequency of their co-occurrences with poten-
tial interaction partners.

At the species level, the results of the IR model correlate relatively 
well with the actual realized number of interactions of each species 
(Extended Data Fig. 4). The IR model predicts a superlinear relationship 
between the number of potential and realized interactions (green line 
in Fig. 4 and Extended Data Fig. 2) like the one observed in the empiri-
cal patterns. On the other hand, at the community level, the IR model 
provides a prediction for the degree distribution of the interaction 
network that is strikingly accurate, regardless of whether the focus is 
on consumers (indegree, Fig. 6, but see below where we discuss small 
deviations) or resources (outdegree, Extended Data Fig. 5; in this case 
the prediction is near-perfect). Even though the interaction between 
two given species may be hard to predict based on co-occurrence alone, 
we found that accurate inference is possible when we shift the focus 
towards community level properties, such as the degree distribution 
of the interaction network. That being said, to predict features of the 
network of biotic interactions from co-occurrence frequencies, we 
had to estimate the per-site IR p. In our analysis, we estimated p for 
each dataset by asking if the expected number of links of the pruned 
co-occurrence network equated the actual number of biotic interactions 
(Methods). While we made use of all the knowledge available to derive p, 
it is worth noting that p can be seen as the average IR over species. Like 
all aggregate features, this means that it can be estimated from partial 
knowledge, such as the rate of interaction of a few randomly chosen spe-
cies. Furthermore, we found that the per-site IR p did not vary strongly 
across datasets (mean = 0.077, s.d. = 0.028) (Supplementary Table 2). 
This consistency allows generating predictions about the number of 
links and their distribution among species in biotic interaction networks 
using co-occurrence data, without requiring additional information.

While the IR model prediction for the degree distribution of the 
network of biotic interactions is accurate, there is still a small but sys-
tematic deviation when taking the consumer’s perspective: it either 
matches or underestimates the probability associated with the spe-
cies with the highest degree. That is, it underestimates the number of 
realized interactions of the most generalist consumers. In Fig. 6, this 
is most visible for Garraf PP2 and Gottin PP networks, or for the Olot 
HP network. This bias indicates that these super-generalist consumers 

have even more biotic interactions than what would be expected based 
on their frequency of co-occurrence with potential resources. This 
observation suggests the existence of a positive feedback between 
the biotic and abiotic niches. Initially, one might assume that species 
with large ranges simply have more opportunities to interact with more 
resources, leading to their generalist behaviour. However, the fact that 
the prediction still underestimates the realized biotic niche of already 
highly generalist species, suggests that causality might be reversed. 
It is possible that species capable of occupying many locations (large 
abiotic niche) are the ones with a natural tendency to be generalists 
(large biotic niche). That the model deviation only occurs when taking 
the consumer’s perspective corroborates this interpretation.

Beyond random pruning of co-occurrences
To further demonstrate the importance of considering the frequency of 
co-occurrence to accurately estimate the degree distribution of biotic 
interaction networks, we conducted a null model based on a random 
pruning of links. In this model, the probability of interaction between 
a pair of species is not influenced by their frequency of co-occurrence. 
Instead, all co-occurring species from opposite trophic levels have the 
same probability of interacting, which is equal to the observed propor-
tion (f) of co-occurrence links that correspond to actual interactions. 
Thus, the resulting network of biotic interactions is a random subset 
of the co-occurrence network. The degree distributions obtained from 
this random pruning model do not exhibit the patterns observed in the 
empirical data (Extended Data Fig. 6). Instead, the shape of the degree 
distribution of the pruned networks is similar to the one observed in the 
co-occurrence networks, as suggested in Fig. 3, and the simple math-
ematical argument that explains why the two degree distributions will 
only be rescaled versions of each other (Supplementary Text 2). This dif-
ference between the results obtained from the IR model and the random 
pruning model highlights the crucial role of super-generalist species 
in the emergence of power-law degree distributions. The presence of 
super-generalist species that realize a disproportionately large number 
of their potential links leads to the power-law degree distributions 
observed in nature. In contrast, the absence of such super-generalist 
species in the random pruning model results in degree distributions 
that do not resemble the ones observed in real ecological communities.
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Fig. 4 | Relationship between the number of potential interactions (based 
on co-occurrences) and the number of realized interactions for consumer 
species. Top, PP networks. Bottom, HP networks. Each black point represents 
a species in the empirical system; the green line and points indicate the 
predicted proportion of realized interactions by the proposed model based 
on the frequency of co-occurrences. Notice that the relationship is non-linear, 

demonstrating that the proportion of co-occurrence interactions realized in 
biotic interactions is not constant across species. The green lines represent the 
mean tendency and the shaded areas represent the 95% confidence intervals.  
See the corresponding results for resource species in Extended Data Fig. 2.  
A description of all datasets can be found in Supplementary Text 1.
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Conclusion
Characterizing the intricate web of interactions among multiple organ-
isms co-occurring in ecosystems is a challenging task for current sci-
ence. A much desired approach is inferring biotic interactions from 
species co-occurrence data1,3,4. While accurately detecting pairwise 
interactions from co-occurrence data is difficult13,14, we discovered 
that analysing co-occurrence patterns at the network level can yield 
valuable information for inferring the biotic interaction structure of 
ecological communities.

Our research unveiled a clear relationship between the two types 
of networks that is remarkably consistent across datasets. Notably, 
we found that super-generalist species26, possessing broad environ-
mental tolerance and diet generality, have a key role in structuring 
ecological communities. These super-generalists interact with a 

disproportionately large number of co-occurring species, leading to 
a shift in the degree distribution from exponential in the co-occurrence 
network to a scale-free power law in the network of realized interac-
tions. This interplay between the spatial distribution of species and 
their biotic interactions holds important implications for designing 
conservation strategies at large spatial scales.

To move beyond observational comparisons between 
co-occurrence and interaction networks, we demonstrate how account-
ing for the frequency of co-occurrence between species enables accu-
rate prediction of fundamental properties of the realized network of 
interactions, explaining the observed patterns effectively. In essence, 
we found that species not only need to co-occur to interact, but need to 
co-occur frequently. Our findings represent an important advancement 
in understanding community assembly while providing unexpectedly 
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realistic predictions of biotic interaction networks based on species 
co-occurrence information alone. However, it is important to acknowl-
edge the influence of spatial scale when predicting biotic interaction 
networks from co-occurrences. The spatial scale at which species 
co-occurrences are assessed can impact the comparison between 
these two types of networks. Generally, coarser scales may require 
stronger pruning of the co-occurrence network to approximate the 
interaction network. In this study, we used the same spatial scale to 
assess co-occurrences and characterize biotic interactions, allowing 
for direct comparisons. Nonetheless, future research should delve into 
how this comparison changes with increasing spatial scale and whether 
there is a threshold beyond which co-occurrences no longer serve as 
accurate predictors of biotic interaction networks.

Given the challenges in sampling biotic interactions across large 
spatial extents, many studies resort to different approaches to infer 
species interactions, such as expert knowledge, literature reviews or 
proxies like species traits30–34. The generalities revealed in this study 
can inform and enhance these approaches to better predict interac-
tion network features based on co-occurrence data, substantially 
simplifying the effort required. Specifically, the per-site IR (p) found 
in this study can serve as a valuable reference for generating predic-
tions on biotic interaction networks without the need for additional 
information on biotic interactions. Moreover, p is strongly correlated 
with the proportion of co-occurrence interactions that are actual biotic 
interactions (f) (Extended Data Fig. 7). Because estimating the per-site 
IR is easier in empirical data than determining the full network of biotic 
interactions, this correlation can provide valuable insights. Yet, further 
research is needed to extend the framework presented in this study 
beyond bipartite networks (for example, food webs or competitive 
networks), and to not only predict the basic properties of realized 
interaction networks from co-occurrence but to predict the interac-
tions themselves. Advancements in this direction would substantially 
improve our understanding of the complex web of interactions within 
ecological communities and facilitate more informed conservation 
and management strategies. The findings of this study open up excit-
ing opportunities to explore and refine the use of co-occurrence data 
for predicting species interactions and advancing our knowledge of 
community dynamics at several spatial scales.

Methods
Empirical data
We used ten empirical datasets of bipartite networks comprising both 
mutualistic and antagonistic interactions. All datasets contained infor-
mation about species distributions across multiple sampled locations 
and their interactions in each location. Specifically, we used datasets 
describing PP interactions from forests in the natural park of Mont-
seny35, from Mediterranean shrublands in Garraf (two datasets36,37), 
from a temperate forest in Argentinian Patagonia38 and from calcareous 
grasslands in central Germany39. We used datasets describing HP interac-
tions from the natural park of Olot in Catalonia40, from Mediterranean 
shrublands in Garraf36,37, from a temperate forest in Finland41, from 
calcareous grasslands in central Germany and from a dataset spanning 
a large latitudinal gradient from Italy to northern Norway42. All datasets 
are explained in more detail in Supplementary Text 1 and are available 
in the article by Galiana et al.43. The description of the basic network 
properties of each dataset can be found in Supplementary Table 1.

Network construction
For each dataset, we built the network of co-occurrences and the net-
work of biotic interactions based on empirical observations (Fig. 1a). 
The co-occurrence network was built from the empirical observations 
of the species’ spatial distribution in each dataset. Therefore, a link 
between two species from different trophic levels was added when 
they co-occurred in at least one spatial unit of each dataset. In addi-
tion to the binary co-occurrence information (that is, presence or 

absence of co-occurrence between species) used to build the network 
of co-occurrences, we also considered how frequently species from dif-
ferent trophic levels co-occurred across sites to develop our theoretical 
model (see section below). The network of species co-occurrences has 
been interpreted as a network of potential interactions given that to 
interact species normally have to coexist, with the possible exception 
of strongly negative interactions leading to competitive co-exclusion2. 
Given that the datasets considered in this study describe PP and HP 
interactions, species indeed need to co-occur to interact.

The network of biotic interactions is based on empirical observa-
tions of the ecological interactions between species in each spatial 
unit. Thus, an interaction between two species was added to the net-
work of biotic interactions if it was empirically observed in at least 
one spatial unit. It is important to note that the spatial scale consid-
ered for the biotic interactions is the same as the one considered for 
co-occurrences. That is, the presence or absence of interactions and 
co-occurrences between species was empirically observed in each 
spatial unit of each dataset. The dimensions of the spatial units of each 
dataset were chosen by the authors of the original papers describing 
these datasets35–43 to ensure the correct description of the network of 
biotic interactions. Therefore, if two species were observed together 
but not interacting, we can be confident that it is not a false negative. 
The use of the same spatial scale for co-occurrences and interactions 
allowed us to directly compare the two.

Network degree distribution
Both the co-occurrence and biotic interaction networks were described 
through quantification of their degree distribution in the empirical 
data. The degree distribution is defined as the probability P(k > x) of 
(uniformly) choosing a species that has at least x  links to other species 
in the network (Fig. 1b and Supplementary Text 2). We then fitted four 
different functions previously identified in ecological network degree 
distributions: exponential; power law; truncated power law; and 
log-normal17,44. After fitting these functions to the degree distribution 
of both co-occurrence and biotic interaction networks for each dataset, 
we selected the most parsimonious function using the Akaike informa-
tion criterion. Because the networks analysed are bipartite, we could 
analyse consumer and resource degree distributions independently; 
we present the results for each trophic level separately.

Pruning of the co-occurrence network based on the frequency 
of co-occurrence
To investigate the differences between the degree distributions of the 
two network types (that is, co-occurrence and biotic interactions) and 
examine how co-occurrence networks can be pruned to approximate 
the realized network of biotic interactions, we propose a simple model 
based on the frequency of co-occurrence between species (that is, 
the number of times two species co-occur across sampling units) to 
estimate the expected number of interactions of a species.

Let N = (Nαi) be the frequency of the co-occurrence matrix where 
Nαi  is the number of sites where a consumer α  has been observed 
together with a resource i. Given a rate of interaction per site p, the 
probability that α  and i actually interact is:

Pαi = 1 − (1 − p)Nαi

Therefore, Pαi is the probability of the interaction between con-
sumer α  and resource i, which is modulated by the frequency of 
co-occurrence between both species across sites Nαi.

We still need to fix the value for p. To do so, we may note that over 
many random draws of the model, the expected number of links, L, 
conditioned on the fact that all consumers have at least one resource is:

E(L(p)) = ∑
α
∑
i

1 − (1 − p)Nαi

1 − (1 − p)Nα
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where Nα = ∑iNαi. We imposed such a condition to ensure that we did 
not have isolated consumers lacking a required resource to survive (as 
observed in the empirical data). We then defined p so that E(L(p))

Lc
= f , 

which imposes that, on average over random realizations of the model, 
the total number of links L coincides with the number of actual links in 
the network of biotic interactions, which is a proportion f of the total 
number of co-occurrences, that is, Lc (f corresponds to the percentages 
shown in Fig. 2). Thus, for each dataset, p is adjusted to generate a 
pruned network that has, on average, the same number of biotic interac-
tions than the original network. In the end, any random realization of 
this model generates the number of links for each species, which allowed 
us to characterize the degree distribution and compare it to the actual 
degree distribution of the empirical network of biotic interactions. 
Given that it is a probabilistic model, we performed 100 different ran-
dom realizations of the model (the many coloured lines in Fig. 5).

Random pruning of the co-occurrence network
To demonstrate the importance of considering the frequency of 
co-occurrences between species (which underlie the IR model pro-
posed earlier) to properly infer network degree distributions, we addi-
tionally performed a random pruning of the network of co-occurrences 
and compared the results. That is, while in the model proposed earlier 
the probability of interaction between a pair of species depends on 
their frequency of co-occurrence in space, in the random pruning 
model all species from opposite trophic levels that co-occur have the 
same probability of interacting. For instance, if for a given dataset 
we observe that 20% of the links from the co-occurrence network are 
transformed into biotic interactions, all species that co-occur will have 
a probability of interacting Pαi = 0.2, which is equivalent to set Nαi = 1 for 
all species in the model described earlier. We performed 100 replicates 
of this random pruning and compared the resulting degree distribu-
tions with the empirically observed degree distributions of the biotic 
interaction networks.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the study results can be found at https://doi.org/ 
10.5281/zenodo.8402455.

Code availability
The code used to analyse the data and generate the results can be found 
at https://doi.org/10.5281/zenodo.8402455.
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Extended Data Fig. 1 | Comparison of the frequency distributions of 
resources degree among co-occurrence networks and realised biotic 
interactions networks. Red lines represent co-occurrence networks and 
yellow lines represent realised biotic interactions networks in the 10 datasets 

investigated. Top row are plant-pollinator networks and bottom row are host-
parasite networks. Black dashed lines indicate the more parsimonious functions 
among all tested (see Methods).
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Extended Data Fig. 2 | Relationship between the number of potential 
interactions and the number of realised interactions and model prediction 
for resource species. Top row are plant-pollinator networks and bottom row 
are host-parasite interactions. Each black point represents a species in the 

empirical system and the green line and points indicate the predicted proportion 
of realised interactions by the proposed model based on the frequency of 
co-occurrences. Green lines represent the mean tendency and shaded areas 
represent 95% confidence intervals.
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Extended Data Fig. 3 | Relationship between number of potential 
interactions for resource species and the mean frequency of co-occurrence 
with their consumers. Top row are plant-pollinator networks and bottom 

row are host-parasite interactions. Each black point represents a species in the 
empirical system. Blue lines represent a gam fit only for visualisation purposes 
and shaded areas represent 95% confidence intervals.
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Extended Data Fig. 4 | Relationship between the number of expected 
interactions based on the frequencies of species co-occurrences and the 
number of realised interactions for each species. (a) Shows the relationship 
from the consumer’s perspective (that is indegree is the number of resources 
each consumer has) while (b) represents the resources perspective (that is 

outdegree corresponds to the number of consumers each resource has). Each 
point represents a species in the empirical system. Black line shows the 1:1 line 
indicating a perfect relationship between the predicted and the realised number 
of interactions.
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Extended Data Fig. 5 | Comparison of the degree distributions of resource 
species among co-occurrence networks, realised biotic interactions 
networks and our theoretical predictions accounting for the frequency 
of interactions. Red lines represent co-occurrence networks, yellow lines 

represent realised biotic interactions networks and our theoretical predictions 
accounting for the frequency of interactions are represented in multicolor (each 
color represents a replicate) in the 10 datasets investigated. Top row are plant-
pollinator networks and bottom row are host-parasite networks.
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Extended Data Fig. 6 | Comparison of the degree distributions among co-
occurrence networks, realised biotic interactions networks and the null 
model predictions. Red lines represent co-occurrence networks, yellow lines 
represent realised biotic interactions networks and the null model predictions 
are represented in multicolor (each color represents a replicate) for the 10 

datasets investigated. The null model prunes the co-occurrence networks 
using a constant proportion of links to keep across species. Therefore, it results 
in a random pruning of the co-occurrence network. Top rows correspond to 
consumers and bottom rows correspond to resource species.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-023-02254-y

Extended Data Fig. 7 | Relationship between the per-site interactions rate (p) and the proportion of realised links (f ) across datasets. Each color represents a 
different dataset.
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