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Abstract
We study how helicity affects the spectrum of a passive scalar in rotating turbulent flows,
using numerical simulations of turbulent flows with or without rotation and with or without
injection of helicity. Scaling laws for energy and passive scalar spectra in the direction
perpendicular to the rotation axis differ in rotating helical flows from those found in the
non-helical case, with the spectrum of passive scalar variance in the former case being
shallower than in the latter. A simple phenomenological model that links the effects of helicity
on the energy spectrum with the passive scalar spectrum is presented.

PACS numbers: 47.32, 47.85

1. Introduction

Enhanced mixing and transport are some of the most
important properties of turbulent flows. These properties,
sometimes characterized by a turbulent diffusivity, result in
rapid homogenization of any mixture of different fluids, are
used in many applications [1, 2], and are also relevant in many
atmospheric and oceanic flows [3]. In many of these flows,
rotation is important, and it is widely accepted that turbulent
mixing is affected by the presence of rotation [4–6].

Several studies consider the effect of rotation in the
energy cascade. While the energy still undergoes a direct
cascade, there is evidence that at moderate rotation rates a
fraction of the energy can also undergo an inverse energy
cascade, resulting in accumulation of energy at scales larger
than the energy injection scale [7, 8]. Nowadays, it is
also known that the presence of rotation sets a preferential
direction for the transfer of energy in spectral space, with the
energy going towards modes with small parallel wavenumber
(where parallel is defined relative to the rotation axis) and
resulting in a quasi-bidimensionalization of the flow [7, 9, 10].
The energy flux is also reduced (when compared with the
homogeneous and isotropic case) by virtue of the extra
resonance (or quasi-resonance) condition that triads must
fulfill for the coupling between modes to be effective [7, 10].
This results in a steeper energy spectrum than that expected
from the Kolmogorov phenomenology. The effect of helicity
on rotating turbulence has received less attention, although

it is known that helicity is relevant for many atmospheric
processes, such as convective thunderstorms [11–13], and is
also known to be important for the flows in blood vessels [2].
For the latter case, the results in [14] indicate that helicity
affects the energy transfer to smaller scales, making the
energy spectrum even steeper than in the rotating non-helical
case.

A paradigmatical way to study turbulent mixing is to
consider the advection and diffusion of a passive scalar by
a turbulent velocity field. When the flow is turbulent, the
mixing and transport of a scalar quantity (such as the density
of pollutants or aerosols) is greatly enhanced. The turbulent
diffusion of a passive scalar in two-point closures is related to
the amplitude of the velocity turbulent fluctuations [15], and
therefore it can be expected that changes in the scaling law
followed by the energy spectrum should affect the dynamics
of the passive scalar. The scaling (including intermittency) of
passive scalars in isotropic and homogeneous turbulent flows
was studied in [16] and later in [1, 17–19]. The Kraichnan
model [20] allowed computation of all scaling exponents
of the passive scalar for a random, delta-correlated in time
velocity field. The predictions are in good agreement with the
results of numerical simulations [18], which obtained a joint
cascade of energy and passive scalar variance following the
same scaling law given by the Kolmogorov spectrum [21],
except for intermittency corrections.

Passive scalars in rotating turbulence have also been
studied in numerical simulations, showing that the transport
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is affected by rotation and anisotropy [22, 23]. Recent
numerical studies or rotating turbulence [24] show that passive
scalar variance is transferred preferentially toward modes
with small parallel wavenumbers (i.e. quasi-bidimensional
modes), following an inertial range scaling consistent with
the bidimentionalization of the flow. Furthermore, the results
show that perpendicular structure functions of the passive
scalar have anomalous scaling consistent with the Kraichnan
model in a two-dimensional (2D) space, again indicating
strong anisotropic mixing and transport of scalar quantities in
rotating flows. Experimental evidence for anomalous scaling
of passive scalar structure functions in rotating flows was also
observed in [25].

Stochastic models and two-point closures indicate that
two-particle dispersion in rotating turbulent flows is highly
anisotropic, with different dispersion in the direction parallel
and perpendicular to the rotation axis [4, 5, 26], which can
be related to the diffusion of passive scalars. Numerical
simulations [6] also showed that the turbulent diffusivity
becomes anisotropic with rotation, reducing the horizontal
transport to a much lesser extent than vertical transport.

As in the case of the effect of helicity on the transport
and mixing of passive scalars, it was shown in [27] that
helicity affects the passive scalar diffusivity in a turbulent
flow. For isotropic and homogeneous turbulence, it is argued
that the lack of reflectional symmetry (related with a non-zero
value of the helicity) produces a turbulent skew-diffusion
perpendicular to the local mean scalar gradient. Later, it
was shown in [15] using renormalization groups that while
anomalous scaling of the passive scalar is not affected by
helicity, turbulent diffusion is. However, the effect of helicity
on the transport of scalar quantities in rotating helical flows
has not been considered.

The aim of this paper is to study how helicity affects
the spectrum of a passive scalar in a rotating turbulent flow.
The spectrum and flux are studied in numerical simulations of
turbulent flows with or without rotation, and with or without
injection of helicity, to identify spectral indices in the inertial
range of the direct energy and passive scalar cascades. The
simulations are performed with a parallel pseudospectral code
with periodic boundary conditions [28, 29], using a spatial
resolution of 5123 grid points. The forcing used for all fields
is a superposition of random modes, delta-correlated in time,
with controllable helicity injection, which in the simulations
presented here is either zero or maximal.

Scaling laws for energy and passive scalar spectra in
the direction perpendicular to the rotation axis differ in
rotating helical flows from those found in the non-helical case.
A phenomenological argument that links the effects of helicity
on the energy spectrum with the passive scalar spectrum is
also presented.

2. Equations and numerical simulations

The data analyzed in the following section is obtained
from direct numerical simulations of the incompressible
Navier–Stokes equations for the velocity field u together with
the equation for the passive scalar θ , given by

∂t u + u · ∇u = −2� × u − ∇ p + ν∇
2u + f, (1)

∇ · u = 0, (2)

∂tθ + u · ∇θ = κ∇
2θ + φ, (3)

where p is the pressure divided by the (uniform) mass density,
ν is the kinematic viscosity and κ is the scalar diffusivity.
Here, f is an external force that drives the turbulence, φ is
the source of the scalar field and Ω= �ẑ is the rotation.

The numerical code used to solve equations (1)–(3)
in a three-dimensional domain of size 2π with periodic
boundary conditions is a second-order in time pseudospectral
code, parallelized using the Message Passing Interface (MPI)
library and OpenMP [28–30]. To solve the pressure, we
take the divergence of equation (1), use the incompressibility
condition (2) and solve the resulting Poisson equation. To
evolve in time a Runge–Kutta method with low storage
is used. The code uses the 2/3-rule for de-aliasing, and
as a result the maximum resolved wave number is kmax =

N/3, where N = 512 is the linear resolution. All simulations
presented are well resolved, in the sense that the dissipation
wave numbers kν and kκ (respectively for the kinetic energy
and for the passive scalar) are smaller than the maximum wave
number kmax at all times.

The dimensionless parameters used to control the
simulations are the Reynolds Re, the Peclet Pe and the
Rossby Ro numbers, respectively, given by

Re =
U L

ν
, (4)

Pe =
U L

κ
(5)

and

Ro =
U

2L�
, (6)

where U is the rms velocity, and L is the flow forcing scale
defined as L = 2π/kF with kF the forcing wave number.
For most of the simulations shown in the following section
U ≈ 2, and all runs have ν = κ (i.e. Pe = Re). The forcing
used for the velocity field as well as for the passive scalar
is a superposition of Fourier modes with random phases,
delta-correlated in time, and the amount of helicity injected
is controlled by correlating the velocity field components and
the phases between Fourier modes using the method described
in [31].

Both the kinetic energy and the passive scalar variance
were injected at the same wave number kF. One set of runs (set
A) has external forcing applied at k ∈ [1, 2] (therefore kF ≈ 1,
and the simulations have the largest possible separation
of scales between the forcing wavenumber and the largest
resolved wavenumber). Another set of runs (set B) has forcing
at k ∈ [2, 3] (then kF ≈ 2). Finally, a third set of runs is forced
at kF = 3 (set C). For the last set of runs, the choice of
kF = 3 results in a small separation of scales between the box
size and the forcing scale, allowing for some of the energy
to be transferred to larger scales in the presence of rotation
(although the separation of scales is not large enough to study
the inverse cascade). This reduces the Reynolds number and
results in a narrower direct cascade inertial range, since the
separation between the forcing and the dissipation scale is
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Table 1. Parameters used in the simulations: kF is the forcing
wavenumber, � the rotation angular velocity, Ro the Rossby
number, ν the kinematic viscosity, Re the Reynolds number, U the
rms velocity in the turbulent steady state, and H = 〈u · ∇ × u〉 the
total helicity (averaged in time).

Run kF � Ro ν Re U H

A1 1 0 ∞ 6 × 10−4 1000 2 0
A2 1 4 0.04 6 × 10−4 1000 2 0
B1 2 0 ∞ 5 × 10−4 600 2 3
B2 2 8 0.04 5 × 10−4 600 2 6
B3 2 16 0.04 5 × 10−4 600 4 11
C1 3 0 ∞ 6 × 10−4 240 2 0
C2 3 12 0.04 6 × 10−4 240 2 0

Figure 1. Isotropic energy (solid line) and passive scalar (dashed
line) spectrum for run A1 (without rotation and without helicity
injection). Kolmogorov scaling is indicated as a reference.

reduced. However, the incipient inverse transfer of energy
that develops is important for the development of a dominant
direct cascade of helicity when helicity is injected in the
presence of rotation (see [14]). The three sets of runs allow
us to compare runs with similar Rossby numbers (albeit with
different Reynolds numbers) while varying the amount of
helicity. While the flows in set B are helical, the flows in sets
A and C are non-helical (more details of the runs in sets A and
C can be found in [24]).

The simulations were performed as follows: first a
simulation of the Navier–Stokes equation with � = 0 was
done, until a turbulent steady state was reached (this requires
an integration for approximately ten turnover times). Then the
passive scalar was injected, and the run was continued for
another ten turnover times until a steady state for the passive
scalar was reached (these runs correspond to runs A1, B1
and C1). Finally, rotation was turned on. Different values of
� were considered to have similar Rossby numbers in all
the runs with � 6= 0. All the runs with rotation in each set
were started using as initial conditions for the velocity and the
passive scalar the latest output of the runs without rotation in
the same set (runs A1, B1 or C1, respectively). Each of the
runs with rotation was continued for over 20 turnover times.
Parameters for all runs are listed in table 1.

3. Numerical results

3.1. Effect of rotation

Figure 1 shows the isotropic energy E(k) and passive scalar
variance V (k) spectra for run A1 (without rotation and
without helicity injection). An inertial range can be identified,

Figure 2. (a) Reduced perpendicular spectrum for the energy (solid
line) and for the passive scalar variance (dashed line) for (a) run A2
(� = 4) and (b) run C2 (� = 12). Scaling laws ∼ k−2

⊥
and ∼ k−3/2

⊥

are indicated as references.

where energy and passive scalar follow a k−5/3 scaling law, as
expected from previous studies of passive scalar in isotropic
and homogeneous turbulence [1, 17, 18]. Runs B1 and C1,
also without rotation but forced at different wavenumbers (and
in the case of run B1, with helicity), show the same scaling.

In figure 2, we show the energy and passive scalar
reduced perpendicular spectra, respectively E(k⊥) and V (k⊥),
for runs A2 and C2 (corresponding to flows with rotation but
without net helicity, see table 1). The reduced perpendicular
spectrum is obtained by summing over all wavenumbers
in Fourier space in cylindrical shells with radius k⊥ =√

(k2
x + k2

y), to take into account the fact that the flows become

anisotropic in the presence of rotation (see [10, 32] for
definitions and details of anisotropic spectra).

As can be seen in figures 2(a) and (b), inertial range
scaling can be identified for both the energy and the
passive scalar variance, although with different power laws.
The reduced perpendicular energy spectrum follows a ∼

k−2
⊥

scaling. This power law has already been reported
in numerical simulations and experiments of rotating
turbulence (see, e.g., [14, 33]), and is consistent with simple
phenomenological models based on a slowdown of the energy
transfer associated with the interaction between waves and
eddies [14, 33, 34], as well as with more detailed two-point
closures [9, 10]. The passive scalar inertial range displays
a scaling compatible with ∼ k−3/2

⊥
scaling, as also reported

in [24]. These power laws can be further confirmed when
the spectra are compensated for (see figures 3(a) and (b)).
Unlike the case of isotropic and homogeneous turbulence, in
the presence of rotation the kinetic energy and passive scalar
show different power laws in the inertial range.

The inertial ranges indicated in figures 2 and 3 correspond
to direct cascades of energy and scalar variance. This can be
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Figure 3. (a) Reduced perpendicular spectrum for the energy (solid
line) and for the passive scalar variance (dashed line) compensated
for, respectively, by −2 and −3/2 in run A2. (b) The same as (a) but
for run C2.

Figure 4. (a) Energy flux 5(k) (solid line) and passive scalar flux
σ(k) (dashed line) for the run without rotation C1. (b) Perpendicular
energy flux 5(k⊥) and perpendicular passive scalar flux σ(k⊥) for
the run with rotation C2.

confirmed from the energy and passive scalar spectral fluxes
shown in figure 4 for runs C1 and C2 (respectively without and
with rotation). In the non-rotating case, energy shows a range
of approximately constant (and positive) flux, indicating that
energy is transferred toward smaller scales, while the energy
flux is negligible for wave numbers smaller than the forcing
wave number (k < kF = 3). The passive scalar variance also
directs cascades to smaller scales with a range of wave
numbers with approximately constant flux. When rotation

Figure 5. (a) Reduced perpendicular helicity spectrum, (b) energy
spectrum and (c) passive scalar spectrum for run B2 (helical
turbulent flow with � = 8). In all cases slopes are indicated as
references.

is present, the energy flux becomes negative for k < kF

(indicating that a fraction of the energy is transferred towards
scales larger than the forcing scale, although without enough
scale separation to develop an inverse cascade), while the
energy flux towards smaller scales remains positive although
it decreases when compared with run C1. For the passive
scalar, no significative flux toward larger scales is observed,
and the cascade remains direct with also a small decrease of
the positive (direct) flux for k > kF when compared with the
non-rotating case.

3.2. Effect of helicity

Now we analyze the runs with rotation and with maximal
helicity injection, resulting in anisotropic helical turbulent
flows. Figures 5 and 6 show the helicity, energy and passive
scalar reduced perpendicular spectra for runs B2 and B3.
Slopes with reference values for the scaling in the inertial
range are also indicated. Whereas without rotation helicity
does not change the scaling of the passive scalar spectrum, in
the rotating case a difference is observed. A careful analysis
of the spectrum indicates that the passive scalar is close to
a ∼ k−1.4

⊥
power law, a spectrum slightly shallower than that

observed in runs A2 and C2. The shallower spectrum observed
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Figure 6. (a) Reduced perpendicular helicity spectrum, (b) energy
spectrum and (c) passive scalar spectrum for run B3 (helical
turbulent flow with � = 16). In all cases slopes are indicated as
references.

for V (k⊥) is associated with a change in the energy spectrum
when helicity is present.

The energy spectrum in (helical) runs B2 and B3 is
steeper than in the (non-helical) runs A2 and C2, as can be
also seen in figures 5 and 6. The inertial ranges are compatible
with a ∼ k−2.2

⊥
power law. This result is compatible with the

results reported in [14], where numerical simulations were
presented showing that in rotating helical flows the direct flux
of helicity dominates over the direct flux of energy, affecting
the scaling law for the energy in the direct cascade range.
A phenomenological argument was also presented, which,
assuming that the direct cascade of helicity is dominant,
results in a spectrum E(k⊥)H(k⊥) ∼ k−4

⊥
. In other words, if

the energy spectrum satisfies E(k) ∼ k−n , then the helicity
should scale as H(k) ∼ k4−n; n becomes larger (and the
energy spectrum steeper) as the flow becomes more helical,
with the limit n = 2.5 for the case of a maximally helical
turbulent flow (in practice, this limit cannot be obtained,
as a flow with maximal helicity has the nonlinear term in
the Navier–Stokes equation equal to zero, and therefore no
transfer can take place).

The behavior of the helicity spectrum in runs B2 and B3
is consistent with the phenomenological argument described
above. In figures 5 and 6, a scaling ∼ k−1.8

⊥
is indicated

as a reference, which seems compatible with the behavior

Figure 7. Reduced perpendicular spectra for the helicity
(dash-dotted line), energy (solid line), and passive scalar (dashed
line) compensated for, respectively, by k−1.8

⊥
, k−2.2

⊥
and k−1.4

⊥
, in

helical runs (a) B2 and (b) B3.

of H(k⊥). Compensated spectra for the energy, the helicity
and the passive scalar for runs B2 and B3 are shown in
figure 7. Good agreement between the reference slopes and
the numerical data is apparent.

Following the phenomenological argument mentioned
above for the energy spectrum, we can put forward a simple
argument to explain the difference observed in the scaling of
the passive scalar in rotating helical and non-helical turbulent
flows. From equation (3), it can be seen on dimensional
grounds that for scales in the inertial range, the passive scalar
flux across the scale l⊥ (equal to the passive scalar injection
rate) σ = ∂t 〈θ

2
〉 must be

σ ∼
θ2

l⊥
ul⊥

l⊥
, (7)

where θl⊥ is the characteristic concentration of the passive
scalar at the scale l⊥, and ul⊥ the characteristic velocity (since
the flow becomes anisotropic in the presence of rotation, we
are assuming that most of the fluctuations are concentrated
in structures with weak variation in the direction along the
axis of rotation). If σ is constant in the inertial range, we can
estimate the passive scalar spectrum V (k⊥) ∼ θ2

l⊥
/k⊥ from

equation (7) as

V (k⊥) ∼
σ l2

⊥

ul⊥

. (8)

If the energy spectrum is E(k⊥) ∼ k−n
⊥

, and therefore the
characteristic velocity at a scale l⊥ is ul⊥ ∼ l1−n

⊥
, the passive

scalar spectrum results

V (k⊥) ∼ σ l
5−n

2
⊥

∼ σk
−

5−n
2

⊥
. (9)
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Figure 8. Perpendicular helicity flux 6(k⊥)/kF (dash-dotted line),
energy flux 5(k⊥) (solid line) and passive scalar flux σ(k) (dashed)
for runs (a) B2 and (b) B3.

Therefore, the spectral index for the passive scalar is given by
nθ = (5 − n)/2. This result is also valid in the isotropic case,
provided that l⊥ is replaced by l.

The numerical results are in good agreement with this
simple phenomenological argument. If n ≈ 2 (runs with
rotation but without helicity), then nθ ≈ 3/2. On the other
hand, if n ≈ 2.2 (compatible with the spectrum observed in
the runs with rotation and helicity), then nθ ≈ 1.4.

The fact that the fluxes are still positive (i.e. the
cascades direct) and approximately constant (within the
limitations imposed by the spatial resolution and the moderate
Reynolds numbers considered) in rotating helical flows can be
confirmed from the helicity, energy and passive scalar fluxes
shown in figure 8 for runs B2 and B3 (the helicity flux in
the figure is divided by kF to compare all fluxes with the
same units). As in the runs without helicity, the energy flux
shows some inverse transfer towards larger scales for k < kF,
while all other fluxes are positive everywhere, indicating that
quantities are not transferred towards larger scales. An excess
of helicity flux (when compared with the energy flux) can be
observed, in agreement with the arguments of dominance of
the helicity cascade in [14].

We finish the analysis of the runs by quantifying the
degree of anisotropy in the velocity field and in the passive
scalar distribution. As already mentioned, the presence of
rotation results in a preferred transfer of energy towards
2D modes. This motivated our study of the energy and
passive scalar spectral scaling using the reduced perpendicular
spectrum instead of the usual isotropic spectrum. We now
quantify how much energy and passive scalar variance is in 2D
modes in each of the runs. Several anisotropy measures can be
used to this end [9, 10, 35]. As an example, the ratio of energy
in all modes with k‖ = 0 to the total energy, i.e. E(k‖ = 0)/E ,
can be used to characterize large-scale anisotropy [14]. For
a purely 2D flow, this ratio is equal to one. For the passive

scalar, the equivalent quantity V (k‖ = 0)/V can also be used.
Finally, in helical flows we can also compute H(k‖ = 0)/H to
quantify large-scale anisotropy of the helicity.

As can be seen from table 2, in all the runs a substantial
fraction of the energy, the passive scalar variance and (to a
lesser extent) the helicity is in 2D modes. Helicity does not
seem to affect the large-scale anisotropy. Independently of the
helicity in the flow, the energy is more anisotropic at large
scales than the passive scalar, as already found for non-helical
rotating flows in [24].

To characterize small-scale anisotropy, the Shebalin
angles can be used [36, 37]. For the velocity field, the Shebalin
angle is defined as

tan2(αu) = 2 lim
l→0

S2(l⊥)

S2(l‖)
= 2

∑
k⊥

k2
⊥

E(k⊥)
/ ∑

k‖

k2
‖

E(k‖),

(10)

where S2(l‖) and S2(l⊥) are the second-order longitudinal
structure functions of the velocity, respectively with spatial
increments in the direction parallel and perpendicular to the
axis of rotation. The angle αu gives a global measure of small
scale anisotropy, with a value of tan2(αu) = 2 corresponding
to an isotropic flow and larger values corresponding to more
anisotropic flows. The definition is easily extended to the
cases of the passive scalar and the helicity. Table 2 shows the
square tangent of the Shebalin angles for the velocity field
(tan2(αu)), for the passive scalar (tan2(αθ )) and for the helicity
(tan2(αH)). At the small scales, the flows with helicity seem to
develop stronger anisotropies for the passive scalar.

These quantities give information only on the global
anisotropy of the velocity field and of the passive scalar.
There are other ways to quantify spectral anisotropy that give
detailed information on the distribution of energy in spectral
space and of the degree of anisotropy at different scales, as
the axisymmetric spectrum e(k⊥, k‖) [10]. A detailed study of
spectral anisotropy is left for future work.

4. Concluding remarks

We have presented preliminary results of numerical
simulations of passive scalar advection and diffusion in
rotating turbulent flows with and without helicity, in grids of
5123 points.

Whereas in isotropic and homogeneous turbulence at
moderate Reynolds number the energy and the passive
scalar variance follow Kolmogorov scaling ∼ k−5/3 except
for intermittency corrections, in the presence of rotation
non-helical flows display a reduced perpendicular energy
spectrum E(k⊥) ∼ k−2

⊥
and a shallower reduced perpendicular

spectrum V (k⊥) ∼ k−3/2
⊥

for the passive scalar.
In the absence of rotation, the scaling of the energy

and of the passive scalar remains the same independently
of the level of helicity in the flow. In helical rotating
flows, our simulations display a steeper energy spectrum
compatible with E(k⊥) ∼ k−2.2

⊥
and a shallower passive scalar

spectrum compatible with V (k⊥) ∼ k−1.4
⊥

. These numerical
results are consistent with a simple phenomenological model
that predicts that if the energy spectrum has an inertial range

6
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Table 2. Anisotropy in helical and non-helical runs with rotation. E(k‖ = 0)/E is the ratio of energy in all modes with k‖ = 0 to the total
energy, V (k‖ = 0)/V is the ratio of scalar variance in modes with k‖ = 0 to the total scalar variance, and H(k‖ = 0)/H is the ratio of
helicity in k‖ = 0 modes to the total helicity. The angles αu , αθ and αH are, respectively, the Shebalin angles for the velocity, the passive
scalar and the helicity.

Run E(k‖)/E(k) V (k‖)/V (k) H(k‖)/H(k) tan2αu tan2αθ tan2αH

A2 0.5 0.4 − 13 20 −

B2 0.6 0.25 0.27 17 37 14
B3 0.4 0.24 0.17 18 76 20
C2 0.2 0.1 − 14 50 −

of the form E(k⊥) ∼ k−n
⊥

, then the passive scalar spectrum
follows a power law V (k⊥) ∼ k−nθ

⊥
with spectral index nθ =

(5 − n)/2.
Finally, analysis of global measures of anisotropy

indicate that the distribution of the passive scalar at small
scales becomes more anisotropic in helical rotating flows (in
comparison with the results in non-helical rotating flows) but
it is largely unaffected at large scales.

The results open new questions that will be addressed
in future works. In particular, and as the spectral scaling of
the passive scalar in rotating flows seems to be affected by
helicity, one may ask: is intermittency and anomalous scaling
of the passive scalar changed by helicity? And how is the
transport and mixing of the passive scalar affected? While
the former question can be answered by computing scaling
exponents for rotating flows with and without helicity, the
latter may require quantification of the turbulent transport in
directions parallel and perpendicular to the axis of rotation.
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