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FROM WEAK TYPE WEIGHTED INEQUALITY TO POINTWISE

ESTIMATE FOR THE DECREASING REARRANGEMENT

ELONA AGORA, JORGE ANTEZANA, SERGI BAENA-MIRET, MARÍA J. CARRO

Abstract. We shall prove pointwise estimates for the decreasing rearrangement of Tf ,
where T covers a wide range of interesting operators in Harmonic Analysis such as operators
satisfying a Fefferman-Stein inequality, the Bochner-Riesz operator, rough operators, sparse
operators, Fourier multipliers, etc. In particular, our main estimate is of the form

(Tf)∗(t) ≤ C

(
1

t

∫ t

0

f∗(s) ds+

∫
∞

t

(
1 + log

s

t

)
−1

ϕ
(
1 + log

s

t

)
f∗(s)

ds

s

)
,

where ϕ is determined by the Muckenhoupt Ap-weight norm behaviour of the operator.
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2 From weak to pointwise

1. Introduction

There are many interesting operators in Harmonic Analysis satisfying that, for every u ∈ A1,

(1.1) T : L1(u) −→ L1,∞(u)

is bounded with constant less than or equal to C||u||kA1
, k ∈ N, where we recall that A1 is

the class of Muckenhoupt weights such that

(1.2) Mu(x) ≤ Cu(x), a.e. x ∈ R
n.

Here, M is the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)|dy, f ∈ L1
loc
(Rn), x ∈ R

n,

where the supremum is taken over all cubes Q ⊆ R
n containing x, and ||u||A1 is the infi-

mum of all constants C in (1.2). In particular, it is known [34] that M satisfies (1.1) with

||M ||L1(u)−→L1,∞(u) ≤ cn||u||A1.

Other examples of such operators are the Hilbert transform, the Riesz transform and, more

generally, any Calderón-Zygmund operator (see for instance [31]). Also, sparse operators

[25], the Bochner-Riesz operator Bλ at the critical index (that is, λ = n−1
2

) [32, 37], among

many others, are known to satisfy condition (1.1).

The main purpose of this paper is to prove pointwise estimates for the decreasing rearrange-

ment of Tf with respect to the Lebesgue measure. In particular, our first main result is the

following:

Theorem 1.1. Let T be a sublinear operator such that, for every u ∈ A1 and some k ∈ N, T

satisfies (1.1) with constant less than or equal to C||u||kA1
. Then, for every t > 0 and every

measurable function f ,

(Tf)∗(t) ≤ C

(
1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

(
1 + log

s

t

)k−1

f ∗(s)
ds

s

)
.

This pointwise estimate is very interesting since obviously it has, as a consequence, bound-

edness properties of such operators on rearrangement invariant spaces (for more details, we

refer to [6]). In particular, it allows us to characterize the weights ω for which they are

bounded on weighted Lorentz spaces Λp,q(ω) [11].

Now, on some occasions, the behaviour of the constant has been improved from, let us say,

||u||1+ε
A1

, ε > 0, to an expression of the form ϕ(||u||A1), where ϕ is not a power function. This

is, for example, the case when T is a Calderón-Zygmund operator, where the best function

ϕ known up to now is ϕ(t) = t(1 + log+ t)(1 + log+ log+ t) [31].

In order to cover this important class of operators we shall, in fact, prove a more general

version of Theorem 1.1 (see Definition 2.1 for the concept of admissible function).
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Theorem 1.2. Let T be a sublinear operator such that, for every u ∈ A1,

T : L1(u) −→ L1,∞(u),

with constant less than or equal to ϕ(||u||A1), where ϕ is an admissible function. Then, for

every t > 0 and every measurable function f ,

(1.3) (Tf)∗(t) ≤ C

(
1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

)
f ∗(s)

ds

s

)
.

To prove inequality (1.3), our starting point was the following result (see [3]). See Section 2

for the definitions of the classes of weights BR
1 and B∗

∞.

Theorem 1.3. Let T be an operator satisfying that, for every u ∈ A1,

T : L1(u) → L1,∞(u)

is bounded, with constant less than or equal to ϕ(||u||A1), where ϕ is an increasing function

in [1,∞). Then, for every ω ∈ BR
1 ∩ B∗

∞,

T : Λ1(ω) → Λ1,∞(ω)

is bounded with constant less than or equal to C1[ω]BR

1
ϕ
(
C2[ω]B∗

∞

)
for some positive constants

C1, C2 independent of ω.

Let us now see an easy proposition which helps to motivate what follows:

Proposition 1.4. Let T be an operator satisfying that, for every ω ∈ BR
1 ,

(1.4) T : Λ1(ω) → Λ1,∞(ω)

is bounded with constant less than or equal to ϕ([ω]BR

1
). Then, for every t > 0,

(1.5) (Tf)∗(t) ≤
ϕ(1)

t

∫ t

0

f ∗(s) ds.

Proof. The hypothesis implies that, for every ω ∈ BR
1 and every t > 0,

(Tf)∗(t)W (t) ≤ ϕ([ω]BR

1
)

∫ ∞

0

f ∗(s)ω(s) ds.

In particular, since ω = χ[0,t] ∈ BR
1 and [ω]BR

1
= 1, we get that

(Tf)∗(t) ≤
ϕ(1)

t

∫ t

0

f ∗(s) ds.

�

Remark 1.5. i) If an operator T satisfies (1.5), we have that (1.4) holds with constant

less than or equal to C[ω]BR

1
and hence we can conclude that under the hypothesis of the

previous theorem, ||T || ≤ C̃min([ω]BR

1
, ϕ([ω]BR

1
)), for some positive constant C̃ independent

of ω.
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ii) We also observe that the operator T plays no role and hence the same can be formulated

for couples of functions (f, g) in the following sense:

||g||Λ1,∞(ω) ≤ ϕ([ω]BR

1
)||f ||Λ1(ω), ∀ω ∈ BR

1 ,

implies that

g∗(t) ≤ ϕ(1)f ∗∗(t), ∀t > 0.

Taking into account Theorem 1.3, our next goal was to include the hypothesis ω ∈ B∗
∞ in

its statement:

Theorem 1.6. Let T be a sublinear operator and let ϕ be an admissible function. Then, for

every ω ∈ BR
1 ∩B∗

∞,

T : Λ1(ω) → Λ1,∞(ω)

is bounded with norm less than or equal to C[ω]BR

1
ϕ([ω]B∗

∞
) if and only if, for every t > 0,

and every measurable function f ,

(Tf)∗(t) ≤ C

(
1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

)
f ∗(s)

ds

s

)
.

Besides, from the proof of the above theorem, we obtain the following result.

Corollary 1.7. Let T be a sublinear operator such that, for some admissible function ϕ and

any 1 ≤ p < ∞,

||Tf ||Lp,∞ ≤ Cϕ(p)||f ||Lp,1,

with C independent of p, then (1.3) holds.

As a consequence, we have the following result:

Theorem 1.8. If

T : L1 −→ L1,∞

and, there exists p0 > 1 so that

T : Lp0,1(u) −→ Lp0,∞(u),

with constant Cϕ(||u||Ap0
), for some admissible function ϕ, then (1.3) holds.

Finally, our technique can be also applied to operators for which condition (1.1) is changed

by a weaker one, as the following result shows.

Theorem 1.9. Let T be a sublinear operator such that, for some 0 < α ≤ 1, some p0 ≥ 1

and every u ∈ A1,

T : Lp0,1(uα) −→ Lp0,∞(uα),



E. Agora, J. Antezana, S. Baena-Miret and M.J. Carro 5

with constant less than or equal to ϕ(||u||A1), where ϕ is an admissible function. Then, for

every t > 0 and every measurable function f ,

(Tf)∗(t) ≤ C

(
1

t
1
p0

∫ t

0

f(s)
ds

s
1− 1

p0

+
1

t
1−α
p0

∫ ∞

t

ϕ̃
(
1 + log

s

t

)
f(s)

ds

s
1− 1−α

p0

)
,

with

ϕ̃(x) =

{
ϕ(x

p0
α ), 0 < α < 1,

x−1ϕ(x), α = 1.

The paper is organized as follows. In Section 2, we present previous results, the necessary

definitions and some technical lemmas which shall be used later on. Section 3 contains the

proofs of our results and Section 4 will be devoted to obtain pointwise estimates for the

decreasing rearrangement of Tf with respect to the Lebesgue measure for T being operators

satisfying a Fefferman-Stein inequality, the Bochner-Riesz operator, a rough operator, a

sparse operator or a Fourier multiplier. As usual, we write A . B if there exists a positive

constant C > 0, independent of A and B, such that A ≤ CB. If A . B and B . A, then

we write A ≈ B.

2. Definitions, previous results and lemmas

2.1. Admissible functions.

Definition 2.1. A function ϕ : [1,∞] → [1,∞] is called admissible if satisfies the following

conditions:

a) ϕ(1) = 1 and it is log-concave, that is

θ logϕ(x) + (1− θ) logϕ(y) ≤ logϕ(θx+ (1− θ)y), ∀x, y ≥ 1, 0 ≤ θ ≤ 1,

b) and there exist γ, β > 0 such that for every x ≥ 1,

(2.1)
γ

x
≤

ϕ′(x)

ϕ(x)
≤

β

x
.

Observe that (2.1) implies that ϕ is increasing, as well as that

xγ ≤ ϕ(x) ≤ xβ .

Besides, since for every C > 0,

logϕ(Cx) =

∫ x

1

(logϕ)′(s) ds+

∫ Cx

x

(logϕ)′(s)ds ≤ logϕ(x) + β log+ C,

it also holds that

(2.2) ϕ(Cx) ≤ max{1, Cβ}ϕ(x).

From now on, the function ϕ will be an admissible function.
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Examples 2.2. i) Given γ > 0 and β ≥ 0, the function ϕ(x) = xγ(1 + log x)β is admissible.

ii) Given n ∈ N, define

log(n) x =

{
1 + log x, if n = 1,

1 + log
(
log(n−1) x

)
, if n > 1.

Using this notation, if γ > 0 and β1, . . . , βn ≥ 0, the function

ϕ(x) = xγ
n∏

k=1

(
log(k) x

)βk

is also admissible.

The next lemmas are simple computations for admissible functions which shall be funda-

mental in the proof of our main results.

Lemma 2.3. Let 0 < q ≤ ∞. If r ≥ 1 then




∫ r

1

ϕ
(
1 + log s

) ds

s1−
1
q

≈ ϕ (1 + log r) r
1
q − 1, q < ∞,

∫ r

1

(
1 + log s

)−1
ϕ
(
1 + log s

) ds
s

≈ ϕ (1 + log r)− 1, q = ∞.

Lemma 2.4. Let 1 < q ≤ ∞. There exists some λ = λ(ϕ, q) > 1 such that for every t > 0

and r ≥ λt,




∫ ∞

r

ϕ
(
1 + log

s

t

) ds

s2−
1
q

≈ ϕ
(
1 + log

r

t

) 1

r1−
1
q

, q < ∞,

∫ ∞

r

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

) ds

s2
≈
(
1 + log

r

t

)−1

ϕ
(
1 + log

r

t

) 1

r
, q = ∞.

Proof. Consider the function

gq(r) =





−ϕ
(
1 + log

r

t

) 1

r1−
1
q

, q < ∞,

−
(
1 + log

r

t

)−1

ϕ
(
1 + log

r

t

) 1

r
, q = ∞.

Then, straightforward computations show that there exists some λ > 1 depending only on

ϕ and on q such that for every r ≥ λt,

g′q(r) ≈





ϕ
(
1 + log

r

t

) 1

r2−
1
q

, q < ∞,

(
1 + log

r

t

)−1

ϕ
(
1 + log

r

t

) 1

r2
, q = ∞.

Thus, since limr→∞ gq(r) = 0, the result follows. �
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Lemma 2.5. Given x ∈ R and 0 < µ ≤ 1. Then

inf
y∈(0,µ]

ϕ(y−1)eyx .

{
eµx, if x ≤ 0,

ϕ
(

1+x
µ

)
, if x > 0.

Proof. If x ≤ 0, the infimum is attained at y = µ, and if x > 0, we take y = µ/(1 + x). �

Lemma 2.6. For every y ≥ 1,

sup
x∈[1,∞)

ϕ(x)e−x/y . ϕ(y).

Proof. By means of (2.2),

ϕ(x)e−x/y ≤ max

{
1,

(
x

y

)β

e−x/y

}
ϕ(y) ≤ max

{
1, ββe−β

}
ϕ(y).

�

2.2. Calderón type operators.

Definition 2.7. Let 1 ≤ q1, q2 ≤ ∞, and let ϕ be an admissible function. Then, for every

positive and real valued measurable function f , we define

Pq1f(t) :=
1

t
1
q1

∫ t

0

f(s)
ds

s
1− 1

q1

,

Qq2,ϕf(t) :=





1

t
1
q2

∫ ∞

t

ϕ
(
1 + log

s

t

)
f(s)

ds

s
1− 1

q2

, q2 < ∞,

∫ ∞

t

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

)
f(s)

ds

s
, q2 = ∞,

(2.3)

and

Sq1,q2,ϕf(t) := Pq1f(t) +Qq2,ϕf(t).

In particular, if q1 = 1, q2 = ∞, and ϕ(x) = x, we recover the Calderón operator [6]

Sf(t) := Pf(t) +Qf(t),

where P and Q are respectively the Hardy operator and its conjugate

Pf(t) =
1

t

∫ t

0

f(s) ds, Qf(t) =

∫ ∞

t

f(s)
ds

s
.

We observe that, in general,

(2.4) Sq1,q2,ϕf(t) =

∫ 1

0

f(st)
ds

s
1− 1

q1

+





∫ ∞

1

ϕ (1 + log s) f(st)
ds

s
1− 1

q2

, q2 < ∞,

∫ ∞

1

(1 + log s)−1 ϕ (1 + log s) f(st)
ds

s
, q2 = ∞.
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For every measurable function f , let f ∗ be its decreasing rearrangement defined by

f ∗(t) := inf{s > 0 : λf (s) ≤ t}, λf(t) := |{|f | > t}|, t > 0,

and f ∗∗ the maximal function of f defined by f ∗∗(t) = P (f ∗)(t), t > 0. For further informa-

tion about these notions and related topics we refer to [6].

Lemma 2.8. Let 1 ≤ q1, q2 ≤ ∞. For every measurable function f ,

Sq1,q2,ϕ(f
∗)∗∗(t) = Sq1,q2,ϕ(f

∗∗)(t), t > 0.

Proof. By (2.4), clearly, Sq1,q2,ϕ(f
∗) is a decreasing function. Then, it holds that

Sq1,q2,ϕ(f
∗)∗∗(t) = P

(
Sq1,q2,ϕ(f

∗))(t), t > 0,

and the result follows immediately by the Fubini’s theorem. �

2.3. Lorentz spaces and some classes of weights. Let 0 < p < ∞, and 0 < q ≤ ∞. Let

ω be a positive locally integrable function defined on (0,∞), and define W (t) =
∫ t

0
ω(r) dr,

t > 0. The weighted Lorentz space Λp,q(ω) is defined by the condition ||f ||Λp,q(ω) < ∞ where

||f ||Λp,q(ω) =





(∫ ∞

0

f ∗(s)qW (s)
q
p
−1ω(s)ds

)1
q

, q < ∞,

supt>0 f
∗(t)W (t)

1
p , q = ∞.

For further information about these notions and related topics we refer to [6, 11, 33].

Definition 2.9. The following classes of weights have appeared in the literature concerning

the boundedness of Hardy and conjugate Hardy type operators on the class of monotone

decreasing functions on Lp,q(ω), denoted by Lp,q
dec

(ω), 0 < p < ∞, 0 < q ≤ ∞.

a) BR
p class: Concerning the Hardy operator P , we have [10, 12] that for 0 < p ≤ 1,

P : Lp
dec

(ω) −→ Lp,∞(ω) ⇐⇒ ω ∈ BR
p ,

where ω ∈ BR
p is defined by

[ω]BR
p
= sup

0<r≤t<∞

rW (t)
1
p

tW (r)
1
p

< ∞.

In this paper, we extend this definition for the whole range 0 < p < ∞. In fact, BR
p can be

considered to be the ‘restricted’ class of the well known Bp class [2, 35] and it is easy to see

that all weight in Bp is p quasiconcave, that is Bp ⊂ BR
p .

b) B∗
q class: Concerning the generalized conjugate Hardy-type operator [28, 35] (see (2.3)),

Qq2(t) := Qq2,1f(t) =
1

t
1
q2

∫ ∞

t

f(s)
ds

s
1− 1

q2

, t > 0,
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on Lp
dec

(ω), it holds that for 0 < q2 < ∞,

Qq2 : L
p
dec

(ω) −→ Lp(ω) ⇐⇒ w ∈ B∗
q2
p

,

where, for 0 < q < ∞, ω ∈ B∗
q if

[ω]B∗
q
:= sup

t>0

1

W (t)

∫ t

0

(
t

s

) 1
q

ω(s) ds < ∞.

In particular, if ω ∈ B∗
q , we have that, for every 0 < r < t,

W (r)

(
t

r

) 1
q

≤

∫ t

0

(
t

s

) 1
q

ω(s)ds ≤ [ω]B∗
q
W (t),

and therefore,

(2.5)
W (r)

W (t)
≤ [ω]B∗

q

(r
t

) 1
q

.

c) B∗
∞ class: Concerning the adjoint of the Hardy operator Q, we have [1] that for every

p > 0,

Q : Lp
dec

(ω) −→ Lp(ω) ⇐⇒ ω ∈ B∗
∞,

where ω ∈ B∗
∞ is defined by

[ω]B∗
∞
= sup

t>0

1

W (t)

∫ t

0

W (s)

s
ds < ∞.

Hence, if ω ∈ B∗
∞, we have that, for every 0 < r < t,

W (r) log

(
t

r

)
≤

∫ t

0

log

(
t

s

)
ω(s)ds =

∫ t

0

W (s)

s
ds ≤ [ω]B∗

∞
W (t),

and therefore, if we define for λ ∈ (0,∞),

W (λ) := sup
t>0

W (λt)

W (t)
,

then

(2.6) W (λ) ≤ [ω]B∗
∞

(
log

1

λ

)−1

, 0 < λ < 1.

From here the following result follows easily:

Lemma 2.10. If ω ∈ B∗
∞ then

W (λ) ≤ eλ1/(e[ω]B∗
∞

), 0 < λ < 1.

Proof. Let λ0 = e−e[ω]B∗
∞ . Since W is submultiplicative, by (2.6) and induction on n ∈ N∪{0}

we get that

W (λn
0) ≤

(
W (λ0)

)n
≤

(
1

e

)n

=
(
λn
0

) 1
e[ω]

B∗
∞ .
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Now take λ ∈ (0, 1) and choose n ∈ N ∪ {0} such that λn+1
0 ≤ λ < λn

0 . Then, since W is

increasing,

W (λ) ≤ W (λn
0) ≤

(
λn
0

) 1
e [ω]

B∗
∞ ≤ eλ1/(e[ω]B∗

∞
).

�

A similar result can be obtained for the B∗
q weights.

Lemma 2.11. Let 1 < q < ∞. If ω ∈ B∗
q , then

W (λ) ≤ 4q [ω]B∗
q
λ

1
q
+ 1

4q[ω]
B∗
q .

Proof. First of all, C.J. Neugebauer proved in [35] that if ω ∈ B∗
q for some q ∈ (0,+∞) then

there exists some ε = ε(q, ω) > 0 such that ω ∈ B∗
q−ε. In particular, following the estimates

used in [35], for q ≥ 1 and ω ∈ B∗
q , taking ε = q

4[ω]B∗
q

we have that

[ω]B∗

q−ε
≤ 4q [ω]B∗

q
.

Hence, from (2.5) we obtain that for every 0 < r < t,

W (r)

W (t)
≤ [ω]B∗

q−ε

(r
t

) 1
q
(r
t

) ε
q(q−ε)

≤ 4q [ω]B∗
q

(r
t

) 1
q
(r
t

) 1
4q[ω]

B∗
q .

Therefore, if λ ∈ (0, 1) we get that

W (λ) ≤ 4q [ω]B∗
q
λ

1
q
+ 1

4q[ω]
B∗
q .

�

As an example of the weights presented we have the power weights, which will take an

important role in the proofs of the main results.

Lemma 2.12. Let ω(t) = tτ−1.

1) If 0 < p < ∞ and 0 < τ ≤ p, then ω ∈ BR
p ∩ B∗

∞ with [ω]BR
p
= 1 and [ω]B∗

∞
= τ−1.

2) If 0 < q < ∞ and τ > 1
q
, then ω ∈ B∗

q with [ω]B∗
q
=

τ

τ − 1
q

.

3. Proof of our main results

Proof of the necessity of Theorem 1.6. We will first prove the result when f = χE with E a

measurable set of finite measure. Then, using our hypothesis with ω(t) = tτ−1 and Lemma

2.12, we get that, for every t > 0 and every τ ∈ (0, 1],

(3.1) (TχE)
∗(t) . ϕ(τ−1)

(
|E|

t

)τ

.
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Taking the infimum in τ ∈ (0, 1], and using Lemma 2.5 we obtain that

(TχE)
∗ (t) .

[(
|E|

t

)
χ(|E|,∞)(t) + ϕ

(
1 + log

|E|

t

)
χ(0,|E|)(t)

]
,

and by Lemma 2.3,

(TχE)
∗ (t) .

1

t

∫ t

0

(χE)
∗(s) ds+

∫ ∞

t

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

)
(χE)

∗(s)
ds

s

= S1,∞,ϕ(χE)
∗(t).

The extension to simple functions with compact support follows the same lines as the proof

of Theorem III.4.7 of [6]. We include the computations adapted to our case for the sake of

completeness. First of all, consider a positive simple function

(3.2) f =
n∑

j=1

ajχFj
,

where F1 ⊆ F2 ⊆ . . . ⊆ Fn have finite measure. Then

f ∗ =

n∑

j=1

ajχ[0,|Fj|).

Using what we have already proved for characteristic functions we get

(Tf)∗∗(t) ≤

n∑

j=1

aj
(
T (χFj

)
)∗∗

(t) .

n∑

j=1

aj
(
S1,∞,ϕ(χ[0,|Fj|))

)∗∗
(t)

=

(
S1,∞,ϕ

(
n∑

j=1

ajχ[0,|Fj|)

))∗∗

(t) = S1,∞,ϕ(f
∗)∗∗(t).

(3.3)

Since S1,∞,ϕ(f
∗)∗∗ = S1,∞,ϕ(f

∗∗) (see Lemma 2.8) we finally obtain that

(3.4) (Tf)∗∗(t) . S1,∞,ϕ(f
∗∗)(t).

Fix t > 0 and consider the set E = {x : f(x) > f ∗(t)}. Using that set define

(3.5) g = (f − f ∗(t))+χE and h = f ∗(t)χE + fχEc .

Then

g∗(r) = (f ∗(r)− f ∗(t))+ and h∗(r) = min{f ∗(r), f ∗(t)}.

Since ω = 1 belong to BR
1 ∩B∗

∞, the corresponding weak inequality leads to

(Tg)∗(t/2) .
1

t

∫ t

0

f ∗(s) ds− f ∗(t).

On the other hand, using (3.4) we get

(Th)∗∗(t) . S1,∞,ϕ(h
∗∗)(t) = P1(h

∗∗)(t) +Q∞,ϕ(h
∗∗)(t) = f ∗(t) +Q∞,ϕ(h

∗∗)(t),
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where the last equality holds because h∗(r) = f ∗(t) for every r ∈ [0, t]. Now, consider the

auxiliary function

ϕ̃(x) =
ϕ(x)

x
.

By Fubini’s theorem,

Q∞,ϕ(h
∗∗)(t) =

∫ ∞

t

ϕ̃
(
1 + log

s

t

)
h∗∗(s)

ds

s

=

∫ t

0

f ∗(t)

(∫ ∞

t

ϕ̃
(
1 + log

s

t

) ds

s2

)
dr

+

∫ ∞

t

(∫ ∞

r

ϕ̃
(
1 + log

s

t

) ds

s2

)
f ∗(r) dr = I1 + I2.

(3.6)

On the one hand, the first integral is a multiple of f ∗(t). Indeed,

I1 =

∫ t

0

f ∗(t)

(∫ ∞

t

ϕ̃
(
1 + log

s

t

) ds

s2

)
dr

=
1

t

∫ t

0

f ∗(t)

(∫ ∞

1

ϕ̃ (1 + log u)
du

u2

)
dr = C1 f

∗(t).

On the other hand, to study the second integral we will make use of Lemma 2.4. To do so,
we take any λ > 1 and observe that

I2 =

∫ ∞

t

(∫ ∞

r

ϕ̃
(
1 + log

s

t

) ds

s2

)
f ∗(r) dr

=

∫ λt

t

+

∫ ∞

λt

(∫ ∞

r

ϕ̃
(
1 + log

s

t

) ds

s2

)
f ∗(r) dr.

The first part is similar to I1, and it can be also controlled by a multiple of f ∗(t). Indeed,

using that f ∗ is decreasing we get
∫ λt

t

(∫ ∞

r

ϕ̃
(
1 + log

s

t

) ds

s2

)
f ∗(r) dr ≤

f ∗(t)

t

∫ λt

t

(∫ ∞

r/t

ϕ̃ (1 + log u)
du

u2

)
dr

≤
f ∗(t)

t

∫ λt

t

(∫ ∞

1

ϕ̃ (1 + log u)
du

u2

)
dr

= C2λ f
∗(t).

For the second part, by Lemma 2.4 we know that there exists some λ = λ(ϕ) > 1 such that
∫ ∞

r

ϕ̃
(
1 + log

s

t

) ds

s2
≈

1

r
ϕ̃
(
1 + log

r

t

)
.

Therefore,
∫ ∞

λt

(∫ ∞

r

ϕ̃
(
1 + log

s

t

) ds

s2

)
f ∗(r) dr .

∫ ∞

λt

ϕ̃
(
1 + log

r

t

)
f ∗(r)

dr

r
.
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In conclusion, putting I1 and I2 together we obtain that

Q∞,ϕ(h
∗∗)(t) . f ∗(t) +

∫ ∞

t

ϕ̃
(
1 + log

r

t

)
f ∗(r)

dr

r
= f ∗(t) +Q∞,ϕ(f

∗)(t).

Thus,

(Tf)∗(t) ≤ (Tg)∗(t/2) + (Th)∗∗(t/2) . S1,∞,ϕ(f
∗)(t).

Finally, the general case follows from this particular case dividing the function in its positive

and negative parts.

Proof of the sufficiency of Theorem 1.6. Suppose that (Tf)∗(t) . S1,∞,ϕ(f
∗)(t) for every

t > 0. The operator S1,∞,ϕ has the form

S1,∞,ϕf(t) =

∫ ∞

0

k(t, s)f(s)ds,

where the kernel is

k(t, s) =
1

t
χ[0,t)(s) +

1

s

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

)
χ[t,∞)(s).

So, using Theorem 3.3 in [12], the norm ‖S1,∞,ϕ‖Λ1(w)→Λ1,∞(w) can be estimated by

Ak := sup
t>0

(
sup
r>0

(∫ r

0

k(t, s)ds

)
W (r)−1

)
W (t).

Note that, if 0 < r < t then we have
∫ r

0

k(t, s) ds =
r

t
.

On the other hand, if r > t, by Lemma 2.3 we obtain

∫ r

0

k(t, s) ds ≈ ϕ
(
1 + log

r

t

)
.

As a consequence we have that

Ak ≈ sup
t>0

max

{(
sup
0<r<t

r

t

W (t)

W (r)

)
,

(
sup
r>t

ϕ
(
1 + log

r

t

) W (t)

W (r)

)}
.

Since

sup
0<r<t

r

t

W (t)

W (r)
≤ [ω]BR

1
,

and [ω]BR

1
≥ 1 we get that

Ak . max

{
[ω]BR

1
, sup

t>0
sup
r>t

{
ϕ
(
1 + log

r

t

) W (t)

W (r)

}}
.

Further, if λ = t/r < 1, then by Corollary 2.10

W (t)

W (r)
=

W (λr)

W (r)
≤ eλ1/(e[ω]B∗

∞
).



14 From weak to pointwise

Therefore,

sup
t>0

sup
r>t

{
ϕ
(
1 + log

r

t

) W (t)

W (r)

}
≤ e sup

λ<1

{
ϕ

(
1 + log

1

λ

)
λ1/(e[ω]B∗

∞
)

}

≤ e1+1/e sup
x>1

{
ϕ(x)e−x/(e[ω]B∗

∞
)
}
.

Finally, by Lemma 2.6 and the inequality (2.2) we obtain that

sup
t>0

sup
r>t

{
ϕ
(
1 + log

r

t

) W (t)

W (r)

}
. ϕ(e[ω]B∗

∞
) . ϕ([ω]B∗

∞
),

and we arrive to the desired result

Ak . max{[ω]BR

1
, ϕ([ω]B∗

∞
)}.

�

Proof of Theorem 1.2. The proof follows by direct application of Theorems 1.3 and 1.6. �

Proof of Corollary 1.7. We see that the hypothesis is equivalent to equation (3.1), and hence,

the proof follows immediately from the proof of the necessity of Theorem 1.6. �

Proof of Theorem 1.8. By the Rubio de Francia’s extrapolation [20], the hypothesis implies

that, for every p ≥ 1,

||Tf ||Lp,∞ . ϕ(p)||f ||Lp,1,

and the results follows from Corollary 1.7. �

Now, in order to prove Theorem 1.9, we first need to have the analogue of Theorem 1.3

which can be found in [4].

Theorem 3.1. Let 1 ≤ p0 < ∞, 0 < α ≤ 1 and let T be an operator satisfying that, for

every u ∈ A1,

T : Lp0,1(uα) → Lp0,∞(uα)

is bounded with constant less than or equal to ϕ(||u||A1), where ϕ is an increasing function

in [1,∞). Then, for every ω ∈ BR
1
p0

∩B∗
p0

1−α

,

T : Λ1(ω) → Λ1,∞(ω)

is bounded with norm less than or equal to C1[ω]
1
p0

BR

1
p0

ϕ

(
C2[ω]B∗

p0
1−α

)
, for some positive con-

stants C1, C2 independent of ω and where

(3.7) ϕ(x) =

{
ϕ(x

p0
α ), 0 < α < 1,

ϕ(x), α = 1.

Further, we will need the following generalization of Theorem 1.6.
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Theorem 3.2. Let T be a sublinear operator and let ϕ be an admissible function. If for

every exponent 1 ≤ q1 < q2 ≤ ∞ and for every weight ω ∈ BR
1
q1

∩ B∗
q2

,

T : Λ1(ω) → Λ1,∞(ω)

is bounded with norm less than or equal to C[ω]
1
q1

BR

1
q1

ϕ
(
[ω]B∗

q2

)
then, for every t > 0 and every

measurable function f ,

(Tf)∗(t) . Sq1,q2,ϕ(f
∗)(t)

:=
1

t
1
q1

∫ t

0

f ∗(s)
ds

s
1− 1

q1

+





1

t
1
q2

∫ ∞

t

ϕ
(
1 + log

s

t

)
f ∗(s)

ds

s
1− 1

q2

, q2 < ∞,

∫ ∞

t

(
1 + log

s

t

)−1

ϕ
(
1 + log

s

t

)
f ∗(s)

ds

s
, q2 = ∞.

Conversely, suppose that (Tf)∗(t) . Sq1,q2,ϕ(f
∗)(t), t > 0. Then

‖T‖Λ1(ω)→Λ1,∞(ω) .





[ω]
1
q1

BR

1
q1

[ω]B∗
q2
ϕ([ω]B∗

q2
), q2 < ∞,

[ω]
1
q1

BR

1
q1

ϕ([ω]B∗
∞
), q2 = ∞.

Proof. First, assume that for every weight ω ∈ BR
1
q1

∩ B∗
q2,

T : Λ1(ω) → Λ1,∞(ω)

is bounded with norm less than or equal to C[ω]
1
q1

BR

1
q1

ϕ
(
[ω]B∗

q2

)
. Note that by Lemma 2.12,

ω(t) = tτ−1 belong to BR
1
q1

∩ B∗
q2

for every τ ∈
(

1
q2
, 1
q1

]
. Hence, using our hypothesis, we

obtain that for every measurable set E,

(TχE)
∗(t) . ϕ

([
τ −

1

q2

]−1
)(

|E|

t

)τ

=

[
ϕ
(
τ̃−1
)( |E|

t

)τ̃
](

|E|

t

) 1
q2

,

with τ̃ = τ − 1
q2

. Hence, taking the infimum in τ̃ ∈
(
0, 1

q1
− 1

q2

]
and using Lemma 2.5 we get

that

(TχE)
∗ (t) .

(
|E|

t

) 1
q1

χ(|E|,∞)(t) + ϕ

(
1 + log

|E|

t

)(
|E|

t

) 1
q2

χ(0,|E|)(t).

Then, by Lemma 2.3,

(TχE)
∗ (t) . Sq1,q2,ϕ(χE)

∗(t).

The extension to positive simple functions with support in a set of finite measure follows the

same lines as the proof of the necessity of Theorem 1.6 with few modifications. First of all,
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we consider a positive simple function like the one in (3.2). Hence, as in (3.3), using what

we have already proved for characteristic functions together with the sublinearity of T and

the equivalence Sq1,q2,ϕ(f
∗)(t)∗∗ ≈ Sq1,q2,ϕ(f

∗∗)(t) (see Lemma 2.8), we obtain that

(3.8) (Tf)∗∗(t) . Sq1,q2,ϕ(f
∗∗)(t).

So fix t > 0 and take the functions g and h from f defined in (3.5). Since the weight

ω(r) = r
1
q1

−1
is in BR

1
q1

∩B∗
q2

, the corresponding weak inequality leads to

(Tg)∗(t/2) .
1

t
1
q1

∫ t

0

(f ∗(s)− f ∗(t))
ds

s
1− 1

q1

≈
1

t
1
q1

∫ t

0

f ∗(s)
ds

s
1− 1

q1

− f ∗(t).

On the other hand, using (3.8) for h instead of f we get

(Th)∗∗(t) . Sq1,q2,ϕ(h
∗∗)(t) = Pq1(h

∗∗)(t) +Qq2,ϕ(h
∗∗)(t).

First, since h∗(r) = f ∗(t) for every r ∈ [0, t],

Pq1(h
∗∗)(t) ≈ f ∗(t).

Besides, arguing as we did to bound (3.6) with the auxiliary function

ϕ̃(x) =





ϕ(x)e
x−1
q2 , 1 < q2 < ∞,

ϕ(x)

x
, q2 = ∞,

then we deduce that

Qq2,ϕ(h
∗∗)(t) . f ∗(t) +Qq2,ϕ(f

∗)(t),

and the result follows.

Conversely, assume that (Tf)∗(t) . Sq1,q2,ϕ(f
∗)(t) for every t > 0. If q2 < ∞ then the

operator Sq1,q2,ϕ has the form

Sq1,q2,ϕ(f
∗)(t) =

∫ ∞

0

k(t, s)f ∗(s)ds,

where the kernel is

k(t, s) =
1

t
1
q1

χ[0,t)(s)
1

s
1− 1

q1

+ ϕ
(
1 + log

s

t

)(s
t

) 1
q2 χ[t,∞)(s)

1

s
.

By Theorem 3.3 in [12], the norm the norm ‖Sq1,q2,ϕ‖Λ1(w)→Λ1,∞(w) can be estimated by

Ak := sup
t>0

(
sup
r>0

(∫ r

0

k(t, s)ds

)
W (r)−1

)
W (t).

Now if 0 < r < t then we have ∫ r

0

k(t, s) ds =
(r
t

) 1
q1 ,
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while if r > t, then by Lemma 2.3 we obtain
∫ r

0

k(t, s) ds ≈ ϕ
(
1 + log

r

t

)(r
t

) 1
q2 .

In consequence, we have that

Ak ≈ sup
t>0

max

{(
sup
0<r<t

(r
t

) 1
q1 W (t)

W (r)

)
,

(
sup
r>t

ϕ
(
1 + log

r

t

)(r
t

) 1
q2 W (t)

W (r)

)}
.

Since

sup
0<r<t

(r
t

) 1
q1 W (t)

W (r)
≤ [w]

1
q1

BR

1
q1

,

we get that

Ak . max

{
[w]

1
q1

BR

1
, sup

t>0
sup
r>t

{
ϕ
(
1 + log

r

t

)(r
t

) 1
q2 W (t)

W (r)

}}
.

Hence, if λ = t/r < 1, then by Lemma 2.11
(r
t

) 1
q2 W (t)

W (r)
= λ

− 1
q2
W (λr)

W (r)
≤ 4q [ω]B∗

q2
λ

1
4q2[ω]

B∗
q2 .

Therefore

sup
t>0

sup
r>t

{
ϕ
(
1 + log

r

t

)(r
t

) 1
q2 W (t)

W (r)

}
. [ω]B∗

q2
sup
λ<1

{
ϕ

(
1 + log

1

λ

)
λ

1
4q2[ω]

B∗
q2

}

. [ω]B∗
q2
sup
x>1

{
ϕ(x)e

−x/(4q2[ω]B∗
q2

)
}
.

Finally, by Lemma 2.6 and the inequality (2.2) we obtain that

sup
t>0

sup
r>t

{
ϕ
(
1 + log

r

t

)(r
t

) 1
q2 W (t)

W (r)

}
. [ω]B∗

q2
ϕ
(
4q2[ω]B∗

q2

)

. [ω]B∗
q2
ϕ
(
[w]B∗

q2

)
.

Combining both estimates we get

Ak . max
{
[w]

1
q1

BR

1
, [ω]B∗

q2
ϕ
(
[w]B∗

q2

)}
,

which leads to the desired result. If q2 = ∞, the proof is a combination of the proof for the

case q2 < ∞ and the proof of the sufficiency in Theorem 1.6. �

We are finally ready to prove our last main result:

Proof of Theorem 1.9. Observe that ϕ as in (3.7) satisfies the same properties as ϕ. There-

fore, the proof follows by direct application of Theorems 3.1 and 3.2. �

4. Examples and applications

We shall present several examples of very interesting operators in Harmonic analysis for

which our results give a pointwise estimate of the decreasing rearrangement.
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4.1. Fefferman-Stein inequality. An operator T is said to satisfy a Fefferman-Stein’s

inequality ([23]) if, for every positive and locally integrable function u,

(4.1)

∫

{|Tf(x)|>y}

u(x)dx .

∫
|f(x)|Mu(x)dx.

Clearly, for every operator satisfying (4.1) we have that

T : L1(u) −→ L1,∞(u)

is bounded with norm less than or equal to C||u||A1 and hence, as a consequence of Theorem

1.2, we get the following:

Corollary 4.1. For every t > 0 and every measurable function f ,

(Tf)∗(t) .
1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

f ∗(s)
ds

s
.

This is the case (among many others operators) of the area function [13] defined by

Sf(x) =

(∫

|x−y|≤t

|∇y,t(f ∗ Pt)(y)|
2

)1/2

,

where

∇y,t =

(
∂

∂y1
,
∂

∂y2
, · · · ,

∂

∂yn
,
∂

∂t

)
, Pt(y) =

cnt

(t2 + |y|2)(n+1)/2
.

4.2. Bochner-Riesz and Rough singular operators. To begin with, we recall the def-

inition of these operators. Then, we present a known quantitative inequality, which leads

to pointwise estimations for the decreasing rearrangement of these operators by using our

results.

Bochner-Riesz operators. Let

f̂(ξ) =

∫

Rn

f(x)e−2πix·ξ dx, ξ ∈ R
n,

be the Fourier transform of f ∈ L1 (Rn). Let a+ = max{a, 0} denote the positive part of

a ∈ R. Given λ > 0, the Bochner-Riesz operator Bλ is defined by

B̂λf(ξ) =
(
1− |ξ|2

)λ
+
f̂(ξ), ξ ∈ R

n.

These operators were first introduced by Bochner [7] and, since then, they have been widely

studied. The case λ = 0 corresponds to the so-called disc multiplier, which is unbounded on

Lp(Rn) if n ≥ 2 and p 6= 2 [22]. When λ > n−1
2

, it is known that Bλf is controlled by the

Hardy-Littlewood maximal function Mf . As a consequence, all weighted inequalities for M

are also satisfied by Bλ. The value λ = n−1
2

is called the critical index. In this case, Christ

[15] showed that Bn−1
2

is bounded from L1(Rn) to L1,∞(Rn), and Vargas [37] proved that

Bn−1
2

is bounded from L1(u) to L1,∞(u) for every u ∈ A1.
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Rough singular integrals. For n > 1, set Σn−1 = {x ∈ Rn : |x| = 1} and let Ω be an

homogeneous function of degree zero such that

(4.2)

∫

Σn−1

Ω(x) dx = 0.

The rough singular integral operator is defined by

TΩf(x) = p.v.

∫

Rn

Ω(y′)

|y|n
f(x− y) dy, x ∈ R

n,

with y′ = y
|y|

. This operator was first introduced by Calderón and Zygmund who proved

that [8, 9] TΩ is bounded on Lp if the even part of Ω belongs to L log+ L and its odd part

belongs to L1. Since then, this operator has been widely studied [15, 16, 37]. When Ω ∈ L∞,

Duoandikoetxea and Rubio de Francia [21] proved that, for 1 < p < ∞,

TΩ : Lp(u) → Lp(u)

is bounded whenever u ∈ Ap, later improved in [19], [38] and [32].

Quantitative results and the pointwise estimation. In [32] the authors obtained the

following quantitative result.

Theorem 4.2. Let T be either the Bochner-Riesz operator Bn−1
2

, where n > 1 or the rough

singular integral TΩ, where Ω is in L∞(Σn−1) and satisfies (4.2). Then,

T : L2(u) → L2,∞(u)

is bounded with constant less than or equal to C||u||2A2
.

Hence, using Theorem 1.8, we have the following:

Corollary 4.3. Consider the hypothesis of Theorem 4.2. Then, for every t > 0 and every

function f such that Tf is well defined, we have that

(Tf)∗ (t) .
1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

(
1 + log

s

t

)
f ∗(s)

ds

s
.

4.3. Sparse Operators. These operators have become very popular due to its role in the

so called A2 conjecture consisting in proving that if T is a Calderón-Zygmund operator then

||Tf ||L2(v) . ||v||A2||f ||L2(v).

This result was first obtained by Hytönen [24] and then simplified by Lerner [29, 30], who

proved that the norm of a Calderón-Zygmund operator in a Banach function space X is

dominated by the supremum of the norm in X of all the possible sparse operators and then

proved that every sparse operator is bounded on L2(v) for every weight v ∈ A2 with sharp

constant. Let us give the precise definition. A general dyadic grid D is a collection of cubes

in Rn satisfying the following properties:
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(i) For any cube Q ∈ D, its side length is 2k for some k ∈ Z.

(ii) Every two cubes in D are either disjoint or one is wholly contained in the other.

(iii) For every k ∈ Z and given x ∈ Rn, there is only one cube in D of side length 2k

containing it.

Let 0 < η < 1, a collection of cubes S ⊂ D is called η-sparse if one can choose pairwise

disjoint measurable sets EQ ⊂ Q with |EQ| ≥ η|Q|, where Q ∈ S. So, given a η-sparse

family of cubes S, the sparse operator is defined by

ASf(x) =
∑

Q∈S

(
1

|Q|

∫

Q

f(y) dy

)
χQ(x), x ∈ R

n.

Even though, weighted estimates for these operators are known, one can easily compute the

norm in Lp directly, using the standard duality technique: for every, p ≥ 1 and g ∈ Lp′,1

with norm equal to 1,
∫

ASf(x)g(x)dx =
∑

Q∈S

(
1

|Q|

∫

Q

f(y) dy

)∫

Q

g(x)dx

≤
1

η

∑

Q∈S

(
1

|Q|

∫

Q

f(y) dy

)
1

|Q|

∫

Q

g(x)dx|EQ| ≤
1

η

∫

Rn

Mf(x)Mg(x)dx

≤
1

η
||Mf ||Lp,∞||Mg||Lp′,1 ≤

Cn

η

(
p′

p′ − 1

)
||f ||Lp,1||g||Lp′,1 ≈ p||f ||Lp,1.

Therefore, as a consequence of Corollary 1.7, we get the following:

Corollary 4.4. For every t > 0 and every measurable function f ,

(ASf)
∗ (t) .

1

t

∫ t

0

f ∗(s) ds+

∫ ∞

t

f ∗(s)
ds

s
.

4.4. Fourier multipliers. Given m ∈ L∞(Rn), we say that Tm is a Fourier multiplier if,

for every Schwartz function f ,

T̂mf(ξ) = m(ξ)f(ξ), ξ ∈ R
n,

and m is called a multiplier. It has been of great interest to identify, when possible, for

which maximal operators M the operator Tm satisfies a Fefferman-Stein’s type inequality in

L2 of the form ∫

Rn

|Tmf(x)|
2u(x) dx ≤

∫

Rn

|f(x)|2Mu(x) dx,

for measurable functions f and positive locally integrable functions u (see for instance [5,

14, 17, 18, 36]).

In particular, we present the following interesting case.
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Proposition 4.5 ([5]). If m : R → C is a bounded function so that

(4.3) sup
R>0

∫

R≤|ξ|≤2R

|m′(ξ)| dξ < ∞,

then, for every measurable function f and every positive locally integrable function u,
∫

R

|Tmf(x)|
2u(x) dx ≤ C

∫

R

|f(x)|2M7u(x) dx,

where M7 = M ◦ · · · ◦︸ ︷︷ ︸
7

M is the 7-fold composition of M with itself.

Hence, if m ∈ L∞(R) satisfies (4.3), then

Tm : L2(u) −→ L2(u), C ‖u‖7A1
.

As a consequence of Theorem 1.9, we obtain the following:

Corollary 4.6. For every t > 0 and every measurable function f ,

(Tmf)
∗ (t) .

1

t
1
2

∫ t

0

f ∗(s)
ds

t
1
2

+

∫ ∞

t

(
1 + log

s

t

)6
f ∗(s)

ds

s
.

In this context of Fourier multipliers, let us now consider, for each γ, β ∈ R, the class C(γ, β)

of bounded functions m : R → C for which

supp(m) ⊆ {ξ : |ξ|γ ≥ 1}, sup
ξ∈R

|ξ|β|m(ξ)| < ∞,

and

sup
Rγ≥1

sup
I⊆[R,2R], ℓ(I)=R−γ+1

Rβ

∫

±I

|m′(ξ)| dξ < ∞.

Proposition 4.7 ([5]). Let γ, β ∈ R such that γ > 2β. If m ∈ C(γ, β) then, for every

measurable function f and every positive locally integrable function u,
∫

R

|Tmf(x)|
2u(x) dx ≤ C

∫

R

|f(x)|2M6

((
M5u

γ
2β

) 2β
γ

)
(x) dx.

Therefore, under the hypotheses of the previous result,

Tm : L2(u
2β
γ ) −→ L2(u

2β
γ ), C

(
γ

γ − 2β

)6

‖u‖
10β
γ

A1
,

so that, as a consequence of Theorem 1.9, we have the following:

Corollary 4.8. For every t > 0 and every measurable function f ,

(Tmf)
∗ (t) .

1

t
1
2

∫ t

0

f ∗(s)
ds

t
1
2

+
1

t
γ−2β
2γ

∫ ∞

t

(
1 + log

s

t

)10
f ∗(s)

ds

s
γ+2β
2γ

.
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