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KREĬN SPACE UNITARY DILATIONS OF HILBERT SPACE
HOLOMORPHIC SEMIGROUPS

STEFANIA A. M. MARCANTOGNINI

Abstract. The infinitesimal generator A of a strongly continuous semigroup
on a Hilbert space is assumed to satisfy that Bβ := A−β is a sectorial operator
of angle less than π

2 for some β ≥ 0. If Bβ is dissipative in some equivalent
scalar product then the Naimark–Arocena representation theorem is applied
to obtain a Krĕın space unitary dilation of the semigroup.

1. Introduction

A Krĕın space unitary dilation of a strongly continuous semigroup {T (t)} on
a Hilbert space H was built up by B. McEnnis under the assumption that the
numerical range of the infinitesimal generator A lies on a sector of semi-angle
0 < θ < π

2 around the real line [10]. McEnnis’s construction follows the one given
by C. Davis for uniformly continuous semigroups [5]. Both constructions lean on
the existence of a selfadjoint operator G such that

d

dt
‖T (t)h‖2 = 〈GT (t)h, T (t)h〉, d

dt
‖T (t)∗h‖2 = 〈GT (t)∗h, T (t)∗h〉

for all t > 0 and all h ∈ H. The key element in McEnnis’s construction is the
convexity of the numerical range (the Hausdorff–Toeplitz theorem), which grants
the m-θ-dissipativeness of A−β for some β ≥ 0 and, in consequence, a contractive
holomorphic extension of {e−βtT (t)} within the sector |arg(z)| < π

2 − θ.
The sectoriality of the numerical range can be replaced by sectoriality of the

spectrum together with some norm estimates of the resolvent. The latter condi-
tions allow a functional calculus which, in turn, gives a one-to-one correspondence
between the type of closed operators A satisfying those constraints and the bounded
holomorphic strongly continuous semigroups {T (z)} (see, for instance, [8]). On the
other hand, if the calculus is H∞-bounded then the operator A is dissipative in
some equivalent Hilbert space inner product (refer to [8] for details). In sum, McEn-
nis’s result can be achieved under the weaker conditions that combine sectoriality
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146 STEFANIA A. M. MARCANTOGNINI

(of the spectrum) with bounded H∞-calculus. We apply the Naimark–Arocena
representation theorem to obtain the Krĕın space unitary dilation, though. So this
note serves as a slightly more general result than the one by McEnnis, as well as
an alternate of its proof.

This note is organized as follows: Section 2 includes some preliminaries, while
Section 3 presents the results.

2. Preliminaries

In the sequel we assume that all Hilbert spaces are complex and separable.
Given a Hilbert space (H, 〈·, ·〉), we denote by L(H) the linear space of all

bounded linear operators on H. When A is a linear operator which is not ev-
erywhere defined on H, we write D(A) for its domain. The symbol R(A) stands
for the range of A. The numerical range of A is the set

ν(A) := {〈Ax, x〉 : x ∈ D(A), ‖x‖ = 1}.

If A : D(A)→ H is a closed linear operator, then

ρ(A) := {λ ∈ C : (λ−A)−1 ∈ L(H)},
σ(A) := C \ ρ(A), and

R(λ,A) := (λ−A)−1 (λ ∈ ρ(A))

are its resolvent set, spectrum, and resolvent, respectively.

2.1. Holomorphic semigroups. References on semigroup theory abound; [11] is
amongst the classical textbooks on the subject. We recall that a strongly continuous
(one-parameter) semigroup on a Hilbert space (H, 〈·, ·〉) is a family {T (t)} ⊆ L(H)
parameterized by t ≥ 0 that satisfies the following conditions:

(i) T (0) = 1 and T (s+ t) = T (s)T (t) for all s, t ≥ 0.
(ii) T (t) converges strongly to 1 as t→ 0+.
When ‖T (t)‖ ≤ 1 for all t ≥ 0, {T (t)} is said to be a contraction semigroup.
The infinitesimal generator A of a strongly continuous semigroup {T (t)} is de-

fined as Ax := limt→0+ t−1(T (t) − 1)x, the domain D(A) of A being the set of
those x ∈ H for which the limit exists. A is known to be a densely defined closed
operator.

We also recall that a linear operator A on a Hilbert space H with domain D(A) is
said to be dissipative if Re〈Ax, x〉 ≤ 0 for all x ∈ D(A), that is, if ν(A) is contained
in the closed left half-plane. A dissipative operator A is called m-dissipative if A
is closed and R(1−A) = H.

Proposition 2.1. The following assertions are equivalent:
(a) A is m-dissipative.
(b) A is a densely defined closed operator and A∗ is m-dissipative.
(c) A is a densely defined closed operator, σ(A) ⊆ {λ ∈ C : Reλ ≤ 0}, and
‖R(λ,A)‖ ≤ (Reλ)−1 for all Reλ > 0.

(d) A generates a strongly continuous contraction semigroup.
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(a) ⇔ (d) and (c) ⇔ (d) are the renowned Lumer–Phillips theorem and Hille–
Yosida theorem, respectively.

Let 0 < ω ≤ π
2 . An L(H)-valued function T on the additive semigroup

X(ω) := {z ∈ C : z 6= 0, |arg(z)| < ω} ∪ {0}

is called a strongly continuous holomorphic semigroup if:
(i) z 7→ T (z) is holomorphic in X(ω).
(ii) T (0) = 1 and T (z + z′) = T (z)T (z′) for all z, z′ ∈ X(ω).
(iii) For each 0 < φ < ω, T (z) converges strongly to 1 as z → 0 within X(φ).

The holomorphic semigroup {T (z)} on X(ω) is said to be bounded when:
(iv) sup{‖T (z)‖ : z ∈ X(φ)} <∞ for each 0 < φ < ω.
Above and in the following, arg(z) is to be set in the interval (−π, π] for z ∈

C \ {0}.
Let 0 < θ < π

2 . A linear operator A on H with domain D(A) is said to be
θ-dissipative if ν(A) lies in the sector

S0,θ := {λ ∈ C : λ 6= 0, |arg(λ)| ≥ π − θ} ∪ {0}.

A θ-dissipative operator A is m-θ-dissipative if A is m-dissipative.

Proposition 2.2. The following assertions are equivalent:
(a) A is m-θ-dissipative.
(b) A generates a strongly continuous holomorphic semigroup {T (z)} on

X(π2 − θ) satisfying ‖T (z)‖ ≤ 1 for all z ∈ X(π2 − θ).

We point out that A is said to be (θ-)accretive if −A is (θ-)dissipative. The
(m-)θ-accretive operators were extensively studied by T. Kato [9]. He called them
(m-)sectorial operators but nowadays the term “sectorial” refers to a different type
of operator. In the following we will call A a sectorial operator if σ(A) ⊆ S0,θ for
some 0 < θ < π and, for each θ < φ < π, sup{‖λR(λ,A)‖ : λ ∈ C\S0,φ} <∞. We
will restrict ourselves to sectorial operators of angle 0 < θ < π

2 . A comprehensive
account of sectorial operators is [8]. Therein the definition of sectorial operator is
different from the one we adopt, though. Roughly, our definiton corresponds with
−A being sectorial in the above mentioned monograph.

The most famous result on the numerical range is the Hausdorff–Toeplitz the-
orem which asserts that the numerical range of any (perhaps unbounded and not
densely defined) linear operator on a complex or real (pre-)Hilbert space is convex.
The convexity of the numerical range is one of the key elements in showing the
following result from [9] (cf. [10]).

Proposition 2.3. Let A be the infinitesimal generator of a strongly continuous
semigroup {T (t)} ⊆ L(H). If ν(A) lies in the sector

Sα,θ := {λ ∈ C : λ 6= α, |arg(λ− α)| ≥ π − θ} ∪ {α}

of vertex α ≥ 0 and semi-angle 0 < θ < π
2 , then there exists β ≥ 0 such that A− β

is m-θ-dissipative.
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By combining Proposition 2.3 with Proposition 2.2 we get that, under the as-
sumption that

ν(A) ⊆ Sα,θ (α ≥ 0, 0 < θ < π/2), (2.1)
there exists β ≥ 0 such that {e−βzT (z)} is a contraction holomorphic semigroup
on X(π2 − θ). Hence, if we consider only real t, we obtain that

‖T (t)‖ ≤ eβt for all t ≥ 0 (2.2)

and

AnT (t) = d

dtn
T (t) for every t > 0 and n ∈ N. (2.3)

Holomorphic semigroups are somehow in between the general class of strongly
continuous semigroups and the particular class of uniformly continuous semigroups
(for which the infinitesimal generator is bounded). The functional calculus for
sectorial operators gives a one-to-one correspondence between sectorial operators A
with 0 ≤ θ < π

2 and bounded holomorphic strongly continuous semigroups {T (z)}
on X(π2 − θ) (see [8]). Therefore (2.3) is granted under the weaker condition of
sectoriality. On the other hand, (2.2) holds if A− β is m-dissipative.

We replace (2.1) by the following hypothesis: there exists β ≥ 0 such that A−β
is sectorial of angle 0 < θ < π

2 and Re〈Ax, x〉0 ≤ β‖x‖20 for all x ∈ D(A), with
〈·, ·〉0 an equivalent scalar product on H. This happens, for instance, if A − β is
sectorial and has bounded H∞-calculus with H∞-angle less than π

2 (the reader is
referred to [8] for the definitions). We remark that it is not always the case that
a sectorial operator A on a Hilbert space, with sectorial angle less than π

2 , has
bounded H∞-calculus.

2.2. Krĕın spaces. As familiarity with operator theory on Krĕın spaces is pre-
sumed, only some notation is introduced. We emphasize that the common Hilbert
space notation is carried over into the Krĕın space setting.

Given a fundamental decomposition K = K+ ⊕ K− of the Krĕın space (K, 〈·, ·〉),
we write |K| for K viewed as the Hilbert space relative to the fundamental de-
composition. Therefore, if J is the corresponding fundamental symmetry, that is,
Jx = x+ − x− whenever x = x+ + x− with x± ∈ K±, then 〈x, y〉|K| = 〈Jx, y〉 and
〈x, y〉 = 〈Jx, y〉|K| for all x, y ∈ K.

By L(K) we mean the space of all everywhere defined continuous linear operators
on the Krĕın space K. The space L(K) has the structure of a Banach space de-
pending on the choice of a fundamental decomposition and the associated Hilbert
space |K|. The corresponding operator norm for L(K) is the norm ‖ · ‖ of L(|K|).
We point up that any two operator norms for L(K) are equivalent and provide its
topology. If K and G are two Krĕın spaces, L(K,G) and the operator norm are
defined likewise.

For each A ∈ L(K,G) there is a unique A∗ ∈ L(G,K) so that 〈Ax, y〉G =
〈x,A∗y〉K for all x ∈ K and y ∈ G.

We say that (i) P ∈ L(K) is a projection if P 2 = P = P ∗; (ii) U ∈ L(K) is a
unitary operator if U∗U = 1 = UU∗.
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The regular subspaces of K are those that are the ranges of projections. If F is
a regular subspace of K we write PF to indicate the orthogonal projection from K
onto F.

Standard references on Krĕın spaces and operators on them are [1, 3, 4]. We
also refer to [6, 7] as authoritative accounts of the subject.

2.3. Naimark–Arocena representation theorem. The Naimark theorem char-
acterizes those operator-valued Toeplitz kernels which have Hilbert space unitary
representations. The theorem has an extension to the Krĕın space setting due to
R. Arocena [2].

Theorem 2.4. Let Γ be a group and denote by e its neutral element. Let (H, 〈·, ·〉)
be a Hilbert space. Let f : Γ → L(H) be a Hermitian function such that f(e) = 1.
Assume that there exists a kernel k : Γ× Γ→ L(H) with the following properties:

(i) k(e, e) = 1.
(ii) k is a majorant of f , in the sense that there exists r > 0 such that∣∣∣∣ ∑

s,t∈Γ
〈f(t−1s)h(s), h(t)〉

∣∣∣∣ ≤ r ∑
s,t∈Γ
〈k(s, t)h(s), h(t)〉

for every function h : Γ→ H with finite support.
(iii) There exists R > 0 such that, for any h : Γ → H with finite support such

that
∑
s,t∈Γ〈k(s, t)h(s), h(t)〉 > 0, there exists another function h′ : Γ→ H

with finite support satisfying
∑
s,t∈Γ〈k(s, t)h′(s), h′(t)〉 > 0 and∣∣∣ ∑

s,t∈Γ
〈f(t−1s)h(s), h′(t)〉

∣∣∣( ∑
s,t∈Γ
〈k(s, t)h(s), h(t)〉

) 1
2
( ∑
s,t∈Γ
〈k(s, t)h′(s), h′(t)〉

) 1
2
≥ R.

(iv) There exists a function ρ : Γ→ (0,∞) such that∑
s,t∈Γ
〈k(ξs, ξt)h(s), h(t)〉 ≤ ρ(ξ)

∑
s,t∈Γ
〈k(s, t)h(s), h(t)〉

for all h : Γ→ H with finite support and all ξ ∈ Γ.
Then there exist a Krĕın space (K, 〈·, ·〉K) containing (H, 〈·, ·〉) as regular subspace
and a unitary representation U(s) of Γ in K such that:

1) f(s) = PHU(s)|H for all s ∈ Γ, and
2) K =

∨
{U(s)H : s ∈ Γ}, that is, K is the space generated by U(s)H, s ∈ Γ.

Conversely, if there exist a Krĕın space (K, 〈·, ·〉K) containing (H, 〈·, ·〉) as regular
subspace and a unitary representation U(s) of Γ in K such that 1) and 2) hold, then
there exists a kernel k satisfying (i), (ii), (iii), and (iv).
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3. The dilation

Hereafter {T (t)} is a strongly continuous semigroup of bounded linear operators
on a Hilbert space (H, 〈·, ·〉) with infinitesimal generator A.

Let 〈·, ·〉A be the graph scalar product on D(A):

〈x, y〉A := 〈x, y〉+ 〈Ax,Ay〉 (x, y ∈ D(A)).

By the Riesz–Fréchet representation theorem, there exists a bounded linear oper-
ator R on (D(A), 〈·, ·〉A) such that

〈Ax, y〉+ 〈x,Ay〉 = 〈x,Ry〉A = 〈Rx, y〉A for all x, y ∈ D(A).

Since A is a densely defined closed operator on (H, 〈·, ·〉), the von Neumann theorem
(see [12]) assures that A∗A, AA∗ are selfadjoint and 1+A∗A, 1+AA∗ are invertible.
Let h ∈ H and write h = (1 +A∗A)y, y ∈ D(A). For all x ∈ D(A),

〈Rx, h〉 = 〈Rx, (1 +A∗A)y〉 = 〈(1 +A∗A)Rx, y〉 = 〈Rx, y〉A = 〈x,Ry〉A
= 〈x, (1 +A∗A)Ry〉 = 〈x, (1 +A∗A)R(1 +A∗A)−1h〉.

If (S,D(S)) is the operator on (H, 〈·, ·〉) given by D(S) := D(A) and Sx := Rx, then
it follows that D(S∗) = H and S∗ = (1+A∗A)S(1+A∗A)−1. Thus ((1+A∗A)S)∗ ⊇
S∗(1 +A∗A) = (1 +A∗A)S.

We then get that H := (1 + A∗A)S is a symmetric operator on (H, 〈·, ·〉) with
D(H) = D(A) such that

〈Hx, y〉 = 〈Ax, y〉+ 〈x,Ay〉 for all x, y ∈ D(A). (3.1)

Lemma 3.1. If there exists β ≥ 0 such that A− β is sectorial of angle 0 < θ < π
2

and dissipative then the symmetric operator H in (3.1) satisfies

〈Hx, x〉 ≤ 2β‖x‖2 for all x ∈ D(A)

and
d

dt
‖T (t)h‖2 = 〈HT (t)h, T (t)h〉 for all t > 0 and h ∈ H.

Proof. Since B := A− β is dissipative, it follows that, for all x ∈ D(A), 〈Hx, x〉 =
2 Re〈Bx, x〉 + 2β‖x‖2 ≤ 2β‖x‖2. On the other hand, B is m-dissipative, for B is
sectorial of angle 0 < θ < π

2 and dissipative. Therefore, B generates a strongly con-
tinuous bounded holomorphic semigroup {S(z)} on X(π2 − θ) such that ‖S(t)‖ ≤ 1
in the real semi-axis t ≥ 0. As T (t) = eβtS(t) for all t ≥ 0, the result follows. �

The arguments applied to A can be reproduced on the infinitesimal generator A∗
of the adjoint semigroup {T (t)∗} to obtain a symmetric operator H∗ on (H, 〈·, ·〉)
with D(H∗) = D(A∗) such that

〈H∗u, v〉 = 〈A∗u, v〉+ 〈u,A∗v〉 for all u, v ∈ D(A∗). (3.2)

Lemma 3.2. Under the hypotheses of Lemma 3.1 one has that the symmetric
operator H∗ in (3.2) satisfies

〈H∗u, u〉 ≤ 2β‖u‖2 for all u ∈ D(A∗)
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and
d

dt
‖T (t)∗h‖2 = 〈H∗T (t)∗h, T (t)∗h〉 for all t > 0 and h ∈ H.

Proof. Notice that B∗ (= (A− β)∗) is sectorial of the same angle 0 < θ < π
2 as B

[8]. Besides, B∗ is m-dissipative, according to Proposition 2.1. �

We get two densely defined symmetric sesquilinear forms bounded from above
with upper bound 2β by setting

x, y ∈ D(A) = D(H) 7→ 〈Hx, y〉 and u, v ∈ D(A∗) = D(H∗) 7→ 〈H∗u, v〉.

Both forms are closable [9]. Their corresponding closures g[·, ·] and g∗[·, ·] are
densely defined closed symmetric sesquilinear forms such that g[x, x] ≤ 2β‖x‖2 for
all x ∈ D(g) and g∗[u, u] ≤ 2β‖u‖2 for all u ∈ D(g∗) [9]. The Friedrichs theorem for
symmetric forms (cf. [9]) gives two selfadjoint operators G,G∗ which are bounded
from above by 2β and satisfy

d

dt
‖T (t)h‖2 = 〈GT (t)h, T (t)h〉, d

dt
‖T (t)∗h‖2 = 〈G∗T (t)∗h, T (t)∗h〉

for all t > 0 and h ∈ H. (3.3)

A relevant fact established in [9] yields G = G∗.
Consider the polar decomposition G = J |G|, where J is a selfadjoint partial

isometry and |G| is selfadjoint and nonnegative with D(|G|) = D(G). Then write

Gx = G+x+G−x, |G|x = G+x−G−x (x ∈ D(G) = D(|G|)),

where G± ⊇ 1
2 (G± |G|) = 1

2 (J ± 1)|G|.

Lemma 3.3. The following assertions hold true:
(a) Every x ∈ D(G) satisfies Jx ∈ D(G), GJx = JGx = |G|x, and |G|Jx =

J |G|x = Gx.
(b) |〈Gx, x〉| ≤ 〈|G|x, x〉 for every x ∈ D(G).
(c) For all x ∈ D(G), 〈G−x, x〉 ≤ 0 and 0 ≤ 〈G+x, x〉 ≤ 2β‖x‖2.

The proof is omitted.
Now we are ready to apply the Naimark–Arocena representation theorem to ob-

tain a unitary dilation of {T (t)}. First we suppose that the infinitesimal generator
A is as in Lemma 3.1. To comply with the hypotheses of the theorem, take Γ = R
and define f : R→ L(H) by

f(s) :=
{
T (s), if s ≥ 0;
T (−s)∗, if s < 0.

It follows that f is Hermitian and f(0) = 1. Hence the kernel (s, t) 7→ f(s − t) is
an operator-valued Toeplitz kernel on R.

Let h : R → H be a function with finite support. Write supp(h) ∪ {0} =
{σj}Qj=0 ∪ {τk}Pk=0, with σQ < · · · < σ1 < σ0 = 0 = τ0 < τ1 < · · · < τP . Define
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z (= zh) and y (= yh) by

z(s) :=
∑
t≤s

T (s− t)∗h(t) (s ≤ 0) and y(s) :=
∑
t≥s

T (t− s)h(t) (s ≥ 0).

Then

h(s) =


z(s), if s ≤ σQ;
z(s)− T (s− σj)∗z(σj), if σj < s ≤ σj−1, 1 ≤ j ≤ Q;
y(s)− T (τk − s)y(τk), if τk−1 ≤ s < τk, 1 ≤ k ≤ P ;
y(s), if s ≥ τP .

(3.4)

In particular,

z(0)− T (−σ1)∗z(σ1) = h(0) = y(0)− T (τ1)y(τ1),

whence

z(0) + T (τ1)y(τ1) = y(0) + T (−σ1)∗z(σ1).

If v (= vh) is given by

v(s) :=


z(s), if s < 0;
z(0) + T (τ1)y(τ1) = y(0) + T (−σ1)∗z(σ1), if s = 0;
y(s), if s > 0,

(3.5)

then, via the map h 7→ v, we get that∑
s,t∈R
〈f(s− t)h(s), h(t)〉

=
Q∑
j=1
〈(1− T (σj−1 − σj)T (σj−1 − σj)∗)v(σj), v(σj)〉+ ‖v(0)‖2

+
P∑
k=1
〈(1− T (τk − τk−1)∗T (τk − τk−1))v(τk), v(τk)〉.

Therefore, by (3.3),∑
s,t∈R
〈f(s− t)h(s), h(t)〉

=
Q∑
j=1

∫ σj−1

σj

〈(−G)T (u− σj)∗v(σj), T (u− σj)∗v(σj)〉 du+ ‖v(0)‖2

+
P∑
k=1

∫ τk

τk−1

〈(−G)T (τk − u)v(τk), T (τk − u)v(τk)〉 du.
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So, from Lemma 3.3 (b),∣∣∣∣ ∑
s,t∈R
〈f(s− t)h(s), h(t)〉

∣∣∣∣
≤

Q∑
j=1

∫ σj−1

σj

〈|G|T (u− σj)∗v(σj), T (u− σj)∗v(σj)〉 du+ ‖v(0)‖2

+
P∑
k=1

∫ τk

τk−1

〈|G|T (τk − u)v(τk), T (τk − u)v(τk)〉 du

=
Q∑
j=1

∫ σj−1

σj

‖CT (u− σj)∗v(σj)‖2 du+ ‖v(0)‖2

+
P∑
k=1

∫ τk

τk−1

‖CT (τk − u)v(τk)‖2 du,

with C := |G| 12 . Straightforward computations give

Q∑
j=1

∫ σj−1

σj

‖CT (u− σj)∗v(σj)‖2 du

=
∑
s<0

∑
t<0

〈(∫ 0

s∨t
T (u− t)|G|T (u− s)∗ du

)
h(s), h(t)

〉
,

‖v(0)‖2 =
∑
s<0

∑
t<0
〈T (−t)T (−s)∗h(s), h(t)〉+

∑
s<0

∑
t≥0
〈T (t− s)∗h(s), h(t)〉

+
∑
s≥0

∑
t<0
〈T (s− t)h(s), h(t)〉+

∑
s≥0

∑
t≥0
〈T (t)∗T (s)h(s), h(t)〉

and
P∑
k=1

∫ τk

τk−1

‖CT (τk − u)v(τk)‖2 du

=
∑
s>0

∑
t>0

〈(∫ s∧t

0
T (t− u)∗|G|T (s− u) du

)
h(s), h(t)

〉
.

As a result, by setting

k(s, t) :=


∫ 0
s∨t T (u− t)|G|T (u− s)∗ du+ T (−t)T (−s)∗, s, t < 0;
T (t− s)∗, s < 0, t ≥ 0;
T (s− t), s ≥ 0, t < 0;
T (t)∗T (s) +

∫ s∧t
0 T (t− u)∗|G|T (s− u) du, s ≥ 0, t ≥ 0,
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we get an operator-valued kernel on R such that k(0, 0) = 1 and∣∣∣∣ ∑
s,t∈R
〈f(s− t)h(s), h(t)〉

∣∣∣∣ ≤ ∑
s,t∈R
〈k(s, t)h(s), h(t)〉

for every h : R→ H with finite support.
It is worth noticing that, for h : R→ H with finite support and the corresponding

v : R→ H as defined in (3.5), we have that:
(1) If σj ≤ u < σj−1, 1 ≤ j ≤ Q, then

T (u− σj)∗v(σj) =
∑
s≤u

T (u− s)∗h(s) = v(u).

(2) If τk−1 < u ≤ τk, 1 ≤ k ≤ P , then

T (τk − u)v(τk) =
∑
s≥u

T (s− u)h(s) = v(u).

Here, as before, σQ < · · · < σ1 < σ0 = 0 = τ0 < τ1 < · · · < τP are the real points
in supp(h) ∪ {0}. Accordingly,∑

s,t∈R
〈f(s− t)h(s), h(t)〉 =

Q∑
j=1

∫ σj−1

σj

〈(−G)v(u), v(u)〉 du+ ‖v(0)‖2

+
P∑
k=1

∫ τk

τk−1

〈(−G)v(u), v(u)〉 du

and ∑
s,t∈R
〈k(s, t)h(s), h(t)〉 =

Q∑
j=1

∫ σj−1

σj

〈|G|v(u), v(u)〉 du+ ‖v(0)‖2

+
P∑
k=1

∫ τk

τk−1

〈|G|v(u), v(u)〉 du.

If
∑
s,t∈R
〈k(s, t)h(s), h(t)〉 > 0, set

v′(u) :=
{
Jv(u), if either u < 0 or u > 0;
v(0), if u = 0.

A function h′ : R→ H with supp(h′) = supp(h) is uniquely determined by v′ from
(3.4). In fact, h′ is given by

h′(s) =



v′(σQ), if s = σQ;
v′(σj)− T (σj − σj+1)∗v′(σj+1), if s = σj , 1 ≤ j ≤ Q− 1;
v′(0)− T (−σ1)∗v′(σ1)− T (τ1)v′(τ1), if s = 0;
v′(τk)− T (τk+1 − τk)v′(τk+1), if s = τk, 1 ≤ k ≤ P − 1;
v′(τP ), if s = τP .
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Then the above discussion and Lemma 3.3 (a) yield

∑
s,t∈R
〈f(s− t)h(s), h′(t)〉 =

∑
s,t∈R
〈k(s, t)h(s), h(t)〉 =

∑
s,t∈R
〈k(s, t)h′(s), h′(t)〉.

This shows that, for each h : R → H supported on a finite set and satisfying that∑
s,t∈R
〈k(s, t)h(s), h(t)〉 > 0, there exists h′ : R → H with finite support such that∑

s,t∈R
〈k(s, t)h′(s), h′(t)〉 > 0 and

∣∣∣ ∑
s,t∈R
〈f(s− t)h(s), h′(t)〉

∣∣∣{ ∑
s,t∈R
〈k(s, t)h(s), h(t)〉

} 1
2
{ ∑
s,t∈R
〈k(s, t)h′(s), h′(t)〉

} 1
2

= 1.

It remains to verify that there exists a function ρ : R→ (0,∞) such that

∑
s,t∈R
〈k(s+ ξ, t+ ξ)h(s), h(t)〉 ≤ ρ(ξ)

∑
s,t∈R
〈k(s, t)h(s), h(t)〉 (3.6)

for all h : R→ H with finite support and all ξ ∈ R.
Given h : R→ H with finite support, set

hξ(s) := h(s− ξ) (s ∈ R)

and

S(h, ξ) :=
∑
s,t∈R
〈k(s+ ξ, t+ ξ)h(s), h(t)〉,

so that

S(h, ξ) =
∑
s,t∈R
〈k(s, t)hξ(s), hξ(t)〉 = S(hξ, 0).

As before, σQ < · · · < σ1 < σ0 = 0 = τ0 < τ1 < · · · < τP are the points in
supp(h) ∪ {0}.

We first consider the case ξ > 0.
The difference between the expressions for S(h, ξ) and S(h, 0) depends on the

set supp(h) ∩ [−ξ, 0).
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Particular case: σ1 ≤ −ξ < 0, i.e., supp(h) ∩ [−ξ, 0) is either {σ1} (σ1 = −ξ)
or ∅ (σ1 < −ξ). We obtain that

S(h, ξ) =
Q∑
j=1

∫ σj−1

σj

〈|G|T (u− σj)∗v(σj), T (u− σj)∗v(σj)〉 du

−
∫ ξ

0
〈|G|T (u− σ1 − ξ)∗v(σ1), T (u− σ1 − ξ)∗v(σ1)〉 du

+ ‖T (σ1 − ξ)∗v(σ1) + T (ξ)y(0)‖2

+
∫ ξ

0
〈|G|T (u− ξ)y(0), T (u− ξ)y(0)〉 du

+
P∑
k=1

∫ τk

τk−1

〈|G|T (τk − u)v(τk), T (τk − u)v(τk)〉 du,

where y(0) =
∑
t≥0

T (t)h(t) = v(0) − T (−σ1)∗v(σ1). Since |G|x = 2G+x − Gx

(x ∈ D(G)), from (3.3) it follows that

S(h, ξ) = S(h, 0)− 2
∫ ξ

0
‖(G+) 1

2T (−t− σ1)∗v(σ1)‖2 dt

+ 2
∫ ξ

0
‖(G+) 1

2T (t)y(0)‖2 dt

= S(h, 0)− 2
∫ ξ

0
‖(G+) 1

2T (−t− σ1)∗v(σ1)‖2 dt

+ 2
∫ ξ

0
‖(G+) 1

2T (t)(v(0)− T (−σ1)∗v(σ1))‖2 dt

≤ S(h, 0)− 2
∫ ξ

0
‖(G+) 1

2T (−t− σ1)∗v(σ1)‖2 dt

+ 4
∫ ξ

0
‖(G+) 1

2T (t)v(0)‖2 dt

+ 4
∫ ξ

0
‖(G+) 1

2T (t)T (−σ1)∗v(σ1)‖2 dt

≤ S(h, 0) + 4
∫ ξ

0
‖(G+) 1

2T (t)v(0)‖2 dt

+ 4
∫ ξ

0
‖(G+) 1

2T (t)T (−σ1)∗v(σ1)‖2 dt.

We apply Lemma 3.3 (c) and get

4
∫ ξ

0
‖(G+) 1

2T (t)v(0)‖2 dt ≤ 8β
∫ ξ

0
‖T (t)v(0)‖2 dt ≤ 8β

(∫ ξ

0
e2βt dt

)
‖v(0)‖2
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and

4
∫ ξ

0
‖(G+) 1

2T (t)T (−σ1)∗v(σ1)‖2 dt

= 4
∫ ξ

0
‖(G+) 1

2T (t)T (t)∗T (−t− σ1)∗v(σ1)‖2 dt

≤ 8β
∫ ξ

0
e2βt‖T (t)∗T (−t− σ1)∗v(σ1)‖2 dt

= 8β
∫ ξ

0

∫ t

0
e2βt〈GT (s)∗T (−t− σ1)∗v(σ1), T (s)∗T (−t− σ1)∗v(σ1)〉 ds dt

− 8β
∫ ξ

0
e2βt‖T (−t− σ1)∗v(σ1)‖2 dt

≤ 8β
∫ ξ

0

∫ t

0
e2βt〈GT (s)∗T (−t− σ1)∗v(σ1), T (s)∗T (−t− σ1)∗v(σ1)〉 ds dt

= 8β
∫ ξ

0

∫ t

0
e2βt〈GT (s− t− σ1)∗v(σ1), T (s− t− σ1)∗v(σ1)〉 ds dt

= 8β
∫ ξ

0

∫ x

0
e2βx〈GT (−y − σ1)∗v(σ1), T (−y − σ1)∗v(σ1)〉 dy dx

≤ 8β
(∫ ξ

0
e2βx dx

)(∫ ξ

0
‖CT (−y − σ1)∗v(σ1)‖2 dy

)

= 8β
(∫ ξ

0
e2βx dx

)(∫ 0

−ξ
‖CT (u− σ1)∗v(σ1)‖2 du

)
.

It thereby follows that

S(h, ξ)− S(h, 0) ≤ 8β
(∫ ξ

0
e2βt dt

)(
‖v(0)‖2 +

∫ 0

−ξ
‖CT (u− σ1)∗v(σ1)‖2 du

)
.

Since

8β
∫ ξ

0
e2βt dt ≤ 8β

∫ ξ

0
e8βt dt = e8βξ − 1

and

‖v(0)‖2 +
∫ 0

−ξ
‖CT (u− σ1)∗v(σ1)‖2 du ≤ S(h, 0)

it follows that
S(h, ξ) ≤ e8βξS(h, 0). (3.7)

We already mentioned that the cases to be considered are linked up with the
points in supp(h) ∩ [−ξ, 0). Next we will see that all cases can be reduced to the
particular one.

If σ2 ≤ −ξ < σ1 then S(h, ξ) = S(h, (ξ + σ1) − σ1) = S(h−σ1 , ξ + σ1), where
σ2 − σ1 ≤ −(ξ + σ1) < 0, which is to say that supp(h−σ1) ∩ [−(ξ + σ1), 0) is either
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{σ2 − σ1} (σ2 = −ξ) or ∅ (σ2 < −ξ). Therefore, h−σ1 and ξ + σ1 in the sum
S(h−σ1 , ξ + σ1) are like in the particular case, whence

S(h−σ1 , ξ + σ1) ≤ e8β(ξ+σ1)S(h−σ1 , 0) = e8β(ξ+σ1)S(h,−σ1).
Since h and −σ1 in the sum S(h,−σ1) accord with the particular case as well, we
get S(h,−σ1) ≤ e−8βσ1S(h, 0), hence (3.7). The case σ3 ≤ −ξ < σ2 can be carried
over into the previous one and so on.

The case ξ < 0 can be handled in a similar way. We get that
S(h, ξ) ≤ e−8βξS(h, 0).

Therefore (3.6) holds with ρ(ξ) := e8β|ξ|.
We have proved the following result.

Theorem 3.4. Let {T (t)} be a strongly continuous semigroup of bounded linear
operators on a Hilbert space (H, 〈·, ·〉). Let A be the infinitesimal generator of
{T (t)}. Suppose that there exists β ≥ 0 such that A − β is sectorial of angle
0 < θ < π

2 and Re〈Ax, x〉 ≤ β‖x‖2 for all x ∈ D(A). Then there exist a Krĕın
space (K, 〈·, ·〉K) containing (H, 〈·, ·〉) as a regular subspace and a strongly continuous
unitary group {U(t)} ⊆ L(K) such that:

(a) T (t) = PHU(t)|H and T (t)∗ = PHU(−t)|H for all t ≥ 0 (dilation property);
(b)

∨
{U(t)H : t ∈ R} is dense in K (minimality condition).

It is all set for the result we announced in the Introduction.

Theorem 3.5. Let {T (t)} be a strongly continuous semigroup of bounded linear
operators on a Hilbert space (H, 〈·, ·〉). Let A be the infinitesimal generator of
{T (t)}. Suppose that there exists β ≥ 0 such that A − β is sectorial of angle
0 < θ < π

2 and Re〈Ax, x〉0 ≤ β‖x‖20 for all x ∈ D(A), with 〈·, ·〉0 an equivalent
scalar product on H. Then there exist a Krĕın space (K, 〈·, ·〉K) containing (H, 〈·, ·〉)
as a regular subspace and a strongly continuous unitary group {U(t)} ⊆ L(K) such
that:

(a) T (t) = PHU(t)|H and T (t)∗ = PHU(−t)|H for all t ≥ 0.
(b)

∨
{U(t)H : t ∈ R} is dense in K.

Proof. By Theorem 3.4 we already have a Krĕın space (K0, 〈·, ·〉K0) containing
(H, 〈·, ·〉0) as a regular subspace and a strongly continuous unitary group {U0(t)} ⊆
L(K0) such that (K0, {U0(t)}) is a minimal unitary dilation of {T (t)} ⊆ L(H).

We can choose a fundamental decomposition of K0 such that H ⊆ K+
0 , say

K0 = (H⊕M+)⊕ K−0 . Consider the linear space K := K0 with the scalar product
〈h+ b, h′ + b′〉K := 〈h, h′〉+ 〈b, b′〉K0 (h, h′ ∈ H, b, b′ ∈M+ ⊕ K−0 ).

It is clear that (K, 〈·, ·〉K) is a Krĕın space containing (H, 〈·, ·〉) as a regular subspace
for a fundamental decomposition can be chosen to be

K = (H⊕M+)⊕ K−0 .

The corresponding Hilbert space scalar product is
〈h+ b, h′ + b′〉|K| := 〈h, h′〉+ 〈b, b′〉|K0| (h, h′ ∈ H, b, b′ ∈M+ ⊕ K−0 ).
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There exist d,D > 0 such that d‖h‖0 ≤ ‖h‖ ≤ D‖h‖0 for all h ∈ H. Thus, there
exists a linear operator Λ on H such that

〈h, h′〉 = 〈Λh, h′〉0 for all h, h′ ∈ H

and
d2‖h‖20 ≤ 〈Λh, h〉0 ≤ D2‖h‖20 for all h ∈ H.

Besides, Λ is 〈·, ·〉-positive (hence, bounded in the norm ‖ · ‖). Therefore Λ is
positive, bounded and boundedly invertible in both Hilbert spaces (H, 〈·, ·〉0) and
(H, 〈·, ·〉). Λ can be extended to a linear operator Λ̃ on all of K = K0 by putting
Λ̃h := Λh (h ∈ H) and Λ̃b := b (b ∈M+ ⊕ K−0 ). It follows that

〈k, k′〉K = 〈Λ̃k, k′〉K0 = 〈k, Λ̃k′〉K0 for all k, k′ ∈ K = K0

and
(d2 ∧ 1)‖k‖2|K0| ≤ 〈Λ̃k, k〉|K0| ≤ (D2 ∨ 1)‖k‖2|K0| for all k ∈ K0.

Also, with respect to the decomposition K = K0 = H ⊕ (M+ ⊕ K−0 ), Λ̃ can be
represented in the form

Λ̃ =
[
Λ 0
0 1

]
=
[
Λ 1

2 0
0 1

] [
Λ 1

2 0
0 1

]
.

Thus, if L :=
[
Λ 1

2 0
0 1

]
then L is positive, bounded and boundedly invertible in

both Krĕın spaces (K, 〈·, ·〉K) and (K0, 〈·, ·〉K0).
Define U(t) := L−1U0(t)L (t ∈ R). It can be seen that {U(t)} ⊆ L(K) is a

strongly continuous unitary group with the desired properties. �
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tems and dilations of operators to Krĕın spaces: a unified approach, in Seminar on har-
monic analysis, 1983–1984, 1–55, Publ. Math. Orsay, 85-2, Univ. Paris XI, Orsay, 1985.
MR 0802776.

[3] T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric,
Wiley, Chichester, 1989. MR 1033489.

[4] J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York, 1974. MR 0467261.
[5] C. Davis, Dilation of uniformly continuous semi-groups, Rev. Roumaine Math. Pures Appl.

15 (1970), 975–983. MR 0268718.
[6] M. A. Dritschel and J. Rovnyak, Extension theorems for contraction operators on Krĕın
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