
Journal of Algebra 393 (2013) 132–141
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On m-cluster tilted algebras and trivial extensions ✩

Elsa Fernández a, Nilda Isabel Pratti b, Sonia Trepode b,∗
a Facultad de Ingeniería, Universidad Nacional de la Patagonia San Juan Bosco, 9120 Puerto Madryn, Argentina
b Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 August 2012
Available online 31 July 2013
Communicated by Michel Van den Bergh

MSC:
16G70
16G70
16E10

Keywords:
Tilting complex
Relation extension
m-Cluster tilted algebra
Iterated tilted algebra

In this work we study the connection between iterated tilted alge-
bras and m-cluster tilted algebras. We show that an iterated tilted
algebra induces an m-cluster tilted algebra. This m-cluster tilted al-
gebra can be seen as a trivial extension of another iterated tilted
algebra which is derived equivalent to the original one. We give a
procedure to find this new iterated tilted algebra. These m-cluster
tilted algebras are quotients of higher relation extensions.
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Introduction

Let H be a finite dimensional hereditary algebra. The cluster category CH associated with H was
defined in [9] as the orbit category of Db(H)/τ−1[1], where τ is the Auslander–Reiten translation
and [1] is the shift. The special case of Dynkin type An has been also studied in [7]. A cluster tilting
object T in the cluster category is an object such that Ext1

CH
(T , T ) = 0 and it is maximal with this

property.
The cluster tilted algebras were first introduced by Buan, Marsh and Reiten in [7] as endomorphism

rings of cluster tilting objects over the cluster category. Since then, this class of algebras has been
extensively studied. Examples of works along these lines can be found, for instance, in [2,6–8,10,
12–14,19].
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In particular, Assem, Brüstle and Schiffler have shown in [2] that cluster tilted algebras are trivial
extensions. They defined for an algebra B with gl dim B at most two the relation extension R(B) of B
as the trivial extension B � Ext2

B(DB, B), where DB = HomB(B,k). Then the authors proved that an
algebra C is a cluster tilted algebra if and only if it is the relation extension of some tilted algebra B .
This connection was extended to iterated tilted algebras of global dimension at most two in [4]. In the
mentioned work it was shown that an algebra C is cluster tilted if and only if there exist an iterated
tilted algebra B with global dimension at most two and a sequence of homomorphisms

B → C
π−→ R(B) → B

whose composition is the identity map and such that the kernel of π is contained in rad2 C . They
also proved that C and R(B) have the same quivers.

In [1], Amiot proved for any algebra B of global dimension at most two, that there exists a cluster
category associated with it such that B is a cluster tilting object in this category. The endomorphism
ring of B over that cluster category is the tensor algebra over the B–B-bimodule Ext2

B(DB, B). When
the algebra B is iterated tilted the mentioned endomorphism algebra is a cluster tilted algebra.

The m-cluster category was introduced by Thomas in [22] as the orbit category Cm =
Db(H)/τ−1[m]. An object T̃ is said to be an m-cluster tilting object if Exti

Cm
(T̃ , T̃ ) = 0 for i = 1, . . . ,m

and the number of isomorphism classes of indecomposable summands of T̃ is equal to the number
of isomorphism classes of simple H-modules. The endomorphism algebra Cm of an m-cluster tilting
object over the m-cluster category is called an m-cluster tilted algebra. The procedure introduced by
Amiot in [1] can be extended to algebras of global dimension at most m + 1 (see [17]), and Cm is the
tensor algebra over the B–B-bimodule Extm+1

B (DB, B). In case the algebra B is iterated tilted, this en-
domorphism algebra is an m-cluster tilted algebra. Then m-cluster tilted algebras are tensor algebras.
We are going to show that, in particular cases, they can also be seen as trivial extensions.

Our aim in this paper is to study the relation between iterated tilted algebras of global dimension
at most m + 1 and m-cluster tilted algebras. For an algebra B with global dimension at most m + 1
the m-relation extension of B is defined to be the algebra Rm(B) = B � Extm+1

B (DB, B). Following [21],
we recall that an object T in Db(H) is a tilting complex if and only if HomDb(H)(T , T [i]) = 0 for all
i �= 0 and T has exactly n non-isomorphic summands, where n is the number of vertices of Q . It
follows from [16] that B is an iterated tilted algebra if and only if B = EndDb(H)(T ), where T is a
tilting complex.

Let Sm = ⋃m−1
i=0 Ind H[i] ∪ H[m] be the standard fundamental domain of Cm , and X̃ be the class in

the orbit category of an object X in Db(H).
The following is our first result.

Theorem 1. Let T be a tilting complex in Db(H) which belongs to Sm. Then EndCm (T̃ ) is an m-cluster tilted
algebra. Moreover if the global dimension of B = EndDb(H)(T ) is at most m + 1, then EndCm (T̃ ) is isomorphic
to Rm(B).

Given an iterated tilted algebra B = EndDb(H)(T ) of global dimension at most m + 1, the corre-
sponding tilting complex T can be spread in an arbitrary number of copies of mod H inside the
bounded derived category of H . In order to get a tilting complex in the fundamental domain Sm , we
show that the rolling procedure introduced in [4] can be generalized to a new procedure ρm . We
show that, iterating this procedure, we eventually get for some integer h a tilting complex ρh

m(T ) in
the fundamental domain, such that T and ρh

m(T ) represent the same object in the m-cluster category.
Moreover, the global dimension of EndDb(H)(ρ

h
m(T )) is at most m + 1.

Let B be an iterated tilted algebra of global dimension at most m+1, and let T be a tilting complex
such that B = EndDb(H)(T ). We denote Cm(B) = EndCm (T̃ ).

The following is our main theorem.

Theorem 2. Let H = kQ a hereditary algebra. If T is a tilting complex in Db(H) such that B = EndDb(H)(T )

has global dimension at most m + 1 then:
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a) T̃ is an m-cluster tilting object in the m-cluster category Cm and Cm(B) is an m-cluster tilted algebra.
b) There exists a sequence of algebra homomorphisms

B → Cm(B)
π−→ Rm(B) → B

whose composition is the identity map and such that the kernel of π is contained in rad2 Cm(B). Moreover,
Cm(B) and Rm(B) have the same quiver.

c) There exists h > 0 such that B ′ = EndDb(H)(ρ
h
m(T )) is an iterated tilted algebra of type Q , gl dim B ′ �

m + 1 and

Cm(B) � Rm
(

B ′) � Cm
(

B ′).
On the other hand, these m-cluster tilted algebras are in connection with the higher relation ex-

tensions introduced by Assem, Gatica and Schiffler in [3]. More precisely, they are quotients of higher
relations extensions. Then, using results in [3] it is possible to describe, in some particular cases, the
quivers with relations of the m-cluster tilted algebras induced by iterated tilted algebras.

A natural question to investigate is whether any m-cluster tilted algebra is induced by iterated
tilted algebras. That is, if any m-cluster tilted algebra is a direct product of mi -relation extensions of
iterated tilted algebras. In [20], Murphy has classified m-cluster tilted algebras of type An . We observe
that using his classification is not difficult to prove that algebras of this type are of the desired form.

In Section 1 we fix the notation and recall some well known facts about m-cluster categories. In
Section 2 we prove Theorem 1 and we show with an example that the hypothesis that the tilting
complex belongs to the fundamental domain is essential. In Section 3 we define the m-rolling pro-
cedure. We show that given an arbitrary tilting complex whose endomorphism algebra has global
dimension at most m + 1 we eventually reach, by iteration of this procedure, a tilting complex in the
fundamental domain such that the global dimension of its endomorphism algebra is also bounded by
m + 1. Finally we prove our main result, Theorem 2.

1. Preliminaries

Throughout this paper let Q be a finite connected quiver without oriented cycles, and k an alge-
braically closed field. Then H = kQ is a hereditary finite dimensional algebra. We denote by mod H
the category of finitely generated right modules over H . As usual, ind H denotes a full subcategory of
mod H whose objects are a full set of representatives of the isomorphism classes of indecomposable
H-modules.

We consider Db(H) = Db(mod H) the derived category of bounded complexes of finitely generated
H-modules. Recall that in Db(H) Serre Duality holds, that is,

HomDb(H)(X, τ Y ) � D HomDb(H)

(
Y , X[1])

for X , Y in Db(H), where [1] is the shift functor and τ is the AR-translation in Db(H).
It follows from [16] and [21] that if T is a tilting complex and B = EndDb(H)(T ) then there exists

an equivalence of triangulated categories G : Db(H) → Db(B) such that G(T ) = B and G(τ T [1]) = DB .
Following [4] we denote:

P X,T = G(X) and I X,T = G
(
τ X[1])

for any direct summand X of T .
The cluster category associated with H was defined and investigated in [9]. Later, for a positive

integer m, the m-cluster category Cm was studied in [22] (see [5,19,23]). By [18] we know that Cm is
a triangulated category. The objects in the m-cluster category are the Fm = τ−1[m] orbits of objects
in Db(H) and the morphisms are given by HomCm ( X̃, Ỹ ) = ⊕

i∈Z HomDb(H)(X, F i
mY ) where X , Y are

objects in Db(H) and X̃ , Ỹ are their respective Fm-orbits.
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It is clear that Sm = ⋃m−1
i=0 Ind H[i] ∪ H[m] is a fundamental domain for the action of Fm in

Ind Db(H). The set Sm contains exactly one representative from each Fm-orbit in Ind Db(H).
A characterization of an object T̃ of Cm as an m-cluster tilting object is given by Exti

Cm
(T̃ , T̃ ) = 0

for i = 1, . . . ,m and the number of isomorphism classes of indecomposable summands of T is equal to
the number of isomorphism classes of simple H-modules. From now on, we will assume for simplicity
that T̃ is basic in the usual sense.

2. Trivial extensions and m-cluster tilted algebras

In all that follows let B be a connected finite dimensional algebra over an algebraically closed
field k and M a B–B-bimodule. Recall that the trivial extension of B by M is the algebra B � M with
underlying vector space B ⊕ M , and multiplication given by (a,m)(a′,m′) = (aa′,am′ + ma′), for any
a,a′ ∈ B and m,m′ ∈ M . For further properties of trivial extensions we refer the reader to [15]. Let B
be an algebra of global dimension at most m +1 and DB = Homk(B,k). The trivial extension Rm(B) =
B � Extm+1

B (DB, B) is called the m-relation extension of B . This concept is the m-ified analogue of the
notion of relation extension introduced in [2]. In this work the authors proved that an algebra C is a
cluster tilted algebra if and only if it is the relation extension of some tilted algebra B .

We are going to show that there exists a connection between the m-relation extensions of iterated
tilted algebras of global dimension at most m + 1 and m-cluster tilted algebras. In fact, we are going
to prove that if the tilting complex T belongs to the fundamental domain Sm , then the m-relation
extension of the iterated tilted algebra is an m-cluster tilted algebra.

We start with the following technical lemma, which will be needed in the sequel. For m = 1 this
result is proven in [9, Proposition 1.5(a)].

Lemma 2.1. Let X and Y be objects of Sm = ⋃m−1
i=0 Ind H[i] ∪ H[m]. Then HomDb(H)(F i

m X, Y ) = 0 for all
i �= −1,0.

Proof. We have HomDb(H)(F i
m X, Y ) = HomDb(H)(τ

−i X[im], Y ). The statement can be proved by con-

sidering eight cases, according the integer i �= −1,0 is positive or negative, and the objects τ−1 X, Y
in Sm are in

⋃m−1
i=0 Ind H[i] or in H[m]. In each case the proof is straightforward. �

In analogy with [2] we have the following.

Remark 2.2. Let X be an object in Db(H). We can consider the k-vector space HomDb(H)(X, Fm X) as
an EndDb(H)(X)-bimodule defining u f v = Fm(u) f v for u, v in EndDb(H) X and f in HomDb(H)(X, Fm X).

Next we show that the endomorphism algebra EndCm ( X̃) is a trivial extension. This result is an
m-ified analogue of Lemma 3.3 of [2].

Proposition 2.3. Let X̃ be an object in Cm induced by an object X in Sm. Then EndCm ( X̃) = EndDb(H) X �

HomDb(H)(X, Fm X).

Proof. We know that EndCm ( X̃) = ⊕
i∈Z HomDb(H)(X, F i

m X) as k-vector spaces and the product is
given by

(gi)i∈Z ( f j) j∈Z =
( ∑

i+ j=l

F j
m gi f j

)
l∈Z

.

Using Lemma 2.1, we get that EndCm ( X̃) = HomDb(H)(X, X) ⊕ HomDb(H)(X, Fm X). Finally, the claim

follows from the fact that HomDb(H)(X, F 2
m X) = HomDb(H)(X, τ−2 X[2]) = 0. �
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Lemma 2.4. Let T be a tilting complex in Db(H), and let B = EndDb(H) T an iterated tilted algebra. Then

HomDb(H)(T , Fm T ) � Extm+1
B (DB, B).

Proof. For m = 1 this statement is proven in [2], as part of the proof of their main result. It follows
from [16] that HomDb(H)(T , Fm T ) � HomDb(B)(B, F ′

m B), where F ′
m = τ−1

Db(B)
[m] is the functor induced

by Fm = τ−1[m] in Db(B). We have

HomDb(B)

(
B, F ′B

) � HomDb(B)

(
τ B[1], B[m + 1])

� HomDb(B)

(
DB, B[m + 1])

� Extm+1
B (DB, B). �

Recall that Rm(B) = B � Extm+1
B (DB, B) is the m-relation extension of B . Now, we are in position

to state our first main result.

Theorem 2.5. Let T be a tilting complex in Db(H) which belongs to Sm. Then EndCm (T̃ ) is an m-cluster tilted
algebra. Moreover if the global dimension of B = EndDb(H)(T ) is at most m + 1, then EndCm (T̃ ) is isomorphic
to Rm(B).

Proof. It follows from [11, Proposition 2.4] that T̃ is an m-cluster tilting object in Cm . Then EndCm (T̃ )

is an m-cluster tilted algebra. The second fact follows from Proposition 2.3 and Lemma 2.4. �
The following example shows that Cm(B) = EndCm (T̃ ) is not necessarily isomorphic to the trivial

extension Rm(B) when T is not in the fundamental domain Sm .

Example 2.6. Let Q be a quiver of type A7 with some orientation and H = kQ . Consider the tilting
complex T in Db(H), where the indecomposable summands Ti of T are indicated in the following
picture. In the picture the Auslander–Reiten quiver Γ of the derived category Db(H) is indicated; the
arrows are going from left to right and are drawn as lines to simplify the picture. The indecomposable
summand Ti of the tilting complex T = ⊕ 7

i=1Ti has been indicated by the number i inside a circle,

that is, the symbol ��i . Furthermore, F −1
2 Ti , resp. F2Ti , has been indicated by the symbol ��i

•
, resp. ��i

••
.
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� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

��1

��2

��6
• ��3

��4

��5

��6

��7

��1
••

��7
•

The corresponding iterated tilted algebra B = EndDb(H)(T ) is given by the quiver with relations

1 2 3 4 5 6 7� � � � � �

Clearly gl dim B = 3. Let m = 2 and C2 be the 2-cluster category of H . Then C2(B) = EndC2 (T̃ ) is
given by the quiver
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1 2 3 4 5 6 7� � � � � �� �

where the composition of any two consecutive arrows inside each cycle is zero.
We have that C2(B) = B ⊕ Ext3

B(B,DB) ⊕ Ext3
B(B,DB) ⊗ Ext3

B(B,DB).
Since there exists a sectional path in Db(H) between the vertices F −1

2 T7 and F2T1 passing
through the vertex T4, we have that the path 7 → 4 → 1 is not zero. It follows that Ext3

B(B,DB) ⊗
Ext3

B(B,DB) �= 0 and C2(B) is not isomorphic to the trivial extension R2(B). We observe that C2(B)

and R2(B) have the same quivers.

3. The m-rolling of tilting complexes

A very useful tool introduced in [4] to study tilting complexes and iterated tilted algebras of global
dimension at most two, is a procedure called the rolling of tilting complexes. In this section we want
to show how the mentioned procedure can be carried on in our context. Now, we extend most of the
notions and facts from [4, Section 3].

We define for each tilting complex T a new tilting complex ρm(T ) such that T � ρm(T ) in the
m-cluster category Cm , and such that iterating this procedure we eventually obtain a tilting complex
in the fundamental domain of the cluster category.

Let Q be a Dynkin quiver and T a tilting complex of Db(kQ ). Let < denote the partial order in
the vertices of the Auslander–Reiten quiver Γ of Db(kQ ) induced by the arrows. That is, if L → M is
an arrow in Γ then we write L < M .

Since T = ⊕n
i=1 Ti has only finitely many summands we can easily find a section Σ = {Σ1, . . . ,Σn}

such that T � Σ , that is, Ti � Σ j for all i and j. If Σ j is maximal in Σ with respect to the order �,
and Σ j /∈ {T1, . . . , Tn} then Σ ′ = Σ \ {Σ j} ∪ {τΣ j} is also a section satisfying T � Σ ′ . After finitely
many steps we get a section Σ(T ) with T � Σ(T ) and all maximal elements in Σ(T ) belong to add T .
Notice that the section Σ(T ) is uniquely defined by T .

We illustrate how to get Σ(T ) in Example 2.6.
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� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

��1

��2

��6
• ��3

��4

��5

��6��1
••

��7
•

��3
♠

��2
♠

��1
♠

��4
♠

��5
♠

��6
♠

��7
♠

We can start with the section Σ = {Σ1, . . . ,Σ7}. The object Σi has been indicated by ��i
♠

.
Then the maximal elements in Σ are Σ3 and Σ7 = T7. We replace Σ3 by τΣ3 and obtain the

new section Σ ′ having Σ2 and T7 as maximal elements. In the next step we replace Σ2 by τΣ2 and
get the section Σ ′′ . Finally we exchange τΣ3 by τ 2Σ3 = T6 and obtain Σ(T ), whose only maximal
element Σ7 = T7 is in add T .

Definition 3.1 (m-Rolling of tilting complex, the Dynkin case). With the previous notations, let X be the
sum of those summands of T which belong to Σ(T ) and T ′ a complement of X in T . Then define the
m-rolling of T to be ρm(T ) = T ′ ⊕ F −1

m X .

Now consider the case where Q is not Dynkin. We will use the description of the Auslander–Reiten
quiver of Db(H) given in [4, Section 3]. We transcribe it here for the convenience of the reader. Denote
by P (resp. I) the preprojective (resp. preinjective) component of the Auslander–Reiten quiver of H
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and by R the full subcategory of mod H given by the regular components. For each r ∈ Z the regular
part R gives rise to R[r], given by the complexes X ∈ Db(H) concentrated in degree r with Xr ∈ R.
Moreover, for each r ∈ Z there is a transjective component I[r −1]∨P[r] of Γ which we shall denote
by R[r − 1

2 ] and each component of Γ is contained in R[r] for some half-integer r. The notation has
the advantage that the different parts are ordered in the sense that Hom(R[a],R[b]) = 0 for any two
half-integers a > b. Also note that Hom(R[a],R[b]) = 0 if a < b − 1.

We know that Db(kQ ) is composed by the parts R[r] for r ∈ Z/2 where R[r] denotes the regular
(resp. transjective) part if r is an integer (resp. not an integer). Now, write T = ⊕

a∈Z/2 TR[a] , where
TR[a] ∈R[a].

Definition 3.2 (m-Rolling of tilting complex, the non-Dynkin case). With the previous notation let s be the
largest half-integer such that TR[s] is non-zero. Then define X = TR[s] and T ′ to be the complement
of X in T . Define the m-rolling of T to be ρm(T ) = T ′ ⊕ F −1

m X .

Remark 3.3. If T = T ′ ⊕ X is a tilting complex in Db(H) and ρm(T ) = T ′ ⊕ F −1
m X then we have

HomDb(H)(X, T ′) = 0.

Definition 3.4 (m-Rolling of iterated tilted algebras). Let B be an iterated tilted algebra. Then define
ρm(B) to be the endomorphism algebra EndDb(H)(ρm(T )), where H is a hereditary algebra with

Db(B) � Db(H) and T a tilting complex in Db(H) with B = EndDb(H)(T ).

Notice that ρm(B) does not depend on the choice of H or T . See [4, Section 3.2].
The proofs of the following results are similar to those in [4, Section 3.3], so we shall omit them.

Lemma 3.5. We consider T = T ′ ⊕ X a tilting complex in Db(H) such that HomDb(H)(X, T ′) = 0 and let

B = EndDb(H)(T ). Then T ′ ⊕ F −1
m X is a tilting complex if and only if HomDb(H)(F −1

m X, T ′[ j]) = 0 for all j �= 0

if and only if Ext j
B(I X,T , P T ′,T ) = 0 for each j �= m + 1 .

Lemma 3.6. We consider T = T ′ ⊕ X a tilting complex in Db(H) such that HomDb(H)(X, T ′) = 0 and let
B = EndDb(H)(T ). If gl dim B � m + 1, then ρm(T ) = T ′ ⊕ F −1

m X is a tilting complex in Db(H) if and only if
HomDb(H)(τ X, T ′[k]) = 0 for k = 0,−1,−2, . . . ,−(m + 1).

Lemma 3.7. Let Q be a Dynkin quiver and T a tilting complex in Db(H). Then ρm(T ) < τ(Σ(T )).

Proposition 3.8. Let T be a tilting complex in Db(H) such that global dimension of EndDb(H)(T ) is at most
m + 1. Then ρm(T ) is again a tilting complex.

The next result is analogous to Proposition 3.11 in [4]. We include the proof for the convenience
of the reader.

Proposition 3.9. Let B be an iterated tilted algebra. If gl dim B � m + 1 then gl dimρm(B) � m + 1.

Proof. Let H be a hereditary algebra and T = T ′ ⊕ X a tilting complex in Db(H) such that B =
EndDb(H)(T ) and ρm(T ) = T ′ ⊕ F −1

m X . Then we have HomDb(H)(X, T ′) = 0 by Remark 3.3 and by Propo-

sition 3.8 the complex ρm(T ) is a tilting complex in Db(H). To shorten notations we set T = ρm(T )

and B = ρm(B). We shall prove that Ext j
B
(DB, B) = 0 for all j � m + 2. Since T is a tilting complex,

we can show this by proving that HomDb(H)(τ T [1], T [ j]) is zero for j � m + 1.
First note that

HomDb(H)

(
τ T [1], T [i]) = 0 for all i �= 0,1,2, . . . ,m + 1, (1)

since HomDb(H)(τ T [1], T [i])� Exti
B(DB, B).
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Therefore HomDb(H)(τ F −1
m X[1], F −1

m X[ j]) = HomDb(H)(τ X, X[ j − 1]) = 0 and HomDb(H)(τ T ′[1],
T ′[ j]) = 0 for j � m + 2. Also,

HomDb(H)

(
τ T ′[1], F −1

m X[ j]) = HomDb(H)

(
T ′[1], X[ j − m]),

which is zero for all j �= m + 2 since T is a tilting complex.
Hence, it remains to see that HomDb(H)(τ

2 X[1], T ′[ j]) = 0 for j > 2m + 1. The minimal projective
resolution of I X,T in mod B

0 → Pm+1 → Pm → Pm−1
ϕm−1−→ · · · ϕ2−→ P1

ϕ1−→ P0
ϕ0−→ I X,T → 0

gives rise to exact triangles

�1: K1 → P0 → I X,T → K1[1],
�i : Ki → Pi−1 → Ki−1→ Ki[1]

where Ki denotes the kernel of ϕi for i = 0, . . . ,m − 1 and

�m+1: Pm+1 → Pm → Km → Pm+1[1].

Apply first the inverse of the equivalence G : Db(H) → Db(B) and then τ , to obtain exact triangles
of the form S1 → τ T0 → τ 2 X[1] → S1[1], Si → τ Ti−1 → Si−1 → Si[1] for i = 2, . . . ,m and τ Tm+1 →
τ Tm → Sm → τ Tm+1[1] with Si = τ G−1(Ki) and some T0, . . . , Tm+1 ∈ add T . To these triangles apply
the homological functor HomDb(H)(−, T ′[ j]) to get exact sequences

(
τ T0[1], T ′[ j]) → (

S1[1], T ′[ j]) → (
τ 2 X[1], T ′[ j]) → (

τ T0, T ′[ j]),
for i = 2, . . . ,m

(
τ Ti−1[i], T ′[ j]) → (

Si[i], T ′[ j]) → (
τ Si−1[i − 1], T ′[ j]) → (

τ Ti−1[i − 1], T ′[ j])
and

(
τ Tm[m + 1], T ′[ j]) → (

Tm+1[m + 1], T ′[ j]) → (
τ Sm[m], T ′[ j]) → (

τ Tm[m], T ′[ j])
where we abbreviated (Y , Z) = HomDb(H)(Y , Z). By (1), the end terms of the previous sequences are
zero for j > 2m + 1 and hence we get

HomDb(H)

(
τ 2 X[1], T ′[ j]) � HomDb(H)

(
Sm[m], T ′[ j]) = 0

for j > 2m + 1, which is what we wanted to prove. �
Using ideas similar to those in Section 3.5 in [4] we can state the following theorem.

Theorem 3.10. Let B = EndDb(H)(T ) be an iterated tilted algebra of type Q with gl dim B � m + 1. Then for

sufficiently large h the tilting complex ρh
m(T ) is in Sm.
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4. The main result

We may now state our main theorem.

Theorem 4.1. Let H = kQ a hereditary algebra. If T is a tilting complex in Db(H) such that B = EndDb(H)(T )

has global dimension at most m + 1, then:

a) T̃ is an m-cluster tilting object in the m-cluster category Cm and Cm(B) = EndCm (T̃ ) is an m-cluster tilted
algebra.

b) There exists a sequence of algebra homomorphisms

B → Cm(B)
π−→ Rm(B) → B

whose composition is the identity map and such that the kernel of π is contained in rad2 Cm(B). Moreover
Cm(B) and Rm(B) have the same quiver.

c) There exists h > 0 such that B ′ = EndDb(H)(ρ
h
m(T )) is an iterated tilted algebra of type Q , gl dim B ′ �

m + 1 and

Cm(B) � Rm
(

B ′) � Cm
(

B ′).
Proof. Let H = kQ be a hereditary algebra. By Theorem 3.10 we have that there exists a number h
such that ρh

m(T ) is in Sm . It follows from Theorem 3.10 that the object ρh
m(T ) defines an m-cluster

tilting object in the m-cluster category Cm . Hence EndCm (ρh
m(T )) is an m-cluster tilted algebra. Since

ρh
m(T ) � T in Cm we get that Cm(B) = EndCm (T ) is an m-cluster tilted algebra. This proves a).

The proof of b) goes through exactly as in [4].
For c) note that by iterating the rolling procedure we show in Theorem 3.10 that there exists a

number h such that T ′ = ρh
m(T ) is a tilting complex in Sm . Then the algebra B ′ = EndDb(H)(ρ

h
m(T ))

is an iterated tilted algebra such that gl dim B ′ � m + 1. By Theorem 2.5 we have that Cm(B ′) =
EndCm (ρh

m(T )) �Rm(B ′). Since ρh
m(T ) � T the result follows. �

We illustrate the former result by an example.

Example 4.2. We come back to Example 2.6 and adopt the same notation. In that example it was
shown that C2(B) is not isomorphic to the trivial extension R2(B).

Now we use the m-rolling procedure to obtain an iterated tilted algebra B ′ as in Theorem 4.1, that
is, such that C2(B) �R2(B ′) � C2(B ′).

Applying the m-rolling procedure we get that T ′ = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5 ⊕ F −1
2 T6 ⊕ F −1

2 T7 is a
tilting complex such that the indecomposable summands of it are in the fundamental domain S2. The
endomorphism algebra B ′ = EndDb(H)(T ′) is given by the following quiver with relations

1 2 3 4 5 6 7� � � � ��

By computing the 2-cluster tilted algebra C2(B ′) = EndC2 (T ′) we get that

C2
(

B ′) = R2
(

B ′) = B ′
� Ext3

B ′
(
DB ′, B ′) � C2(B).

1 2 3 4 5 6 7� � � � � �� �
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Remark 4.3. In [20], Murphy has proved that m-cluster tilted algebras of type An are gentle and
that if the quiver of an m-cluster tilted algebra of type An contains cycles they must be of length
m + 2 and must have full relations, that is the composition of any two consecutive arrows in the cycle
must be a relation. We observe that every connected component of an m-cluster tilted algebra of
type An is induced by a tilting complex. In fact, we can choose the summands of the tilting complex
in a similar way as we did in the example above. The ones which give rise to the cycles in an
analogous way, and for the hereditary parts we choose the summands over a complete slice. Then,
any connected component of an m-cluster tilted algebra of type An is an mi -relation extension of an
iterated tilted algebra of the same type. We conjecture that any m-cluster tilted algebra is a direct
product of mi -relation extensions of iterated tilted algebras.
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