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Adult neurogenesis emerges as a tremendous form of plasticity

with the continuous addition and loss of neurons in the adult

brain. It is unclear how preexisting adult circuits generated

during development are capable of modifying existing

connections to accommodate the thousands of new synapses

formed and exchanged each day. Here we first make parallels

with sensory deprivation studies and its ability to induce

preexisting non-neurogenic adult circuits to undergo massive

reorganization. We then review recent studies that show high

structural and synaptic plasticity in circuits directly connected

to adult-born neurons. Finally, we propose future directions in

the field to decipher how host circuits can accommodate new

neuron integration and to determine the impact of adult

neurogenesis on global brain plasticity.

Addresses
1 Laboratory for Perception and Memory, Pasteur Institute, F-75015

Paris, France
2 Centre National de la Recherche Scientifique (CNRS), Unité de
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Introduction
Adult neurogenesis, the formation and integration of new

neurons in the adult brain, has been established in the last

decades to be prevalent in mammals, including humans

[1]. Resident stem cells in the hippocampus and subven-

tricular zone produce intermediate progenitors that main-

ly differentiate into hippocampal granule cell neurons of

the dentate gyrus, and into granule and periglomerular

neurons of the olfactory bulb.

Neurogenesis was initially thought to be confined to

the prenatal period of development, as first presented

by Santiago Ramón y Cajal [2]. This conclusion was
www.sciencedirect.com 
understandable due to the lack of proliferation markers

in the early 20th century,  and it also supported static

memory theories, which could potentially be disrupted

by neurogenesis [3]. In the 1960s proliferating cells

were first discovered in the adult brain, which were

later confirmed to be neurons, and in 1998, adult-born

neurons were discovered in the human hippocampus

[4–6]. What these and ensuing studies revealed was not

only that continuous addition and turnover of neurons

occurs throughout life in defined brain regions, but, as a

focus of this review, that pre-existing adult non-neuro-

genic circuits have the remarkable capacity to adjust to

the never-ending flow of newcomers, leading to an

endogenous system of major presynaptic and postsyn-

aptic addition and remodeling.

Triggering robust plasticity in the adult brain
Learning and memory in the adult brain requires changes

in synaptic connectivity between neurons to encode and

store new memories while erasing selected traces of past

events and experiences [7]. Predominant forms of synap-

tic changes include activity-dependent potentiation and/

or depression of synaptic strength either first, by presyn-

aptic changes in neurotransmitter release, or by insertion

(or removal) of postsynaptic receptors [8]. Receptor in-

sertion can also activate (or silencing) silent synapses, or

conversely, receptor removal to make a synapse silent.

Another predominant form of synaptic change is struc-

tural plasticity, which is a physical mechanism of remo-

deling connectivity between neurons, with formation,

displacement or elimination of dendritic spines and axo-

nal boutons, including overall structural changes in axonal

and dendritic structure, and plays a dominant role during

development for establishing proper neuronal connec-

tions within the circuit [8,9]. Throughout this review

we will refer to structural plasticity as this grand or

‘binary’ change in structural connectivity and will not

discuss more subtle modifications that may affect spine

morphology or head size. Structural plasticity provides a

large potential for network remodeling because it is not

restricted to predefined synaptic sites (such as silent

synapses). It was initially believed that structural plastic-

ity was confined to the early postnatal critical period and

was absent or rare in the adult brain [10]. Its functional

implications in the adult brain constitute an ongoing

theoretical and experimental focus of study [11].

A pioneering study in adult monkeys showed that when a

digit was amputated, the brain’s receptive field of the
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amputated digit de-afferented, gradually becoming more

responsive to sensory stimulation of neighboring fingers

[12]. It was unclear if there was broadly overlapping

cortical innervation of all the digits and neurons ‘filtered’

inputs to define cortical receptive fields or, instead, corti-

cal receptive fields were defined by restricted innervation

to discrete regions and sensory deprivation elicited a

structural reorganization of sensory inputs, spreading

their axons into the deprived region.

A decade later, this second mechanism of axonal sprout-

ing was shown to be the dominant mechanism in striate

cortex, where retinal lesions induced sprouting of long-

range projecting neurons, suggesting the adult brain to

have structural plasticity ‘in reserve’ until required for

remapping after injury or deprivation [13]. In temporal

lobe epilepsy, extensive sprouting of dentate granule cell

mossy fiber projections into the inner molecular layer

occurred [14]. These studies showed that adult brain

regions have an enhanced capacity for structural plasticity

‘in reserve’( a latent pool), which can be unmasked with

disease or specific manipulations. Yet, its role in the

healthy adult brain remained unclear.

The development of in vivo 2-photon imaging in the brain

[15] allowed for measuring structural changes in the same

individual neurons tracked over multiple days, which

would be impossible with histological methods. Imaging

various regions of the neocortex showed that pyramidal

neuron spines turnover throughout life, although at a very

low level as compared to the critical period of cortical

development [16��,17]. When competition between ac-

tive and inactive adult cortical regions was experimentally

established in visual cortex with focal retinal lesions,

structural plasticity was enhanced to levels three times

higher than control, whereas uniform depletion, which

caused no competition between regions, resulted in less

spine turnover [18].

Plasticity has been also demonstrated by introducing red

photoreceptors into the mouse genome, which are nor-

mally dichromatic, making the brain capable of proces-

sing new sensory information that was never experienced

before [19]. The fact that transgenic mice could now

discriminate red color in a behavioral task revealed a

remarkable capacity of the brain to take advantage of a

new type of sensory input.

Taken together, these studies demonstrated structural

plasticity in the adult brain and showed a role for compe-

tition in driving this plasticity, while also having the

capacity to take advantage of new input. Therefore, an

intriguing path would be to determine how adult neuro-

genesis, with its neuronal turnover and cortical develop-

ment-like environment, would affect structural plasticity.

In essence, adult neurogenesis is akin to deprivation

studies where competition with loss or gain of new input
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(neurons) drives structural rearrangement, as we will next

outline.

Adult neurogenesis as an extreme form of
adaptation
The first studies to probe structural plasticity in neuro-

genic regions focused on the olfactory bulb because of its

superficial and dorsal location making it accessible for

imaging with a 2-photon microscope. Two-photon imag-

ing was performed on adult-born immature periglomer-

ular and granule cell neurons over multiples days to track

their structural changes with their incorporation into the

circuit [20�]. During early stages of development, the

neurons extended their structure, but the dendritic elab-

oration eventually plateaued once the cell matured with

its complete dendritic structure and spines established.

This study, and further work, revealed that even months

after the cells’ complete growth, the granule cell spines

and their glutamatergic postsynaptic sites remained dy-

namic with an estimated 20% daily turnover [20�,21�].
Further work showed that even cells that were 14-months

old still retained these high dynamics, and therefore

likely throughout the life of the cell [22�]. Additionally,

granule cell spines relocated in an activity-related man-

ner, most likely guided by fine ‘spine head filopodia’ [23].

Owing to its deep brain location, the hippocampus was

initially out of reach of in vivo 2-photon imaging of adult-

born neuron development. A recent study using a titani-

um implant to tunnel through the cortex and CA1 allowed

longitudinal in vivo imaging of adult-born cells to track

their dendritic development [24]. When mice experi-

enced an enriched environment, the early dendritic out-

growth was accelerated, but upon maturation, neurons

reached the same dendritic length. In another study,

enriched environment was also shown to promote an

expansion in the populations of presynaptic neurons

contacting new granule cells, particularly in afferents

from the entorhinal cortex [25�] and similar effects,

including enhanced short-term plasticity, were observed

with running [26]. Such levels of structural and functional

remodeling may recruit entirely new circuits and alter

preexisting connections.

Electron microscopy reconstructions showed that adult-

born neurons form connections with entorhinal inputs

primarily on multi-synapse boutons, and the authors

suggested this may be a mechanism for hijacking the

preexisting connections [27�]. A similar type of competi-

tion was observed for the establishment of functional

synapses by terminals of new granule cells on pyramidal

neurons of the CA3 region [28�], between adult-born and

preexisting GC spines [29] and in synaptic strength

plasticity [30]. However, in a study where, pre-existing

dentate granule cells were genetically silenced for up to

6 months, their mossy fibers were largely maintained,

suggesting an overall stability of preexisting axons despite
www.sciencedirect.com
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the competition from newborn granule cells [31]. None-

theless, structural plasticity induced by neurogenesis in

the hippocampus might differ from that in olfactory bulb

because evidence points to an overall net addition, rather

than replacement of granule cells in the dentate gyrus

[32]. If this is the case, competition might play a lessened

role. However, further assessment is required on the

survival of dentate granule cells generated from both

adult neurogenesis and development.

Quantification of the impact of adult
neurogenesis on connected circuits
Although numerous studies have quantified the time

course of adult neurogenesis using DNA-analog techni-

ques for measuring relative changes in proliferation and

survival rates, the absolute, total daily neuronal produc-

tion in mice is still unclear. Bromodeoxyuridine (BrdU) is

the most common used analog with a 150 mg/kg dose

being sufficient to label all actively dividing progenitors

with an estimated bioavailability from 15 min to 2 hours,

depending on the study [33,34]. The magnitude of

adult neurogenesis may be greatly underestimated in

studies that use this single-dose regime of BrdU or with

retroviral labeling of adult-born cells, since only dividing
Figure 1

(a)

(b)

Adult neurogenesis causes great changes in local circuitry. (a) 1 mm thick c

retroviral injection expressing green fluorescent protein with adult-born gran

projection of axonal projections (from (a) blue box) into CA3 with puncta be

olfactory bulb 3 months after a single retroviral injection expressing green fl

labeled. Scale bars = (a) 100 mm, (b) 80 mm and (c) 200 mm.
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progenitors undergoing s-phase during this period, along

with their progeny, are labeled.

Using serial end-block imaging, complete reconstructions

of the olfactory bulb and hippocampus were made after a

single injection of oncoretrovirus [35�]. Even with this

brief labeling interval, it was possible to appreciate both

the significant number of neurons produced when pro-

jected in a large volume of sampled tissue (1-mm thick),

and more so, the density of adult-born neuron neuropil in

these brain structures (Figure 1).

To determine the impact of adult-born neurons on the

pre-existing, directly connected, primary neuronal cir-

cuits, we must first accurately assess the total number

of neurons. In the rat hippocampus, it has been approxi-

mated that 9000 new cells are created per day [34] and

when scaling this to young adult mice, this value is

reduced by 70% to 2700 per day [36]. Additionally, only

about 30% of these cells survive to be neurons beyond

4 weeks, a time point when they have developed their

complete dendritic and axonal structure. Therefore, ap-

proximately 800 neurons per day (although this may be a

low estimate), or 24 000 per month, are created that
(c)
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oronal projection image of dentate gyrus 2 months after a single

ule cells labeled and their axonal projections to CA3. (b) Horizontal

ing putative synapses. (c) 1 mm thick coronal projection image of

uorescent protein with adult-born granule and periglomerular neurons
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survive beyond 4 weeks. Multiplying this by the number

of granule cell dendritic spines (input) and axonal boutons

(output) in the CA3 [27�,35�], with adult-born granule cell

input, about 70 million presynaptic entorhinal and hilar

interneuron synapses and with adult-born granule cell

output, about 3 million hilar interneuron and 400 thousand

CA3 synapses would need to be added or changed each

month (Figure 2a). It has also been calculated in rat that
Figure 2

VTA
RN

LC

NDB

113 million dendro-
dendritic synapses

73 million inputs from entorhinal
cortex and hilar interneurons

438 thousand
outputs to CA3

3 million
outputs to hilus

(a)

(b)

(c)
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Local and long range connectivity monthly changes due to adult

neurogenesis. (a) Cartoon of adult hippocampus showing an adult-born

granule cell (green) receiving input from entorhinal cortex (red fibers

and arrow) and hilar interneurons (black cells, fibers and arrow) with

output to CA3 (blue pyramidal cell) and hilar interneurons (green fibers

and arrow) with daily synaptic changes to accommodate new neurons.

(b) Cartoon of adult olfactory bulb showing adult-born granule cell

(green) making dendro-dendritic synapse (green and blue arrows) with

mitral and tufted cells (blue neurons) while also receiving significant

top-down input from the piriform cortex (red fibers and arrow). In the

glomerular layer (open circles), two neuron populations also undergo

adult neurogenesis: periglomerular neurons (green neuron) and olfactory

sensory neurons (green fibers) that also cause significant daily synaptic

changes. (c) Cartoon showing long-range modulatory inputs to the two

neurogenic zones. NDB: nucleus of the diagonal band of broca, VTA:

ventral tegmental area, RN: raphae nuclei and LC: locus coeruleus.
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the number of adult-born granule cells generated in a

month is as large as �60% of the total population cortex

stellate cells of the entorhinal cortex and �30% of the

CA3 pyramidal neurons [34].

Using similar calculations in the olfactory bulb for granule

cells, 30 000 new neuroblasts arrive into the OB per day

[37] where 40% survive beyond 4 weeks to integrate into

the circuit, making a daily total of 12 000, or 360 000 adult-

born neurons per month [38�]. Taking the average den-

dritic length and spine density and multiplying this by the

total number of neurons [22�,39�], about 100 million den-

dro-dendritic synapses per month would be required to

change for accommodating the new neurons (Figure 2b).

Moreover, olfactory bulb granule cells receive tremendous

top-down input from the olfactory cortex (mostly from the

anterior olfactory nucleus and the anterior piriform cortex),

although the total numbers of synapses on a given granule

cell are still unknown, it can also be assumed that signifi-

cant synaptic re-arrangement needs to occur in these

inputs. Even though these numbers are small compared

to the billions of synapses in the complete brain structure,

the impact of this turnover on pre-existing, intrinsic and

extrinsic, bulbar circuits must be highly relevant at the

functional level.

In addition to glutamatergic inputs to the adult-born cells,

in the olfactory bulb, granule cells receive local GABAer-

gic input, strong top-down glutamatergic input from the

olfactory cortex, noradrenergic input from the locus coer-

uleus, serotonergic input from the dorsal and medial

raphe nuclei and cholinergic input from the horizontal

limb of the diagonal band (Figure 2c) [40]. In the hippo-

campus adult-born cells receive GABAergic inputs from

local circuitry, cholinergic input from the diagonal band of

Broca, serotonergic inputs from the raphe nuclei, and

dopaminergic inputs from the ventral tegmental area

(Figure 2c) [41–43]. Interestingly, the first synaptic inputs

that adult-born granule cells of the olfactory bulb receive

are from cholinergic fibers [39�]. These approximate

numbers illustrate the widespread remodeling that occurs

in neurogenic networks and indicate that preexisting host

circuits must have substantial plasticity as required to

accommodate new incoming presynaptic and postsynap-

tic partners [44]. Further ‘connectomic’ studies to quan-

tify all connectivity will be of great advantage to truly

know the impact of adult-born cells on host circuits.

Adult neurogenesis promotes structural
plasticity in host circuits
What evidence exists of structural plasticity induced by

adult neurogenesis? The first study to explore this

concentrated on olfactory bulb mitral and tufted cell

principal neurons (collectively named M/T cells) that

relay sensory information to the olfactory cortex. M/T

cells directly synapse three major neuronal populations

that undergo intense postnatal neurogenesis: olfactory
www.sciencedirect.com
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sensory, periglomerular and granule neurons (Figure 2b).

In vivo imaging was performed to determine whether M/T

cells have similar dynamics in their glomerular dendritic

structure and it was concluded that M/T glomerular

structure was remarkably stable, despite their direct con-

nection to adult neurogenesis [45].

With the evidence of prolonged structural plasticity in

adult-born granule cells of the olfactory bulb, we ques-

tioned whether the pre-existing, early postnatal derived

granule cell population had similar dynamics or was

instead stable, akin to what was observed in M/T cell

structure. Using in vivo imaging, we found a high level of

structural plasticity in the pre-existing granule cells that

was identical to age-matched populations of adult-born

neurons [22�]. Additionally, when tracking the dynamics

of GABAA receptor clusters on M/T cells, the postsynap-

tic structure directly apposed with granule cell spines, we

observed matching structural plasticity. These results

demonstrate that adult neurogenesis is capable of driving

structural, and therefore synaptic plasticity in its con-

nected circuit of adult neurogenesis-derived and pre-

existing populations of neurons, implying the constant

influx of new neurons requires continual remodeling of

the existing circuit.

Consistent with this notion, excitatory inputs onto devel-

oping granule cells, both in the olfactory bulb and in the

hippocampus, display enhanced levels of functional plas-

ticity [46,47�]. The expression of this potentiated plastic-

ity might depend not only on the properties of new cells,

but may also require atypical forms of plasticity expressed

in their presynaptic partners. The contribution of host

circuits to the remarkable capacity for activity-dependent

plasticity, awaits to be investigated.

How far can adult neurogenesis drive brain
plasticity?
We have outlined directly connected circuits associated

with adult neurogenesis and propose further study to

examine how the neurogenic regions coordinate pre-

existing neuron function with the integration of new

neurons. Additionally, with such dramatic plasticity

demanded by the addition and loss of complete neurons,

it would be interesting to see whether this turnover drives

plasticity in more far-removed circuits, both upstream and

downstream. Although there is no direct study examining

downstream plasticity, a recent study utilized 2-photon

imaging of the structural plasticity of CA1 pyramidal

neuron spines and found them to be highly dynamic

[48]. This plasticity in CA1 occurs two synapses down-

stream from the dentate gyrus and it would be relevant to

determine whether altering adult neurogenesis can affect

these spine dynamics and also in further removed net-

works. Along these lines, adult neurogenesis in the olfac-

tory bulb might mirror the ongoing neurogenesis of
www.sciencedirect.com 
olfactory sensory neurons located in the olfactory epithe-

lium [22�].

Future perspectives
Understanding the mechanisms of the host circuitry in

accepting and guiding the integration of adult-born cells

is important for deciphering the steps of adult neurogen-

esis and also for potential stem cell-based therapies.

Interestingly, in the olfactory bulb, adult-born cells must

first ‘listen before being able to speak’ within the circuit,

with inputs onto adult-born cells developing before out-

put synapses [49]. This may be a mechanism to foster the

newborn cells while protecting the network from improp-

er connectivity. This appears to be unique to adult-born

cells and may be a specialized feature of pre-existing

neurons within the local circuit. Another important fea-

ture is the requirement for competition in the circuitry to

drive plasticity, which is a common theme in both adult

neurogenesis [50��] and in sensory deprivation studies in

the cortex [18]. Having a void in connectivity by inducing

a focal brain injury, was also shown to be necessary for

successful embryonic stem cell transplantation into the

brain [51�].

What special features exist in the neurogenic regions that

allow such plasticity in the pre-existing population? A

neurogenic region must certainly provide signals to drive

neuronal differentiation of immature cells, but also local

cues to allow new neurons to integrate properly. The

extent to which these signals are related is unclear. For

instance, in the adult cerebral cortex, local injury allows

neurogenesis to be forced from non-neurogenic glial

progenitors, but new neurons generated under these

conditions remain largely immature [52]. This arrested

development might be due to the limited potential of

glial-derived neurons or to the limited capacity of the host

network to allow appropriate integration of new function-

al units. Dissecting the mechanisms that control the

potential for plasticity and the limitations imposed by

different regions of the adult brain, will become essential.

In conclusion, adult brain non-neurogenic regions, de-

spite their lack of a supportive ‘niche’ to guide the

integration of new neurons [53], specific manipulations

have unmasked a hidden capacity for structural plasticity.

Likewise, circuits associated with adult neurogenesis may

also undergo structural remodeling to accommodate cir-

cuit input/output changes induced by new neuron inte-

gration. Therefore, it is interesting to determine the

influence of neurogenesis on non-neurogenic connected

circuits in local and distant regions of the adult brain,

which could provide valuable insights into the potential

of adult neurogenesis for driving plasticity beyond the

niche.
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