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I. INTRODUCTION

In 2013, Karsten Keller, Jürgen Kurths, and one of us (J.M.A.)
guest edited an issue of the European Physical Journal Spe-
cial Topics, entitled Recent Progress in Symbolic Dynamics and
Permutation Complexity,1 to celebrate the 10th anniversary of the
seminal paper “Permutation entropy: A natural complexity measure
for time series” of Christoph Bandt and Bernd Pompe,2 where the
concept of permutation entropy was introduced. That Special Topic
comprised 23 contributions that covered both theoretical aspects
and applications.

During the 10 years since then, the new “ordinal” methodology
has been intensively further developed by theoreticians and practi-
tioners in different directions. However, many of the new concepts
and approaches are still not fully understood and there is also a
need for a more systematic application of ordinal methods. For this
reason, Karsten Keller and the two of us decided to guest edit this
Focus Issue of Chaos on Ordinal Methods: Concepts, Applications,
New Developments and Challenges, where researchers from different
disciplines could report on recent advances in the Bandt and Pompe
methodology, thus making possible the exchange of new ideas and
synergies. Unexpectedly, Karsten passed away on April 19, 2022, a
few months after the opening of the Focus Issue.

Karsten was born on April 12, 1961 in Halle (East Germany),
where he also attended school until 1979. After 18 months of manda-
tory army service, he studied Mathematics at the University of
Greifswald from 1981 until 1986. He continued with Ph.D. studies
in the group of Professor Flachsmeyer, which he completed already
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in 1988 with a dissertation on orthoposets of extremal points and
quantum logics, a subject related to Banach algebras.3

Then, he turned to the developing field of fractals and dynam-
ical systems. His Habilitation on Julia equivalences and the abstract
Mandelbrot set was defended in 1996 and published in the Springer
Lecture Notes. In 2002, he moved from Greifswald to Lübeck, where
he became an Assistant Professor. Again, he changed his research
topic to the analysis of time series from the viewpoint of dynamical
systems and ordinal patterns. At the same time, he began an intense
activity that included multidisciplinary research with physicists and
life scientists, international cooperations, visits to many universities,
and participations in conferences, while his three daughters grew up.
Undoubtedly, Karsten belonged to the theoretical camp and, yet, he
was one of the first authors to apply ordinal patterns and permuta-
tion entropy to the analysis and characterization of real-world data,
specifically, EEGs of epileptic patients.4

In 2011, Karsten was appointed Professor at the University of
Lübeck. Once more, he intensified his activities both in research
and teaching. Indeed, in addition to advising Ph.D. students, he
worked with mathematically interested high school students, orga-
nizing summer schools and supervising junior research projects. He
also transmitted his love for mathematics and science to his daugh-
ters. Among other academic services, Karsten was a leader of the
Schülerakademie (student academy) of the University of L übeck. In
all his jobs and projects, he was fully engaged with heart and mind.

Both authors of this Editorial collaborated with Karsten
for years. Amigó first met him at the University of Göttingen
(Germany) in 2008, at a workshop on Interfaces between Mathemat-
ics and its Applications organized by Professor Manfred Denker, one
of the contributors to this Focus Issue.5 The collaboration between
Karsten and Amigó resulted in three research papers,6–8 three Spe-
cial Issues, several minisymposia at international conferences, one
international workshop at the Max-Planck Institute for the Physics
of Complex Systems in Dresden (organized together with Rosso),
and research stays at their universities. During these stays in Lübeck,
Amigó not only discussed with Karsten the work in progress but
also met his Ph.D. students, gave seminars, participated in doctoral
exams, and enjoyed nice evenings at his home together with his wife.

Rosso met Karsten at the Mathematical Institute of the Univer-
sity of Lübeck in 2004, where the former was a visiting researcher.
It was Karsten who introduced him to Bandt and Pompe’s work
during that stay. As a result, Karsten and Rosso began a fruitful
collaboration on the analysis and characterization on EEG signals
that continued during subsequent visits to Lübeck in 2005 and
2006.9 They also met at several congresses and workshops in Chile,
Argentina, and Germany.

Karsten was a friendly and humorous person with two passions:
mathematics and running. His character is very well described in the
obituary written by his colleagues of the University of Lübeck: “As a
mathematician, he had a playful, often unconventional approach to
mathematics. Due to his great joy in collaborations, he was a stimu-
lating and popular conversation partner, not only for his colleagues
at the Mathematical Institute of the University of Lübeck or at an
international level, but also in interdisciplinary exchanges, and last
but not least for his students.”

With Karsten Keller, we have lost a wonderful colleague and
an excellent, internationally recognized scientist. We dedicate the

Focus Issue Ordinal Methods: Concepts, Applications, New Develop-
ments and Challenges to his memory, with contributions from col-
leagues and friends. In particular, we highlight the personal tributes
of Bandt in Ref. 10 and Weiß in Ref. 11.

II. ORDINAL METHODOLOGY: ORDINAL PATTERNS,

PERMUTATION ENTROPY, AND BEYOND

The ordinal methodology comprises a number of concepts and
tools, some of which are going to be revisited in this section. This
methodology can be applied to both dynamical systems and random
processes as a symbolization (or discretization) method. For more
details on theoretical issues or applications, the interested reader is
referred to the book12 and to the reviews,1,13,14 respectively.

A. The setting: Chaos theory

The concept of low-dimensional deterministic chaos, derived
from the modern theory of nonlinear dynamical systems, has
changed our way of understanding and analyzing observational data
(time series), leading to a paradigm shift from linear to nonlinear
approaches. Linear methods interpret observational signals as being
output by an underlying dynamical system that is governed by linear
equations, hence small perturbations lead to small effects. Conse-
quently, all irregular behavior must be attributed to random external
inputs.15

However, chaos theory has shown that random inputs are not
the only possible source of irregularities in the outputs of a system.
As a matter of fact, nonlinear deterministic autonomous equations
can produce very irregular signals, in which case we talk of chaotic
systems. Of course, a system that has both nonlinear characteristics
and random inputs will most likely produce irregular signals too.15,16

Chaotic time series are representative of a set of signals exhibiting
complex non-periodic traces with continuous, broadband Fourier
spectra, as well as displaying exponential sensitivity to small changes
in the initial conditions. Clearly, chaotic time series occupy a place
intermediate between (a) predictable regular or quasi-periodic sig-
nals and (b) totally irregular stochastic signals (noise), which are
completely unpredictable. Chaotic time series are irregular in time,
barely predictable, and exhibit interesting structures in the phase
space.

In sum, chaotic systems display sensitivity to initial condi-
tions, which manifests instability everywhere in the phase space and
leads to non-periodic motion (chaotic time series). They display
long-term unpredictability despite the deterministic character of the
temporal trajectory.

In a system undergoing chaotic motion, two neighboring
points in the phase space move away exponentially with time. Let
x1(t) and x2(t) be two such points, located within a ball of radius
R at time t. Furthermore, assume that these two points cannot be
resolved within the ball due to poor instrumental resolution. At
some later time t′, the distance between the points will typically
grow to

∣

∣x1(t
′) − x2(t

′)
∣

∣ = |x1(t) − x2(t)| exp
(

λ
∣

∣t′ − t
∣

∣

)

, (1)

where λ is the largest Lyapunov exponent and λ > 0 for a chaotic
dynamics. When this distance at time t′ exceeds R, the two points
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become distinguishable. This implies that instability reveals some
information about the phase space population that was not avail-
able at earlier times.16 The above considerations allow one to think
of chaos as an information source. Moreover, the associated rate of
generated information can be formulated in a precise way in terms
of Kolmogorov–Sinai’s entropy,17,18 which, in turn, is related to the
Lyapunov exponents through the celebrated Pesin’s formula.8,19,20

The Kolmogorov–Sinai entropy measures the average loss of
information rate. Its range of values goes from zero for regular
dynamics, it is positive for chaotic systems and infinite for stochas-
tic processes. Consequently, if a dynamical system has at least one
positive Lyapunov exponent and a finite positive Kolmogorov–Sinai
entropy, one can assert that the system is deterministic–chaotic.

Complex time series are very common in nature and also in
man-made systems. The immediate question that arises in connec-
tion with the underlying dynamical system of a time series reads:
Is the system chaotic (low-dimensional deterministic) or stochastic?
Answering this question is important for a proper physical descrip-
tion of irregular dynamics. If one is able to show that the system
is dominated by low-dimensional deterministic chaos, then only
a few (nonlinear and collective) modes are required to describe
the pertinent dynamics.21 Otherwise, the complex behavior could
be modeled by a system dominated by a very large number of
excited modes, which are in general better described by stochastic
or statistical approaches.

Although several methodologies to evaluate Lyapunov expo-
nents and Kolmogorov–Sinai entropies from time series have been
proposed (see, e.g., Refs. 15 and 16), their applicability involves tak-
ing into account constraints (stationarity, time series length, param-
eter selection, etc.) which, in general, make the results inconclusive.
Thus, new tools for distinguishing chaos (determinism) from noise
(randomness) are needed.

B. Ordinal patterns

The use of quantifiers based on Information Theory, which
incorporate in their evaluation the “time causality,” are a viable alter-
native, and is just the methodology proposed by Bandt and Pompe
in their cornerstone contribution of 2002,2 usually known as ordi-
nal methodology. This methodology is based on the transformation
of a time series into a sequence of symbols called ordinal patterns of
length D. These patterns (also called permutations or rank vectors)
are obtained by means of the “≤” relationship between D successive
entries of the series if the delay time τ = 1 or τ -spaced data samples
for τ > 1. Therefore, the Bandt–Pompe symbolization procedure
maps blocks of D data to the set of D! possible ordinal patterns
of length D (the “alphabet”), and it is able to capture their tem-
poral structure since ordinal patterns are related to the temporal
correlation of the physical phenomena being considered. The trans-
formation of a real-valued time series into a sequence of ordinal
patterns (a discrete-valued time series) is called an ordinal repre-
sentation. Therefore, ordinal representations have two parameters:
the length of the ordinal patterns D (sometimes called the embed-
ding dimension) and the delay time τ . Regarding the selection of the
parameters D and τ and the subtleties involved, see, e.g. Ref. 22.

The next step toward time series characterization involves the
construction of probability functions from the frequency of ordinal

patterns (“empirical probabilities”), enabling the use of information-
theoretical quantifiers to account for the dynamics. The main such
quantifiers are the normalized permutation Shannon entropy, per-
mutation statistical complexity, and permutation Fisher informa-
tion. Their suitability to characterize time series dynamics, such
as noisy, chaotic, and deterministic behaviors, has already been
proven.23,24 However, to assure the reliability of such measures, the
length N of the symbolic time series must be long enough so that
the sampling of the alphabet is representative, i.e., N � D! for ordi-
nal patterns of length D. Among other problems, this avoids missing
patterns.

The transformation proposed by Bandt and Pompe is robust
to the presence of observational and dynamical noise, as well as
invariant under nonlinear monotonous transformations. Although
an ordinal representation loses details of the amplitude of the origi-
nal time series, it is still suitable for the analysis of experimental data,
since it avoids amplitude threshold dependencies that mar other
methods based on range partitions, for example. Another advan-
tage in the case of random processes is that the time series need not
be stationary for the empirical probabilities to converge to the true
probabilities of the patterns (with probability 1) in the limit of arbi-
trarily long time series; it suffices that the increments of the random
process are stationary, which includes non-stationary processes such
as the fractional Brownian motion. As an additional asset in practical
applications, ordinal patterns (and derived quantities for that mat-
ter) can be computed in real time since knowledge of the data range
is not required.

C. Tools of the ordinal methodology based on

probabilities

In this section, we delve with some relevant information-
theoretic quantities that are used in nonlinear time series analysis.
So, let P = {pj; j = 1, . . . , W} be hereinafter a discrete probability
distribution function (PDF), where W is the number of possible
states of the system under study. Of course, for the applications we
have in mind, P is the PDF of ordinal patterns of length D, hence,
W = D! in such cases.

1. Shannon and generalized entropies

The Shannon entropy25 of the PDF P is defined as

S[P] = −

W
∑

j=1

pj ln pj. (2)

Therefore, the Shannon entropy varies between S[P0] = 0 for a
complete ordered system (P0 = {pk = 1 and pj = 0 for ∀j 6= k;
j = 1, . . . , W) and S[P e] = ln W =: Smax for a complete disordered
system (Pe = {pj = 1/W; j = 1, . . . ,W}). The normalized Shannon
entropy is given by

H[P] =
S[P]

Smax

=
S[P]

ln W
. (3)

When P is the PDF of the ordinal patterns of length D of
a deterministic or random process, we call S[P] the (Shannon)
permutation entropy of order D of that process. This is the concept
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of permutation entropy (up to a factor) introduced by Bandt and
Pompe in Ref. 2 to measure the complexity of time series. Moreover,
Bandt and Pompe observed numerically for the logistic map fr(x)
= rx(1 − x), with 3.5 ≤ r ≤ 4, that 1

D−1
S[P] converges to the Kol-

mogorov–Sinai (KS) entropy of fr(x) when D increases. This obser-
vation was rigorously proved for any piecewise, strictly monotone
interval map f with an invariant measure µ in the paper,26 i.e.,

h∗
µ(f) ≡ − lim

D→∞

1

D − 1

D!
∑

j=1

pj ln pj =hµ(f), (4)

where {pj : 1 ≤ j ≤ D!} is the PDF of the ordinal patterns of length
D in time series generated by the iterations of f (which can be cal-
culated with the measure µ), and hµ(f) is the KS entropy of f with
respect to the measure µ. The limit h∗

µ(f) is called the permutation
entropy rate of the map f (with respect to the invariant measure µ).
Let us mention at this point that Unakafov and Keller introduced
in Ref. 27 the akin concept of conditional permutation entropy and
showed that it converges to the KS entropy more quickly than per-
mutation entropy. This measure was applied to EEGs of epileptic
subjects by Keller et al.28

Equation (4) allows us to estimate the KS entropy of a one-
dimensional map via ordinal patterns. It was generalized to count-
ably piecewise monotone maps in Ref. 29. See also Ref. 6 for the gen-
eralization of Eq. (4) to higher-dimensional maps via two different
approaches.

Shannon’s entropy is the fundamental concept in Information
Theory and, hence, the most familiar measure of uncertainty and
complexity across disciplines. Moreover, S[P] is unique in that it
satisfies the four so-called Shannon–Khinchin axioms: continuity,
maximality, expansibility, and strong additivity.30 Positive probabil-
ity functionals that satisfy the first three Shannon–Khinchin axioms
but not the fourth are called generalized entropies.31 Among the
many generalized entropies, the Renyi and Tsallis entropies are quite
popular in applications; they are defined as

Rq[P] =
1

1 − q
ln

W
∑

j=1

p
q
j and Tq[P] =

1

1 − q

W
∑

j=1

(

p
q
j − 1

)

, (5)

respectively, where q > 0 and both R1[P] and T1[P] are defined
by continuity as S[P]. These entropies are useful in nonlinear time
series analysis due to the additional leverage provided by the posi-
tive parameter q. When P corresponds to the ordinal representation
of a time series, then Rq[P] and Tq[P] are called Renyi and Tsallis
permutation entropies.32,33

2. The Fisher information measure (FIM)

The FIM34,35 is a measure of the gradient content of a PDF,
thus being quite sensitive even to tiny localized perturbations. The
discrete normalized FIM of the PDF P is given by

F[P] = F0 ·

W−1
∑

j=1

(

p
1/2
j+1 − p

1/2
j

)2

, (6)

where

F0 =

{

1 if j∗ = 1 orj∗ = W, andpj = 0 for ∀ j 6= j∗,

1/2 otherwise.

If our system is in a very ordered state, which occurs when
almost all the probabilities pi are zero, we have a normalized Shan-
non entropy H ≈ 0, and a normalized FIM F ≈ 1. On the other
hand, when the system under study is in a very disordered state,
that is, when all the pi’s oscillate around the same value, we obtain
H ≈ 1 while F ≈ 0. One can state that the general FIM behavior
of the present discrete version is opposite to that of the Shannon
entropy, except for periodic motions. The local sensitivity of FIM
for discrete PDFs is reflected in the fact that the specific “j-ordering”
of the discrete values pj must be seriously taken into account in
evaluating the sum in Eq. (6). The summands can be regarded as
a kind of “distance” between two contiguous probabilities. Thus, a
different ordering of the summands in (6) would lead to a differ-
ent value of FIM, hence its local nature. In our works, we follow the
lexicographic order described by Lehmer36 in the generation of the
Bandt–Pompe PDF.

3. The statistical complexity measure (SCM)

Several statistical complexity measures (SCMs) have been pro-
posed in the literature. They are the product of an entropic measure
times a distance (in probability space) to a fixed reference state
Q. The latter quantity is usually called disequilibrium; it works
as a quantifier of the degree of physical structure of a given
time series. The resulting SCM version is able to grasp essential
details of the dynamics and capable of discerning among different
degrees of periodicity and chaos. This measure, referred to as the
“Martín–Plastino–Rosso (MPR) intensive statistical complexity”23

can be viewed as a functional C[P] that characterizes the probability
distribution P associated with the time series generated by the con-
sidered dynamical system. The MPR intensive Statistical Complexity
Measure is defined as

C[P] = H[P] · QJ[P ,Pe].

Here, H[P] is the normalized Shannon entropy (3) and the disequi-
librium QJ is defined as

QJ[P ,Pe] = Q0 · J [P ,Pe],

where

J [P ,Pe] = S

[

P + Pe

2

]

− S

[

P

2

]

− S

[

Pe

2

]

(7)

is the extensive Jensen–Shannon divergence between the PDFs P

and Pe = {pj = 1/W; j = 1, . . . ,W}, and

Q0 = −2

(

W + 1

W
ln(W + 1) − 2 ln(2W) + ln W

)−1

is a normalization constant, equal to the inverse of the maximum
possible value of J [P ,Pe], i.e., the value obtained when one of the
components of P , say pm, is 1 and the remaining pi’s vanish. This
intensive quantity reflects the architecture of the system, being dif-
ferent from zero only if there exist privileged, or more likely states
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among the accessible ones. It quantifies not only randomness but the
presence of correlational structures as well. The opposite extremes of
perfect order or maximal randomness possess no structure to speak
of. Between these two special instances, a wide range of possible
degrees of physical structure exist, degrees that should be reflected
in the features of the underlying probability distribution.

4. The entropy vs complexity (H×C) plane

We stress that the above SCM is not a trivial function of the
entropy in the sense that, for a given entropy H, there exists a range
of possible SCM values between a minimum Cmin and a maximum
Cmax,37 these bounds depending on the dimension of the PDF P .
Thus, evaluating the SCM provides important additional informa-
tion about peculiarities of a probability distribution that are not
already carried by the entropy.

This fact is emphasized when P is a distribution of ordinal
patterns. In order to study the time evolution of the permutation
statistical complexity measure C, a diagram of C vs the normal-
ized permutation entropy H can be used, where H can be regarded
as an arrow of time. Indeed, this kind of diagram, called the MPR
causality plane H × C, allows visualizing the changes in the dynam-
ics of a system originated by modifications of some characteristic
parameters. The range of variation in this 2D-plane is given by
[0, 1] × [Cmin, Cmax], and the description of the system under analy-
sis is global in both dimensions.23 See Refs. 38 and 39 for shortcom-
ings of the H × C plane for high-dimensional systems.

5. The Shannon vs Fisher (H×F) plane

This is a plane formally similar to the previous one, but now
one has a description of global (Shannon) vs local characteristics
(Fisher) of the dynamical system. The range in this 2D plane is
[0, 1] × [0, 1].24 The H × F plane can be used to better visualize the
system behavior under different values of the parameters and the
associated dynamics.

Needless to say, the H × C and H × F planes can be generalized
in several ways. For example, the Shannon entropy can be replaced
by a generalized entropy, say, the Renyi or Tsallis entropy (5); this
adds an additional parameter for classification and discrimination.
Furthermore, other combinations of probability functionals, such
as Statistical Complexity vs Fisher information, can also be used to
define the corresponding plane.

Finally, we would like to mention that several packages exist
for the computation of ordinal patterns and tools. In particular, we
recommend the excellent tutorial40 in Python by Pessa and Ribeiro,
which is very didactic and includes examples.

D. Forbidden patterns

When a nonlinear dynamics is involved, a deterministic system
can generate “random-looking” results that, nevertheless, exhibit
persistent trends, cycles (both periodic and non-periodic), and long-
term correlations. Our main interest here lies in the emergence of
forbidden/missing patterns. Why? Because they have the potential
ability to distinguish deterministic behavior (chaos) from random-
ness in finite time series contaminated with observational additive
colored noises.41

For deterministic one-dimensional maps, Amigó et al.42–44 have
conclusively shown that not all possible ordinal patterns (as defined
by Bandt–Pompe’s methodology) can be effectively materialized
into orbits, which in a sense makes these patterns “forbidden.”
We stress that this is not a conjecture but an established fact. The
existence of these forbidden ordinal patterns becomes a persistent
feature, a “new” dynamical property. For a fixed pattern length D,
the number of forbidden patterns of a time series (unobserved pat-
terns) is independent of the series length N. It must be noted that this
independence does not characterize other properties of the series
such as proximity and correlation, which die out with time.12 Fur-
thermore, it follows from the results in Ref. 26 that the number
of allowed ordinal patterns grows exponentially with D, hence the
number of forbidden patterns grows factorially with D.12,42

As for higher-dimensional maps, Amigó and Kennel proved
in Ref. 45 that expansive maps have forbidden patterns using lex-
icographical order to define ordinal patterns. Again, the number
of allowed patterns grows exponentially with the pattern length D.
Moreover, numerical simulations show that dissipative chaotic maps
can have forbidden patterns as well.46

Stochastic processes can also have forbidden patterns. How-
ever, in the case of uncorrelated (white noise) and certain correlated
stochastic processes, it can be numerically shown that no forbid-
den patterns emerge. Such correlated processes include “k-noise”
with k ≥ 0 (noise with power spectrum frequency dependence fit-
ted by f−k values), standard and fractional Brownian motion as well
as standard and fractional Gaussian noise.

In the case of time series generated by an unconstrained stochas-
tic process (uncorrelated process), every ordinal pattern has the same
probability of appearance. If the time series is long enough, all possi-
ble ordinal patterns will eventually appear. Therefore, if the number
of observations in the time series is sufficiently large, the associ-
ated PDF should be the uniform distribution, and the number of
observed patterns should depend only on the length N of the time
series.

Finally, for correlated stochastic processes, the probability of
observing individual patterns depends not only on the correlation
structure but also on the time series length N.47 The non-presence of
an ordinal pattern in a finite time series does not qualify the pattern
as “forbidden” but only as “missing,” since its absence results from
the finite sample size. A similar observation also holds for the case of
real data series, as they always possess a stochastic component due
to the omnipresence of dynamical noise.48,49

E. Distinguishing determinism from randomness

In Sec. II D, the existence of “missing ordinal patterns” could
be either related to stochastic processes (correlated or uncorre-
lated) or to deterministic noisy processes, which is the case for
observational time series. Amigó12,44 proposed a test that uses miss-
ing ordinal patterns to distinguish determinism (chaos) from pure
randomness in finite time series contaminated with observational
white noise (uncorrelated noise). This methodology was extended by
Carpi et al.47 to the analysis of missing ordinal patterns in stochastic
processes with different degrees of correlation. We are speaking of
fractional Brownian motion (fBm), fractional Gaussian noise (fGn),
and k-noises with k ≥ 0. Results show that for a fixed pattern length,
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the decay rate of missing ordinal patterns in stochastic processes
depends not only on the series length but also on their correlation
structures. More precisely, missing ordinal patterns are more persis-
tent in time series with higher correlation structures. Carpi et al.47

have also shown that the standard deviation of the estimated decay
rate of missing ordinal patterns decreases with an increasing length
of the patterns. This is due to the fact that longer patterns contain
more temporal information and, therefore, they are more effective in
capturing the dynamic of time series with correlation structures. An
important quantity for us, called M(N, D), is the number of missing
ordinal patterns of length D in a time series with N entries.

As we mentioned before, for correlated stochastic processes the
probability of observing an individual pattern of length D depends
on the time series length N and on the correlation structure as deter-
mined by the type of noise k > 0. In fact, as the value of k > 0
increases (which implies that correlations grow), greater values of
N are needed to reach the “ideal” condition M(N, D) = 0.47

If the time series is chaotic but has an additive stochastic com-
ponent, then one expects that, as the time series length N increases,
the number of missing ordinal patterns will decrease and eventually
vanish. Whether this happens is independent of the length N, the
underlying deterministic components of the time series, or the cor-
relation structure of the added noise. The number of missing ordinal
patterns will be M(N, D, k), where k is the noise characteristic
parameter, representing its correlation degree.

In Ref. 41, we dealt with the issue of determinism vs ran-
domness in time series, with the goal of identifying their relative
importance in a given time series. We considered time series of the
form {sn = xn + A · ηn(k); n = 1, . . . ,N}, where xn is given by the
logistic map xn = 4xn−1(1 − xn−1), ηn(k) ∈ [−1, 1] is a k-noise with
k = 0, 1, 2, and A is the noise amplitude. For the analysis, we used
ordinal patterns of length D = 6, time lag τ = 1 and N = 100 000.
For each time series, the normalized Shannon entropy and the MPR-
statistical complexity were evaluated using the PDF of the ordinal
patterns, and also its position in the causal H × C plane as the
amplitude A increased.

For contaminating and correlated noise, a new type of planar
trajectory-behavior emerges as the noise intensity increases. Start-
ing from a pure deterministic localization, the trajectory of the point
P representing a time series in the H × C plane converges to a pure
stochastic localization by following a loop-curve as the noise inten-
sity increases. For a critical value of the noise intensity (Ac), however,
this trajectory reverses direction. More precisely, one observes a
movement of P that starts at the unperturbed value (A = 0) and
closely approaches the curve of maximum complexity, from left
to right, with increasing entropic values. When A = Ac, this dis-
placement reverses direction and takes place now from right to left,
below the original curve, converging to the planar location typi-
cal of pure-correlated noise. The value of the critical intensity Ac

depends on the correlation degree of the noise and the deterministic
component.

Three different scenarios have been found here.

(i) The correlated noise acts as a perturbation [mostly M(N, D, k)
6= 0]. The net noise effect is to destroy the forbidden character
of some of the patterns. However, due to the low noise intensity
and its correlations, the number of affected patterns is relatively

low. The dominance of the deterministic component over the
noisy one is reflected by low dispersion values for both entropy
and statistical complexity.

(ii) The deterministic and the stochastic components have the
same hierarchy and M(N, D, k) = 0. However, the persistent
character of the forbidden patterns of the deterministic com-
ponent and their interplay with the correlations present in
the noise are reflected in the characteristic point-trajectory of
the system, which moves along the curve of maximum com-
plexity, showing that the pertinent patterns do not appear as
frequently as the remaining ones. This behavior is indicative
of a still active deterministic dynamic. The dispersion values
of our two quantifiers increase with the noise intensity. Note
that the two scenarios described above correspond to a range
of noise intensities given by A ≤ Ac(N , k).

(iii) The noisy component is the dominating one and the deter-
ministic component can be considered as a perturbation. This
scenario corresponds to the noise intensity range A ≥ Ac(N, k)
and we haveM(N, D, k) = 0 as well, with low dispersion values
of entropy and statistical complexity.

III. CONTRIBUTIONS TO THIS FOCUS ISSUE

As said in the Introduction, the year 2022 marked the 20th
anniversary of the seminal paper of Bandt and Pompe on permu-
tation entropy.2 The invitation to contribute to the commemorative
Focus Issue Ordinal Methods: Concepts, Applications, New Develop-
ments and Challenges has resulted in 2 minireviews and 25 research
papers. In this section, we summarize the contents of all contri-
butions, grouped by descriptive topics. Papers belonging to over-
lapping topics have been somewhat arbitrarily assigned to one of
them.

A. Analysis of biomedical data

In the paper,50 Barà et al. compare the binning and permuta-
tion approach when measuring the coupling between short realiza-
tions of random processes via mutual information rate and transfer
entropy. The comparison is done with numerical simulations and
physiological data. The authors conclude that “while the application
to short-term simulated and physiological series provides plausible
results, it also evidences troublesome aspects that call for the devel-
opment of improved entropy estimators and refined embedding
strategies.”

Guisande et al. compare in Ref. 51 the dynamics of human
intracranial electroencephalography with two mathematical models:
the Hénon map and a q-DG neural firing probability model. Their
goal is to investigate the potential of the Hénon map as a model
for replicating chaotic brain dynamics in the treatment of Parkin-
son’s and epilepsy patients. The tools used are the Shannon entropy,
statistical complexity, and Fisher’s information, the probability dis-
tributions corresponding to ordinal patterns of lengths 3 and 4.
Thus, the dynamic properties of the Hénon map are compared with
data from the subthalamic nucleus, the medial frontal cortex, and a
q-DG model of neuronal input–output to simulate the local behav-
ior of a population. While the biological data present a much more
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complex spectrum of dynamical characteristics, the models are able
to reproduce some aspects of neural dynamics.

Due to the complexity of the brain dynamics, a data-driven
analysis is often the only feasible approach. In the minireview,52

Lehnertz summarizes the state-of-the-art of uni- and bi-variate tech-
niques of ordinal time series analysis, together with applications
in the neurosciences and a list of 159 references. The author also
discusses current limitations to stimulate further developments,
which would be necessary to advance characterization of evolving
functional brain networks during both physiological and patho-
physiological conditions. He concludes that “ordinal time series
analysis carries the potential to improve characterization of the
still poorly understood spatiotemporal dynamics of the human
brain.”

To detect arrhythmic electrocardiograms, Martínez Coq et al.
use in Ref. 53 the Shannon permutation entropy vs statistical com-
plexity plane as a feature space to train three machine learning
classification algorithms with two databases, one containing normal
sinus rhythms and another one containing arrhythmias. The best
results were achieved with the Random Forest method after a ten-
times tenfold cross-validation scheme was applied to compute the
corresponding quality parameters.

B. Applications of ordinal tools

Understanding how the predictability of a streamflow process
is affected by human activities is important for making decisions for
flood control and water resources management. In the paper,54 de
Carvalho Barreto et al. use the complexity-entropy causality plane
(CECP) (in standard and weighted forms) with the daily stream-
flow series of the São Francisco River, Brazil, at several locations
upstream of cascade dams and reservoirs. The authors find that
the reservoir operations change the temporal variability of stream-
flow series toward the less predictable regime, corresponding to
higher entropy and lower complexity values. This work also suggests
that the time-dependent CECP analysis (in sliding windows) could
be sensitive to alterations related to the intra-annual variability of
reservoir operations.

In Ref. 55, Iaconis et al. use ordinal patterns transition networks
to identify subjects with dyslexia on simple text reading experiments.
To this end, the transitions between ordinal patterns in left-to-right
eye movements during text reading were analyzed and character-
ized. The relative frequency transitions between patterns were used
as feature descriptors to train a classifier able to distinguish normal
from dyslexic subjects. The classifier is able to distinguish typically
developed vs dyslexic subjects with almost 100% accuracy only ana-
lyzing the relative frequency of the eye movement transition from
one particular permutation pattern to four other patterns including
itself.

In the contribution,56 Martínez et al. construct an entropy-time
asymmetry plane and evaluate it using both synthetic and real-
world time series. This way the authors study the interplay between
those important aspects of a system’s dynamics. They show that
this plane is an adequate tool to better understand situations in
which entropy and time asymmetry behave in complementary or
independent ways.

Mateos et al. apply in Ref. 57 the so-called Rao–Burbea cen-
troids to analyze simulated and real-world times series, as well as real
textured 2D images, discretized via ordinal patterns. Rao–Burbea
centroids are deformations of the Euclidean metric between discrete
probability distributions that include the Jensen–Shannon diver-
gence (7). As a main result, the authors conclude from their work
that the best performance in terms of distinguishability is achieved
with the Jensen–Shannon divergence.

The paper58 presents an application of ordinal patterns to lin-
guistics. Indeed, Sánchez et al. find in that work that a handful of
ordinal patterns suffices to reliably characterize any language. In
this application, the underlying time series consists of the frequency
ranking of the words (or a monotonic function thereof) in a text, say,
a novel. Moreover, fluctuations of the ordinal pattern distributions
for a given language can be used to determine the historical period
when the text was written as well as its author.

C. Applications to technology

Baba et al. use ordinal tools and machine learning in Ref. 59
to detect thermoacoustic instability in a staged single-sector com-
buster. The ordinal tools consist of the “determinisms” (or degrees of
determinism) of the joint symbolic recurrence plots DJ and the ordi-
nal transition pattern-based recurrent plots DT. The DJ × DT plane
enables then to detect a precursor of themoacoustic instability with
the help of a support vector machine.

The paper by Du et al.60 is a nice application of the ordinal
methodology to a complex technical problem, to wit: the character-
ization of multi-phase flow systems. To this end, the authors resort
to a recently proposed tool called an interconnected ordinal pat-
tern complex network. Roughly speaking, this tool associates ordinal
networks to multivariate signals from the fluid system to, in turn,
construct the interconnected complex network.

D. Concepts and methodology

The minireview61 by Amigó et al. is divided into two parts.
The first part is a self-contained survey of the concept of group (or
“complexity-based”) generalized entropy, which includes perhaps
the three best known instances: the Shannon (2), Rényi, and Tsallis
(5) entropies. Here, complexity refers to the asymptotic growth of
microstates in statistical systems as the number of their constituents
increases, e.g., exponential or factorial growths. In the second part,
the parallelism between complexity of statistical systems and per-
mutation complexity is exploited to extend the definition of permu-
tation entropy from deterministic processes (exponential growth of
the ordinal patterns of length D as D → ∞) to processes with super-
exponential growths of the ordinal patterns (e.g., random processes)
in a way that the entropy rate is positive and finite. Along the way,
the basics of the ordinal methodology are revisited.

The paper10 by Bandt is an insightful blend of new concepts
and established applications. Thus, for ordinal patterns of length 3,
the author introduces an orthogonal system of four pattern contrasts
(i.e., weighted differences of patterns frequencies), the most impor-
tant of which is the turning rate, already studied by Bienaymè in
1875.62 Applications include statistical fluctuations of permutation
entropy, statistical tests for serial dependence, and the study of EEGs
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during sleep. In particular, Bandt discusses the need for new models
of EEGs due to their serial dependence at all times and scales.

The paper by Denker5 deals with the fundamental concept
of iterated function systems. Iterated function systems are used to
model non-autonomous dynamical systems as well as autonomous
systems with dynamical noise, so they play an important role in the
theory and applications of dynamical systems. In this contribution,
Denker studies the Hausdorff dimension of the set of initial values
for which indefinite iteration is possible, using the thermodynamic
formalism.

E. Innovative approaches

Although discrete-valued and event time series are ubiquitous
in practice (think of binary strings or all-or-none signals such as
spike trains), most methods of time series analysis to determine
the cyclical structure of the data require continuous amplitudes
(Wiener-Khinchin theorem) or equidistant time stamps (Walsh
transform, Haar wavelets). In Ref. 63, Marwan and Braun propose
a novel power spectral analysis for discrete and event series based
on the edit distance metric, a tool originally introduced in com-
puter science and also popular in computational neuroscience. This
method allows to estimate a power spectrum directly from the event
sequence without interpolation. The authors illustrate their method
with numerical simulations and apply it to atmospheric rivers in
Europe to find typical recurring cycles.

Olivares et al. propose in Ref. 64 a model, based on a modu-
lated Markov jitter, to represent ordinal pattern properties of real
landing operations in European airports. The parameters of the
model are fixed by minimizing the permutation Jensen–Shannon
distance between the probability distributions of ordinal patterns
generated by the real and synthetic time series. The authors also dis-
cuss the application of their model to other aspects of the landing
flow dynamics, as well as the applicability of these findings to a real
operational environment.

Shahriari et al. present in Ref. 65 a novel method for recon-
structing the first return maps from time series without the need
for embedding. Their method is based on ordinal partitions of the
time series and guided by entropy-based measures. Numerical sim-
ulations with the Lorenz, Rössler, and Mackey–Glass dynamical sys-
tems in chaotic regimes show that this method performs successfully
for low-dimensional chaotic systems as well as infinite-dimensional
delay differential systems.

F. New ordinal tools

Dagoumguei et al. further develop in Ref. 66 the method of per-
mutation largest slope entropy recently proposed by them in order
to make it available for real-time analysis of complex systems. They
show the correct performance of their method with the logistic map.
Also, they implement this technique in a rather simple microcon-
troller and demonstrate its efficiency for the paradigmatic Duffing
oscillator. Finally, the authors compare the results with those from
an intense numerical analysis and find a strong agreement.

Stosic et al. introduce in Ref. 67 a new ordinal tool to measure
the complexity of time series called the generalized weighted permu-
tation entropy. This new tool features a scaling parameter that allows
to transform the conventional complexity-entropy causality plane to

the complexity-entropy-scale causality box. Numerical simulations
with chaotic and random processes as well as real-world data show
the enhanced discriminatory power of the new three-dimensional
representation.

Zanin generalizes in Ref. 68 the conventional ordinal patterns
in that, in his approach, these are evaluated in terms of their dis-
tance to ordinal patterns defined in a continuous way. The author
tests the performance of continuous ordinal patterns with synthetic
and real-world time series. In addition, he shows how continuous
ordinal patterns can be used to assess some characteristics of the
underlying dynamics, such as time irreversibility.

G. Statistical properties of permutation entropy

The statistical analysis of ordinal patterns is a technically dif-
ficult task whose objective is to characterize the distribution of the
features they induce. In Ref. 69, Chagas et al. study the statistical
properties of the perhaps most important functional of the ordinal
patterns: the permutation entropy. Specifically, the authors calcu-
late exact and approximate first-, second-, and third-order moments
and its asymptotic distribution. Using these results, the authors also
present a bilateral test to reject the hypothesis that two signals have
the same permutation entropy.

H. Tests for serial dependence

Cánovas et al. propose in Ref. 70 a refined test to determine
whether a time series is independent and identically distributed.
For this, the authors complement the usual representation of a
time series by ordinal patterns of length D with additional symbols
(0–1 vectors of length D) that contain quantitative information
of the corresponding data window. Numerical results using the
chi-squared test show that the new approach outperforms the con-
ventional (permutation-only) one even with much fewer symbols.

de Sousa and Hlinka71 also use the classical chi-squared test
and study symbolic processes in the space of ordinal patterns whose
maximum dependence range is m. Such ordinal patterns are derived
from random walks, white noise, and moving average processes. The
authors describe chi-squared asymptotically distributed statistics
for such processes and propose a test for m-dependence. Appli-
cation of these results to EEGs of epileptic patients suggests that
the range of serial dependence decreases during epileptic seizures.
As a side remark, de Sousa and Hlinka denote ordinal patterns by
antisymmetric matrices with off-diagonal components ±1 (actually,
the triangular submatrix above the diagonal) instead of using the
conventional rank vectors.

The paper11 contributed by Weiß is closely related to the pre-
vious one. In his paper, Weiß derives the asymptotic distribution
of the vector of sample frequencies of ordinal patterns and that of
various corresponding test statistics for distribution-free hypothe-
sis tests in real-valued time series, where the null hypothesis is serial
independence. The author provides simple closed-form formulas for
the implementation of those tests. The performance of these tests is
investigated with simulations, and their usefulness is illustrated by
an environmental data example.
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I. Topological methods

Haruna applies in Ref. 72 methods of topological data analy-
sis to time series in ordinal representations. Topology is one of the
more recent additions to symbolic representation of times series,
which include other fields of advanced mathematics, such as graph
theory (e.g., ordinal networks73) and algebra (e.g., transcripts74,75).
In his paper, Haruna constructs an increasing sequence of simpli-
cial complexes encoding the information about couplings among the
components of a given multivariate time series through the inter-
section of ordinal patterns. A complexity measure is then defined
by making use of the persistent homology groups. He validates the
complexity measure both theoretically and numerically.

J. 2D ordinal patterns and images

The papers of Bandt and Wittfeld76 and Muñoz-Guillermo77

consider the extension of ordinal patterns from dimension 1 to
dimension 2 and its application to the analysis and processing of
images.

Specifically, Bandt and Wittfeld introduce in Ref. 76 two new
parameters (smoothness and branching structure) to characterize
2 × 2 patterns based on the observation that neighboring pixels
come in three types. Therefore, their approach is different from
the H × C-like approach used in Ref. 78. The authors show that
their parameters describe textures and are well suited to distinguish
different structures. Furthermore, the parameters are most stable
and informative for isotropic structures.

The approach of Muñoz-Guillermo in Ref. 77 to 2D ordinal
patterns and their application to the encryption of images is moti-
vated by multiscale (weighted and non-weighted) two-dimensional
permutation entropy. Therefore, she starts her study by analyzing
and comparing the properties of those two multiscale permutation
entropies, with special emphasis on their behavior when noise is
added. In a second, final part, she explores the possibilities of multi-
scale analysis in encrypted images, including different security levels
and encryption methods.

IV. NEW DEVELOPMENTS AND CHALLENGES

With the aim of attracting new researchers to the field of the
ordinal methodology and its applications, we wrap up this Editorial
with a brief review of some recent developments and challenges. To
this end, we showcase a few topics that we deem will be the subject of
active research in the years to come. Needless to say, our selection is
necessarily far from complete due to the many new ideas currently
popping up in the field. Topics and challenges are inspired by the
contributions to this Focus Issue.

Time series analysis has been one of the main applications
of the ordinal methodology ever since, not least because ordinal
patterns and permutation entropy were precisely incepted for that
purpose. Indeed, permutation entropy is applied in the seminal
paper2 to speech signals, as well as to noiseless and noisy chaotic
time series. Despite its longevity, the analysis of time series, espe-
cially in the case of real-world data, still faces some challenges
posed by short lengths,50 noise, nonuniform time stamps,63 or miss-
ing data, non-stationarity, modeling of EEGs10,51 and other noisy

signals,79 and more. For specific limitations and necessary develop-
ments to improve the characterization of the complex networked
dynamics of the human brain, see Ref. 52. To cope with such
difficulties, researchers have devised a number of refinements, to
mention a few regarding the information-theoretical tools: gener-
alized permutation entropies32,33,61 and divergences,57,80 multiscale
versions of permutation entropy,81,82 weighted versions,83 weighted
multiscale versions,84 and generalizations,67 as well as other kinds of
“entropies” (e.g., distance to white noise85 and permutation largest
slope entropy66). Also, the H × C plane has been generalized in sev-
eral ways56,59 and complemented with machine learning techniques
with good results. Sharpening and generalizing existing tools is cer-
tainly a promising avenue to enhance the power of the ordinal
methodology for characterization, discrimination, and classifica-
tion of time series. Yet, the new tools should not be the result of
numerical tinkering but the result of theoretical insight—that is the
challenge.

Generalizing the symbolization method can also be a way to
open new avenues. Once a time series has been represented by,
say, algebraic, graph-theoretical, or topological symbols, one can
use the leverage of algebra,74,75 graph theory,86–88 or topology89,90 to
further extract information about the underlying system. In par-
ticular, this approach can also be applied to a time series in an
ordinal representation. Such is the case of the unweighted and
weighted ordinal networks91,92 (which are amenable to both graph-
theoretical and probabilistic methods,71) as well as the persistent
homology of sequences of ordinal patterns.72 The perhaps simplest
way of exploiting the algebraic structure of ordinal patterns (i.e.,
the group of permutations) is the concept of transcript,74,75 which
can be obtained from a single time series (self-transcripts) or from
several ones (cross-transcripts); cross-transcripts have been used as
information directionality indicators in coupled dynamics.93 On the
contrary, antisymmetric matrices with components 0 and ±1 do not
build groups under addition or multiplication, so the correspond-
ing ordinal representations71 are not amenable to the usual algebraic
operations. Current research is quite active in the study of general-
izations and applications of ordinal representations, with new results
in extended alphabets of ordinal patterns68,70 and generalized ordi-
nal patterns,94 applications of transcripts,95,96 applications of ordinal
networks55,59,60,65 as well as applications of persistent homology.72 In
view of the interesting results obtained so far, we encourage new
proposals in this line of research, particularly in the algebraic and
topological processing of time series in ordinal representations.

Ordinal patterns (notoriously those of length 3) have a simple
and intuitive interpretation in terms of smoothness or roughness,
which allows the study of textures of one-dimensional structures
or one-dimensional sections of surfaces.79,97 The extension of ordi-
nal patterns to two-dimensional and higher-dimensional struc-
tures and their application to the analysis and processing of 2D
images was pioneered by Ribeiro et al.78 In the case of 2D images,
other approaches include Hilbert–Peano curves98 and 2 × 2 ordi-
nal patterns.76 A direct conclusion of these and other related works
(e.g., Ref. 77 in this Focus Issue) is that the permutation entropy
of the corresponding probability distribution of ordinal patterns
is also suitable to characterize images. Examples include pictures,
paintings, satellite images,98 and textures;99 see also Ref. 57 for the
discrimination of real 2D images textures using the Shannon–Jensen
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divergence of ordinal patterns distributions (7). Applications range
from cryptography77 to environmental surveillance, automated dis-
crimination of textures, artificial vision, and determination of paint-
ing authorship (similarly to the identification of writers in Ref. 58).
However, progress in the study of 3D images by means of ordi-
nal patterns seems to lag behind; applications to fMRI imaging
immediately come to mind.

Within time series analysis, the study of the statistical proper-
ties of ordinal patterns and permutation entropy, along with their
application to serial dependence, is a classical topic44,100–102 and still
a hot topic, as can also be seen from this Focus Issue.10,11,69–71 In
this rather theoretical area, the work of statisticians and proba-
bilists is especially welcome.103 Among the challenging topics here,
we highlight the following: (i) the study of asymptotic properties of
ordinal patterns and application-based quantifiers; (ii) how to estab-
lish confidence intervals evaluation in the case of quantifiers based
on ordinal patterns under different dynamical situations and differ-
ent noise contamination intensities and characteristics;104 (iii) study
of serial dependence in discrete-valued time series via ordinal pat-
terns (proposed in Ref. 11). Ordinal patterns of discrete-valued time
series were considered in Refs. 105 and 106.

Finally, a challenge can also be finding new application
areas. In this Focus Issue, there are nice examples, such
as applying ordinal methods to a hydrological issue,54 real
aeroplane landing operations,64 and linguistics,58 together with
more technical applications to thermoacoustic instabilities in
Ref. 59 and characterization of multiphase flows.60 Ordinal patterns
have been also used to study systems with dynamical noise.107,108 The
choice of other topics is yours.

In conclusion, the Ordinal (or Bandt–Pompe) Methodology
offers researchers in data analysis and modeling, nonlinear time
series analysis, dynamical systems, and complexity theory a wide
range of interesting and challenging topics, both theoretical and
practical, which makes the field particularly appealing and active.
This Focus Issue dedicated to the memory of Karsten Keller is good
proof of that.
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