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Simple Summary: This study examines the impact of different grazing systems on methane (CH4)
emission and dry matter intake (DMI) in beef steers. It compares two systems: (i) a cover crop mixture
(CC) and (ii) alfalfa and fescue pasture (AFP). The results showed that steers on CC produced 29% less
methane (expressed in g/d) and 36% less CH4 yield (expressed as % of gross energy intake) than those on
the AFP. However, the DMI, average daily gain, and CH4 intensity were similar between the two systems.

Abstract: This study aims to quantify enteric methane (CH4) emission and dry matter intake (DMI)
in beef steers under two rotational grazing systems: (i) a mixture of cover crops (vetch + ryegrass +
forage radish) (CC) and (ii) alfalfa and fescue pasture (AFP). Eighteen Hereford steers were divided
into two groups (nine steers per group), assigned to either the CC or AFP. Methane emissions were
measured using the SF6 tracer technique. The results showed that steers grazing CC produced 29%
less CH4 in g/d compared to those on the AFP (119.1 vs. 167.1 g/d for CC and AFP, p < 0.05) and 36%
less CH4 yield (4.3 vs. 6.7% of gross energy intake). However, average daily gain (ADG), DMI, and
CH4 intensity (gCH4/kg ADG) did not significantly differ between treatments. The integration of
CC in a cattle grazing system has the potential to reduce CH4 emissions by improving forage quality.

Keywords: beef cattle; grazing systems; agriculture; livestock production; sustainability; SF6 tracer
technique

1. Introduction

Methane (CH4) is a potent greenhouse gas (GHG) with a global warming potential
approximately 28 times greater than that of carbon dioxide (CO2) [1]. In livestock production,
CH4 emissions account for about one-third of all anthropogenic CH4 emissions globally,
primarily originating from ruminants, especially cattle, given their population size and
substantial body mass [2]. Enteric CH4 is produced under anaerobic conditions in the
rumen by methanogenic archaea, which convert CO2 and hydrogen into CH4, subsequently
releasing it into the atmosphere [3]. Importantly, enteric CH4 emissions represent an energy
loss ranging from 2 to 12% of the gross energy intake of ruminants [4]. Therefore, reducing
enteric CH4 emissions has dual benefits: decreasing GHG emissions while improving
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production efficiency. Identifying effective CH4 mitigation strategies that do not compromise
animal performance is particularly urgent in Latin American countries where livestock plays
a critical role in supporting rural livelihoods.

In Argentina, pastures constitute a vital forage resource within livestock production
systems, ranking as the third most cultivated resource after oilseeds and cereals, covering
approximately 8 million hectares nationwide [5]. Pastures offer multiple benefits, including
consistent feed quantity and quality at a lower cost than alternatives like forage reserves
and supplements. Mixed grass–legume pastures are among the primary forage resource,
representing 30% of the perennial pastures planted in the country [5]. Beyond forage
production, effective pasture management also serves as a strategy for soil conservation,
with improvements in soil organic carbon and nitrogen stocks and physical properties
observed following the establishment of perennial pastures [6,7].

Integrating crop–livestock systems through effective management practices offers a
promising approach to mitigating GHG emissions while enhancing sustainability. These
integrated systems create diversified agroecosystems that contribute to ecological intensi-
fication by increasing food production, maintaining or improving environmental quality,
and conserving natural biodiversity [8]. Growing concerns over the environmental impacts
of conventional agroecosystems have led to increased interest in alternative cropping sys-
tems that enhance ecosystem multifunctionality [9]. In this context, increasing cropping
intensity using cover crops or perennial pastures has been recommended as a rapid climate
mitigation strategy for carbon sequestration [10,11], as well as for nitrogen conservation
and recycling within the soil–plant system [12,13]. Cover crops and pastures also improve
soil structure, reduce erosion, and enhance overall system sustainability while yielding
crop production outcomes comparable to single-crop systems [14–16]. Additionally, graz-
ing cover crops can provide further nutrient cycling and economic benefits to producers
through increased livestock weight gain [17].

The nutritive value of forage varies significantly across forage types, including annual
and perennial grasses, legumes, and tropical and temperate species [18]. Differences also
exist between species and cultivars within species. Optimizing cattle nutrition involves
selecting high-quality forage species and cultivars adapted to specific farm environments,
balancing forage quantity and quality. Including legumes in forage mixtures has been
shown to reduce CH4 emissions due to their lower fiber content, increased dry matter intake
(DMI), and faster rumen passage rate [19]. Additionally, the high protein content and dry
matter digestibility (DMD) of legumes make them a preferred choice in grazing systems [20].
Despite these developments, knowledge gaps remain, particularly regarding CH4 emission
quantification from diverse forage types, including cover crops, under real-world grazing
conditions. While cover crops are recognized for their role in soil conservation and carbon
sequestration, limited data exist on their specific effects on enteric CH4 emissions by grazing
cattle. Addressing these gaps is essential for developing targeted mitigation strategies and
enhancing the environmental sustainability of livestock production.

Therefore, this study aims to assess enteric CH4 emissions, DMI, and average daily
gain (ADG) in beef steers under two grazing systems: a cover crop mixture and a legume–
grass pasture.

2. Materials and Methods
2.1. Study Site

A field experiment was set up in July–August 2021 at the Pergamino Experimental
Station of the Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina) (33◦51′ S,
60◦40′ W). Soil type is a Typic Argiudoll (USDA Soil Taxonomy) of the Pergamino series with
a silt loam A horizon without eroded phase (<0.3% slope) and a strong argillic B horizon.
The climate in the study area is temperate humid, without a dry season, with a mean
annual temperature of 16.5 ◦C and mean annual rainfall of 984 mm for the 1910–2024 period
(Agroclimatological network database, INTA). Rainfall and average temperature during the
month (August) in which this study was carried out was 26.4 mm and 12.1 ◦C, respectively.
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2.2. Animals and Experimental Design

Eighteen Hereford steers aged 12 to 15 months and weighing 244 ± 18 kg (average
weight ± standard deviation) were randomly divided into two groups based on initial
body weight:

(i) A mixture of cover crops was integrated into a soybean–maize sequence (CC). The CC
was shown non-till on 23 April 2021, and the species used as cover crops were annual
ryegrass (Lolium multiflorum Lam.), hairy vetch (Vicia villosa L.), and a forage radish
(Raphanus sativus L.), with densities of 13, 30, and 2 kg of seed/ha, respectively;

(ii) Alfalfa (Medicago sativa L.) and fescue (Lolium arundinaceum) pasture (AFP), with
densities of 12 and 8 kg of seed/ha, respectively.

Both CC and AFP were sown as a mixture of the species involved in the same area
(Figure 1). Before the trial, the animals underwent a 15 d acclimatization period to adjust to
the established diet. The steers were allowed to freely graze on any of the species offered in
paddocks of 0.5 ha, divided using electric fences (two paddocks of CC and one paddock
of AFP). Drinking water was readily available. Both cover crops and pasture were grazed
in a rotational system, with a grazing period of 10 d followed by a resting period of 20 d.
Forage allocation was set at 3% of the average body weight to adjust the stocking rate.
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Figure 1. Images of the two systems evaluated: a cover crop mixture with annual ryegrass, hairy
vetch, and a forage radish (CC) (left); and an alfalfa-fescue pasture (AFP) (right).

The animals were weighed on three opportunities (0, 15, and 43 d), with a 16 h fasting
period prior to each weighing. ADG during the experiment was calculated by dividing the
weight difference by the 28-d interval between them.

The protocols, procedures, and animal care were approved by the Institutional Commit-
tee for the Care and Use of Animals (CICUAE File No. 34/21, approval date 15 September
2021, INTA).

2.3. Herbage Measurement

Forage mass measurements were taken before and after grazing in each paddock.
Three randomly allocated quadrats of 100 cm × 100 cm were used to collect forage samples,
by cutting at a height of 5 cm, which were pooled from each paddock of each treatment.
Additionally, another sample from each paddock was separated into hairy vetch, annual
ryegrass, forage radish, alfalfa, tall fescue, weeds, and dead material, according to the
treatment. Both herbage mass and pasture botanical composition were dried in a forced air
oven at 60 ◦C for 48 h and expressed on a dry weight basis.

All of the dried samples, cover crops, and AFP were ground using a Wiley Mill to pass
through a 1 mm mesh and stored until further chemical composition analysis. Dry matter
(DM) content was determined by drying samples at 105 ◦C for 24 h, while ash content
was assessed by incinerating samples in a muffle furnace at 550 ◦C for 4 h, in accordance
with method 942.05 [21]. Total nitrogen (TN) was measured using the Kjeldahl method as
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outlined by method 46–129 [22], with crude protein (CP) calculated as TN × 6.25. Neutral
detergent fiber (NDF) and acid detergent fiber (ADF) contents were sequentially analyzed
using an Ankom 220 fiber analyzer (ANKOM Technology Corporation, Fairport, NY, USA),
following the procedures described by Van Soest et al. [23]. Gross energy (GE) was measured
using a bomb calorimeter (PARR 1261, Parr Instrument Company, Moline, IL, USA). Dry
matter digestibility was estimated using the equation derived from the FDA percentage [24].

2.4. Enteric Methane Measurement

The enteric CH4 emissions were measured using the sulfur hexafluoride (SF6) tracer
gas technique [25]. A brass permeation tube, with a known permeation rate of SF6 (average
8.87 ± 1.88 mg/d), was orally administered to steers 20 d before the beginning of the
collection period. The sample collection system comprised two steel vessels (0.5 L volume),
and the sample flow regulator consisted of a metal capillary (10 cm length), with a small
section (5 mm) pressed until the desired flow rate of 0.05 mL/min was achieved. A
target internal pressure of approximately 500 mbar (±100 mb) was maintained in the
collection device at the end of the sample collection period. The sampling duration lasted
for 5 consecutive d, following the recommendation by Gere and Gratton [26] and Pinares-
Patiño et al. [27] (Figure 2). Background air samples were also collected using the same
sample collection systems positioned at grazing height at a distant site, away from the
animal location, to establish the baseline atmospheric concentrations of CH4 and SF6. These
background samples were collected in duplicate, oriented in the direction of the prevailing
wind. The concentrations of CH4 and SF6 were analyzed at the Pathobiology Veterinary
Institute (CICVyA, INTA) using a gas chromatograph (Perkin Elmer 600, Kansas City, MO,
USA), following the methodology described by Gere et al. [28].
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blue corrugated tube, which serves to contain the equipment, and the tube is secured to the muzzle.

2.5. Dry Matter Intake

The method involved indirectly measuring the dry matter intake (DMI) of animals
by using titanium dioxide (TiO2) as an external marker, a technique outlined by Short
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et al. [29]. Animals were administered gelatin capsules containing 10 g of TiO2 (99% purity)
each morning for 10 d. This TiO2 regimen was initiated 5 d before the sampling period to
establish ruminal equilibrium. Fecal samples were collected over the next 5 d via rectum
post-TiO2 administration within a 30 min timeframe. These samples underwent a series of
processing steps, including drying at 60 ◦C for 96 h and grinding. Composite fecal samples
were created from 2 g portions collected over 5 d for each animal and were subsequently
analyzed for various components such as NDF, ADF, and TiO2 concentration [30]. The
mean daily DMI per animal was then calculated based on the fecal dry matter output (DMf)
and the dry matter digestibility (DMD %) of consumed herbage, following the approach
detailed by Corbett and Freer [31] (Equation (1)).

DMf (kg/d) = TiO2 dose (mg/d))/(TiO2 in faeces − TiO2 in feed (mg/kg DM)) (1)

The daily DMI per animal was calculated using the DMf and the DMD, as shown in
Equation (2):

DMI (kg/d) =
DMf(kg/d)× 100
100 − DMD × 100

(2)

where the DMD was estimated using the indigestible NDF content as the internal marker
for both the diets and the feces, as described by Schalla et al. [32].

2.6. Data Analyses

The Infostat Statistical Software (Infostat 2020) [33] was utilized to analyze differences
in the mean values of DMI, ADG, CH4 emissions, emission intensity (CH4/kg ADG), and
CH4 yield expressed per kg DMI, or as a percentage of the ingested GE (Ym) using ANOVA
and Fisher’s LSD Test according to a linear mixed model represented by Equation (3):

Yij = µ+ Ti + Eij (3)

where Yij is the dependent variable, µ is the general mean, Ti is the fixed effect of the
treatment (i = CC and AFP), and Eij is the residual error. Origin Lab 6.0 software (OriginLab
Corporation 2016) was used to calculate the slopes of the linear regressions for CH4/kg
ADG versus ADG.

3. Results and Discussion
3.1. Forage Mass Production of Cover Crops and Legume–Grass Pasture

The results of forage mass production, based on dry weight, are presented in Table 1.
The production of offered forage was comparable between CC and AFP (p = 0.298). The
dry matter content of forage was higher in AFP than CC, both in pre-grazing offered forage
(p = 0.006) and in residual post-grazing forage (p = 0.004). The differences can be attributed
to the botanical composition; in the AFP treatment, a substantial portion of dead material
was present in the offered herbage mass, while in the CC treatment, dead material was
negligible. Dead material contributes to an increase in the dry matter content of forage.

Table 1. Forage mass production and botanical composition for each treatment: cover crop (CC) and
alfalfa–fescue pasture (AFP).

Treatments
SEM p Value

CC AFP

Forage production

Offered forage DM % 15.7 32.4 0.9 0.006
Kg DM/ha 1965 1701 134.3 0.298

Residual forage DM % 15.5 33.0 0.8 0.004
Kg DM/ha 441.6 396.7 32.7 0.434

Forage use efficiency % 77.2 76.2 3.7 0.869
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Table 1. Cont.

Treatments
SEM p Value

CC AFP

Botanical composition offered forage (%)

Annual ryegrass 26.0 - 3.1 -
Hairy vetch 28.5 - 4.6 -
Forage radish 42.0 - 6.4 -
Alfalfa - 22.9 9.3 -
Tall fescue - 49.3 9.2 -
Weeds 1.7 1.1 1.1 0.235
Dead material 1.8 26.7 1.2 0.006

DM: dry matter. SEM: standard error of the mean.

3.2. Chemical Composition of Cover Crops and Legume–Grass Pasture

Both treatments showed favorable values in chemical composition variables (Table 2);
however, the nutritive value of the forage was significantly higher (p ≤ 0.05) in the CC
treatment compared to AFP, as evidenced by a higher CP content, greater dry matter
digestibility (DMD), and lower fiber content. These differences in chemical composition
can be attributed to the higher proportion of legumes in CC relative to AFP (28.5% vs.
22.9%), as legumes generally contain higher CP levels. The results align with the botanical
composition of each treatment: CC contained a larger proportion of green live material,
whereas AFP had a significant amount of dead material (Table 1), which likely reduced
the nutritive value of its forage mass. These differences between the two resources, with
CC being annual and AFP perennial, are particularly evident during the winter season.
The CC exhibited more active growth, accumulating green biomass with minimal dead
material, while AFP showed slower growth, leading to a higher accumulation of dead
material, particularly in alfalfa, which is more active in spring and summer but susceptible
to frost. Six instances of agronomic frost occurred in the two weeks preceding grazing,
which further contributed to decline alfalfa in AFP.

Table 2. Chemical composition for the offered forage mass for each treatment: cover crop (CC) and
alfalfa–fescue pasture (AFP).

CC AFP SEM p Value

CP (%) 24.3 17.3 1.2 0.050
NDF (%) 36.2 52.6 2.1 0.032
ADF (%) 19.3 31.2 1.8 0.041
DMD (%) 73.8 64.6 1.4 0.041
Ash 12.9 9.4 0.4 0.027
GE (Kcal/Kg DM) 4304.7 4357.7 37.5 0.423

CP: crude protein; NDF: neutral detergent fiber; ADF: acid detergent fiber; DMD: dry matter digestibility; GE:
gross energy; SEM: standard error of the mean.

Despite the rotational grazing system employed for AFP, it was insufficient to prevent
the build-up of senesced material. Additionally, forage maturity directly impacts nutritive
value due to physiological and phenological changes within the plant. As plants mature,
their dry matter production generally increases; however, this growth is often accompanied
by a decline in digestibility and CP content [34]. While increased maturity typically reduces
forage quality, several environmental and agronomic management factors can modify the
relationship between plant maturity and forage quality [35].

3.3. Animal Performance: Averaged Daily Gain and Dry Matter Intake

The average ADG and DMI did not differ significantly between treatments (p > 0.05)
(Table 3). Overall, the animals demonstrated good performance in terms of ADG during
the study. While the 28-d study period provided a useful indicator of weight gain, this
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timeframe may have been too short to capture any significant differences in weight gain
between treatments. The ADG values observed in our study were slightly higher than those
reported in previous research. Marín et al. [36] reported average daily gains of 0.74 kg/d
for low residual feed intake (RFI) and 0.67 kg/d for high-RFI Hereford heifers, with an
average body weight of 270 kg, grazing on natural pastures. The lower gains in their study
were likely due to the forage’s lower quality, which had a CP content of 8% and higher
fiber levels (NDF: 71%, ADF: 44%).

Table 3. Dry matter intake, average daily gain, and enteric CH4 production of Hereford steers for
cover crop (CC) and alfalfa–fescue pasture (AFP) treatments.

Treatments
EEM p Value

CC AFP

DMI (kg/d) 9.0 9.2 1.2 0.920
ADG (kg/d) 1.1 1.3 0.1 0.334
CH4 emissions

CH4 (g/d) 119.1 167.1 9.0 0.002
CH4 (g/kg DMI) 13.7 20.4 1.5 0.011
CH4 intensity (g/kg ADG) 117.4 146.8 12.6 0.210
Ym (%) 4.3 6.2 0.5 0.013

DMI: dry matter intake. ADG: average daily gain. Ym: methane yield as a percentage of the ingested gross energy.

Although higher-quality feed is generally associated with increased weight gain at
comparable DMI levels, other factors—such as phenotypic variation, digestion and rumen
fermentation efficiency, and nutrient partitioning—may limit this effect [37]. Consequently,
improvements in diet quality do not always translate to increased weight gain. The similar
ADGs observed between steers grazing on AFP and CC, despite differences in DMD, may
be attributed to selective grazing behavior in AFP. This behavior likely allowed animals to
avoid senesced material, effectively increasing the DMD of the forage they consumed.

The high performance observed in the animals in our study may be explained by
the well-documented potential of legume pastures to enhance beef cattle production in
both tropical and temperate regions [38–40]. Due to their high protein content resulting
from distinct photosynthetic pathways, legumes provide a sustainable and cost-effective
protein source for cattle grazing on low-quality forage. Regarding DMI, our results are in
agreement with those of Marín et al. [36], who reported intakes of 7.16 kg/d and 6.78 kg/d
for low- and high-RFI heifers, respectively, in grazing conditions without supplementation
(8% CP, 71% NDF, 44% ADF). Similarly, Dini et al. [41] observed DMI values of 9.33 kg/d
and 10.6 kg/d for low- and high-RFI steers, respectively, with animals feeding twice a day
with a fully mixed ration (13% CP, 48% NDF, and 31% ADF).

In terms of the productive efficiency of cover crops, research conducted at Auburn
University found that, under a put-and-take grazing system, yearling steers (266 kg BW)
grazing on a mixture of cereal rye, oat, crimson clover, and a turnip × rapeseed hy-
brid achieved an ADG of 1.1 to 1.3 kg/d [42], results that are comparable to those re-
ported in this study. Additionally, similar findings (1.1 kg/d) were reported by Planisch
et al. [43] for beef steers grazing on annual ryegrass in an integrated ryegrass–soybean
rotation system.

3.4. Methane Emissions

Significant differences in daily CH4 emissions were observed, with CC showing
lower emissions compared to AFP (119.1 vs. 167.1 g/d; p = 0.0018), representing a 29%
reduction for CC. Since no differences were found in DMI, this reduction persisted when
calculating CH4 yield, whether expressed per kg of DMI or as a percentage of ingested GE
(Ym). However, no differences were noted in CH4 intensity expressed in g CH4/kg ADG
(Table 3).
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The CH4 emission values observed in this study are consistent with previous research
in extensive beef cattle systems, particularly with animals of similar characteristics in
grazing conditions. In the Pampas region of Argentina, Bárbaro et al. [44] reported CH4
emissions of 162–167 g/d in Aberdeen Angus steers with an average body weight of 265 kg,
while Gere et al. (2019) [28] found emissions ranging from 157 to 203 g/d in Aberdeen
Angus × Hereford cows weighing around 380 kg. Gonzalez et al. [45] also recorded
emissions between 131 and 251 g/d in Aberdeen Angus heifers with body weights ranging
from 360 to 450 kg.

Although CH4 emissions (g/d) were lower in CC than AFP, DMI did not differ between
treatments. Several studies suggest that the level DMI is a more significant factor than
pasture quality in determining absolute CH4 emissions [46,47]. However, the difference
in absolute CH4 emissions in the current work cannot be explained only by differences
in DMI. Improving forage quality has been suggested as a potential method to mitigate
CH4 emissions from ruminants [48–50]. For this reason, differences in CH4 emissions
were explained by changes in nutritive value of the pastures. For instance, Gaviria-Uribe
et al. [51] reported that DMI and diet composition have a significant impact on enteric
CH4 production. This experiment examined different levels of intensification in cattle
production systems, including naturalized pastures, improved pastures, and silvopastoral
systems. Diets incorporating Leucaena forage legumes generally provided higher CP levels
and increased DMI. The inclusion of Leucaena improved nutrient intake, resulting in greater
ADGs in cattle. Consequently, the emission intensity from legume-based systems was lower,
indicating that these systems could be an effective option for meeting emission reduction
targets in sustainable tropical cattle production. Many CH4 emission reduction strategies
focus on managing these two components, which align with our own observations. Diets
with higher nutritional quality—characterized by increased digestibility, higher CP content,
and lower NDF and ADF levels—resulted in higher DMI and reduced CH4 emissions,
thereby minimizing energy loss in the form of CH4 (Ym) [51].

The emission reductions observed in this study (approximately 30% in absolute values
for g CH4/d and Ym in %) are too substantial to be explained solely by the improved
forage quality found in cover crops. It has been demonstrated that incorporating specific
forage species can reduce enteric CH4 emissions. Dillard et al. [52] found that cattle diets
containing Brassica spp. led to lower CH4 production per day, per gram of digestible
organic matter, and per gram of DNF when evaluated in a continuous culture fermenter
system. This suggests the presence of an additional mitigating factor, potentially related to
secondary metabolites. Plants produce secondary metabolites, such as tannins, saponins,
and essential oils, which can have toxic effects on bacteria, protozoa, and methanogenic
archaea. These effects alter bacterial and protozoan populations, which, due to their
commensal relationships, indirectly reduce methanogenic archaea populations, ultimately
leading to lower CH4 production [53]. However, it is also known that alfalfa-based pas-
tures contain secondary metabolites that can contribute to the mitigation of enteric CH4
emissions [54].

Although no significant differences in emission intensity (gCH4/kg ADG) were ob-
served between treatments, Figure 3 indicates a trend of decreasing emission intensity
as ADG increases. Typical values of emission intensity range from 110 to 750 gCH4/kg
ADG [55]. The mean values in this study are close to the lower end of that range, high-
lighting that the monitored systems are highly efficient in terms of CH4 production per
unit of product. The advantages of well-managed pastures should be considered, such as
higher ADG per hectare and the resulting reduction in emission intensity per unit of ADG
produced. Thus, it is essential to strike a balance in utilizing intensive technologies within
pasture production systems to enhance forage quality and productivity while minimizing
environmental impacts, especially GHG emissions from ruminants [56,57].

The mitigation potential through quality improvement is also reflected in CH4 yield,
expressed as g CH4/kg DMI and Ym (~−30%). In the current experiment, the obtained
Ym values fall within the ranges reported in the literature. The CC treatment exhibited a
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Ym of 4.2%, lower to the IPCC proposed value for well-fed cattle consuming temperate-
climate feed types (6.5% ± 1%) [58]. Moreover, the AFP treatment was 6.2%, very close
to the mean value suggested. Despite its value, the Ym value does not involve the full
range of factors that affect CH4 emissions, including digestibility, rumen fermentation
characteristics, nutrient profiles, microbial community structure, diet composition, and
cattle management practices [59]. Studies conducted in Argentina on pasture-fed beef cattle
have variable Ym values, ranging from 4.3% to 8.2% [45]. Moreover, previous research
in Uruguay has been determined between 4.2% and 7.9% for beef steers, depending on
their diet quality for the winter and spring periods, respectively [60]. The wide range of
variation indicates a certain heterogeneity in CH4 emissions within the region.
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There is a limited number of existing studies that have comprehensively assessed
the climate change mitigation benefits of integrate practices that possess CH4 mitigation
opportunities within the existing traditional system pasture species. Integrated crop–
livestock systems have gained interest in recent years due to their benefits in increasing
diversification, enhancing soil fertility, and boosting carbon sequestration through the
direct return of manure to the soil [61,62]. These systems are widespread globally and
provide several economic advantages, such as reduced costs for transporting feed and
manure, lower labor demands, and decreased manure storage expenses [63]. Additionally,
this study highlights the potential of these systems as a mitigation strategy for enteric CH4
emissions. It offers valuable information for estimating carbon balances, including the
contribution of livestock, making it an important tool for informed decision-making.

The use of integrated crop and livestock systems to enhance both climate change
adaptation and mitigation capacities is becoming increasingly relevant in the southern
region of Latin America. De Souza Filho et al. [64] found that southern Brazil has the
potential to achieve 22–25% of the target for enteric fermentation emission reduction from
the livestock sector, as pledged by the Brazilian government in the Paris Agreement. They
concluded that adequate grazing management is a key strategy for improving animal
production and reducing the environmental impact of livestock within integrated crop and
livestock systems.

4. Conclusions

Incorporating high-quality forages into grazing systems has the potential to reduce
enteric CH4 emissions from grazing steers. This study demonstrates that using cover crop
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mixtures, including vetch, in cattle diets can lower CH4 emissions by improving forage qual-
ity. Additionally, these findings provide valuable insights into carbon balance estimation,
underscore the role of livestock in emission dynamics, and serve as an essential resource
for informed decision-making. Nevertheless, further research is needed to fully understand
the mechanisms behind the observed differences in CH4 emissions across treatments.
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