
The large D limit of dimensionally continued gravity

Gaston Giribet

Physics Department, University of Buenos Aires, and IFIBA-CONICET

Ciudad Universitaria, Pabellón 1, 1428, Buenos Aires, Argentina.

Instituto de F́ısica, Pontificia Universidad Católica de Valparáıso
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Abstract

In a recent paper [1] Emparan, Suzuki, and Tanabe studied general relativity in the limit

in which the number of spacetime dimensions D tends to infinity. They showed that, in such

limit, the theory simplifies notably. It reduces to a theory whose fundamental objects, black

holes and black branes, behave as non-interacting particles. Here, we consider a different

way of extending gravity to D dimensions. We present a special limit of dimensionally

continued gravity in which black holes retain their gravitational interaction at large D and

still have entropy proportional to the mass. The similarities and differences with the limit

considered in [1] are discussed.



1 Introduction

There exist several ways of extending general relativity (GR) to higher dimensions. The simplest

one is retaining the form of Einstein-Hilbert Lagrangian density and then extend the action to

D ≥ 4 dimensions. However, this proposal encounters a naturalness problem since in D > 4

dimensions Einstein tensor is not as special as it is in D = 4. In D > 4, the requirement of the

equations of motion to be symmetric rank-two covariantly conserved equations of second order

does not select Einstein tensor uniquely. In addition, there exists the possibility to supplement

Einstein-Hilbert action with dimensionally extended characters of the form1

χn =

∫

εa1a2...a2n...aD
Ra1a2 ∧ Ra3a4 ∧ ...Ra2n−1a2n ∧ ea2n+1 ∧ ea2n+2 ∧ ...eaD , (1)

which, despite of being of order Rn, yield second-order field equations. Then, it is natural to

inquire about why not to include the whole hierarchy of characters χn up to order (D − 1)/2

in the gravity action. Similarly to how Einstein-Hilbert action χ1 can be thought of as the

dimensional extension of Euler characteristic in D = 2 dimensions, in D > 4 it is natural

to define the gravity action by including the dimensional extension of the other Chern-Weil

topological invariants. In D = 4, for instance, the Gauss-Bonnet theorem implies that R2 terms

of this sort do not modify Einstein equations, as early noticed by Lanczos [2]; however, in D > 4

it is natural to include such terms. The same happens with χn in higher dimensions. The theory

of gravity in D dimensions whose action consists of all the dimensionally extended topological

densities (1) up to n = (D− 1)/2 is known under the rubric of Lovelock, after D. Lovelock have

found in [3] the generalization of the Einstein tensor to D dimensions. Apart from being the

most general metric theory of gravity yielding second order equations of motion, Lovelock theory

describes next-to-leading order contributions to string theory [4] and M-theory [5, 6] effective

actions. This theory exhibits very interesting features, like its property of being free of ghosts

about certain maximally symmetric backgrounds. In the last few years, Lovelock theory was

considered in the context of holography, providing a prototypical example to investigate how

the introduction of higher-curvature terms affects certain aspects of AdS/CFT correspondence

[7].

The above digression about which is the natural extension of GR to D dimensions acquires

particular importance in relation to recent studies on the behavior of gravity in the large D limit

1Here we will work in the first order formalism; see Section 2 for conventions.
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[1]. This limit had already been considered in the literature, for instance in Refs. [8, 9, 10, 11],

and it was recently revisited in [1] by Emparan et al., who observed that GR simplifies notably

when D goes to infinity. In particular, they observed that in this limit the theory reduces to

a theory of non-interacting particles. The fundamental objects of the theory, black holes and

black p-branes, exhibit vanishing cross-section and behave like dust matter.

The idea of considering the large D limit of gravity theory can be motivated by the large N

limit of gauge theories. The latter has shown to be a fruitful tool to investigate the structure

of both Yang-Mills and Chern-Simons theories. Exceptis excipiendis, gravity theory can also be

considered as a gauge theory for the local Lorentz group SO(D − 1, 1). In turn, it is natural

to explore whether one can extract relevant information from studying its 1/D expansion. Of

course, besides the mathematical analogy with the large N limit of gauge theories, the fact

that D represents the dimensionality of the spacetime itself introduces additional conceptual

difficulties. Nevertheless, as explained in [1], this limit may still be considered and interesting

physical information can be extracted from studying it.

Here, we will consider a different way of extending gravity to D dimensions and study the

limit of large D. More precisely, we will consider the gravity theory defined by the action that

includes all terms (1) up to a given order Rk, with k ≤ (D− 1)/2. For this type of theories, the

mentioned analogy between the large N limit of gauge theories and the large D limit of gravity

is even more direct since in the particular case 2k + 1 = D the actions we will consider coincide

with Chern-Simons actions (CS) for the gauge group SO(D−1, 2), and then they correspond to

actual gauge theories. This can be regarded as an additional motivation to study these models.

For 3 < 2k + 1 < D, instead, one is in an intermediate situation, between GR and CS. This

will allow us to play between two extremes, between k = 1 and k = (D − 1)/2. The fact of

having now two parameters, D and k, allows us to take the large D limit in different manners.

For instance, we can take D going to infinity by keeping k fixed, but we also can take both D

and k large in such a way that the quotient D/k remains fixed. In the latter case we will find

that, contrary to the limit considered in [1], the black holes happen to retain their gravitational

potential in a finite region outside the horizon. At first, this might sound surprising since the

Rk terms of Lovelock theory are expected to introduce ultraviolet effects merely. In the words

of [1], the fact that Riemann curvature tends to strongly localize close to the horizon indicates

that the dust picture should still apply [in Lovelock theory] at least in some situations. We will
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see that, although this is the case in certain situations, it is not true in general and Lovelock

black holes may actually retain the interactions at large D.

2 Dimensionally continued gravity

As said, we will be concerned with Lovelock theory of gravity. The idea of considering Lovelock

theory in relation to the large D limit of gravity was already proposed in [1]. The action of the

theory can be written as follows

S = κ−1
∑D/2

n=0
αnχn (2)

where the terms χn are given by

χn =

∫

εa1a2...a2n...aD
Ra1a2 ∧ Ra3a4 ∧ ...Ra2n−1a2n ∧ ea2n+1 ∧ ea2n+2 ∧ ...eaD (3)

where Rab = Rab
µνdxµ ∧dxν is the curvature two-form, Rab = dωab +ωa

c∧ωcb, with ωab = ωab
µ dxµ

being the spin connection one-form, and ea = ea
µdxµ is the vierbein one-form. Latin indices refer

to indices in the tangent bundle while Greek indices refer to indices in the spacetime. In (2) κ

and αn are dimensionful constant that introduce new fundamental scales in the theory. We will

discuss these scales below.

The equations of motion are obtained by varying (2) with respect to the vierbein and the

spin connection. Varying with respect to ea yields

∑D/2

n=0
αn(D − 2n)εaa2a3...aD

Ra2a3 ∧ ...Ra2na2n+1 ∧ ea2n+2 ∧ ...eaD = 0, (4)

while varying with respect to ωab yields

∑D/2

n=0
αnn(D − 2n)εaba3a4...aD

Ra3a4 ∧ ...Ra2n−1a2n ∧ T a2n+1 ∧ ea2n+2 ∧ ...eaD = 0, (5)

where T a = dea + ωa
b ∧ eb is the torsion two-form. Equations (5) vanish if torsion is taken to

be zero. Notice this is sufficient but not necessary condition if D ≥ 4. Here we will consider

T a = 0. Then, the equations that remain to be solved are (4).

In addition to considering (4) we will define our theory by specifying a criterion to choose

special sets of coupling constants αn. We will follow the criterion of Ref. [12]. That is, we will

demand the theory to admit a unique maximally symmetric vacuum. This prevents the theory
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from suffering from ghost instabilities [13] and other type of pathologies [14]. This requirement

of a unique vacuum leads to the following choice of couplings constants [12]

αn≤k =
L2(n−k)

(D − 2n)

Γ(k + 1)

Γ(n + 1)Γ(k − n + 1)
, (6)

while αn>k = 0. Ipso facto, this introduces an additional parameter of the theory, k, which

represents the highest order Rk in the action. This invites to define the critical dimension

Dc ≡ 2k + 1, which represents the minimum number of dimensions such that a term χk in

the action would contribute non-trivially to the equations of motion. In other words, χk is the

Chern-Weil topological invariant in Dc − 1 dimensions. In the particular case D = Dc (i.e.

D = 2k + 1) the theory defined by (2)-(6) coincides with the Chern-Simons theory of gravity

[15]. In the case D = Dc + 1 the action admits to be written as a Pfaffian, and then it is often

referred to as the Born-Infeld action [16]. Hereafter, we will be viewing the gravity theory as a

biparametric model, and consequently we will express all the formulae below as functions of D

and Dc.

At first glance it might seem remarkable that demanding the theory to admit a unique

maximally symmetric vacuum yields a relation between the coupling constants αn that makes

all of them to be determined by a unique fundamental scale L. However, due to the plethora of

vacua in higher-curvature theory, such a requirement turns out to be actually very restrictive

and this is why, apart from Planck scale κ, L appears as the only relevant scale.

About Planck scale, we find convenient to define Newton constant as follows

κ = 2Γ(D − 1)ΩD−2GD,Dc
(7)

where GD,Dc
has dimensions of (length)D−Dc+1, such that the coefficient of the Einstein-Hilbert

term, α1/κ, has dimensions of (length)2−D as required. In (7),

ΩD−2 =
2π(D−1)/2

Γ(D−1
2

)
(8)

is the volume of the unit (D − 2)-sphere.

We also recognize the cosmological constant

Λ = −(D − 1)(D − 2)

2L2
, (9)

which is given by the coefficient α0/κ in the action above.
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3 Dimensionally continued black holes

Classical black holes

Another interesting features of the set of theories defined by the choice (6) is the fact that they

can be solved analytically in a variety of examples. In particular, their spherically symmetric

solutions can be found explicitly for generic values of D and Dc. These metrics take the form

[12]

ds2 = −fdt2 + f−1dr2 + r2dΩ2
D−2 (10)

with

f(r) = 1 +
r2

L2
−

(r0

r

)2(D−Dc)/(Dc−1)

. (11)

In the particular case Dc = 3 (k = 1) this solution reduces to Schwarzschild-Tangherlini

solution of GR, as expected. In the cases D = Dc, on the other hand, this solution coincides

with the Bañados-Teitelboim-Zanelli solution for Chern-Simons gravity [17].

The mass of solutions (10)-(11) can be computed by resorting to the Hamiltonian formalism

[12]. The result is expressed in terms of the horizon radius rH as follows

M =
rD−Dc

H

2GD,Dc

(

1 +
r2
H

L2

)(Dc−1)/2

(12)

up to an additive constant that can be set to zero for simplicity.

At this stage we are ready to study the geometry of these black holes in the large D limit.

In this limit the volume of the (D − 2)-sphere exhibits the Stirling scaling ΩD−2 ∼ D−D/2, so

that it tends to zero. This means that the base manifold of the black hole shrinks in the large D

limit. This was rephrased in [1] as the black holes having vanishing cross-section when D goes

to infinity.

Outside the horizon, the gravitational potential damps off faster as D increases. This implies

that the gravitational interactions between Schwarzschild-Tangherlini black holes extinguishes

in the large D limit. In the general case (11), the way the gravitational potential scales with

D also depends on how Dc scales. If Dc remains finite in the large D limit, the behavior of

solutions (10)-(11) would be qualitatively similar to that of [1]. However, if, instead, both D

and Dc are taken to infinity in a way that the quotient D/Dc remains fixed, then the black
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holes happen to retain their gravitational interaction outside the horizon. In this limit ΩD−2

still vanishes, but metric function (11) has a large D behavior

f(r) ≃ 1 +
r2

L2
−

(r0

r

)2(D/Dc−1)

, (13)

and the gravitational potential remains finite.

Let us discuss the location of the horizon radius rH of solution (11) in the large D limit. For

large D with finite Dc and L the horizon radius is

rH = r0

(

1 +
1 − Dc

D
log(r0/L)

)

+ O(1/D2), (14)

and, as in [1], one finds that rH tends to r0 when D goes to infinity with Dc fixed. Then, the

interpretation in this case is similar to that in GR: the strong suppression of the gravitational

field due to the term ∼ −(r0/r)
2D/Dc in the Newtonian potential makes the interactions of the

black holes outside the horizon to vanish. Nevertheless, also as in the case of large D GR, the

notion of large AdS black holes still makes sense, as we will discuss below when we come to

discuss thermodynamics.

Different features are exhibited by solution (11) in the limit in which both D and Dc tend

to infinity by keeping the ration D/Dc finite. In this case one finds

r2
0 ≃ r2

H

(

1 +
r2
H

L2

)
Dc

D−Dc

, (15)

and then rH does not tend to r0, but the ratio r2
0/r

2
H > 1 remains finite. This is consistent with

the black hole rataining the gravitational effects in its vecinity.

Quantum black holes

Now, let us turn to discuss black holes in the quantum regime. The Hawking temperature

associated to black holes (10)-(11) can easily be calculated to be

T =
~

2π(Dc − 1)

(

(D − 1)rH

L2
+

(D − Dc)

rH

)

, (16)

which reproduces the GR result for Dc = 3. We observe that the theory for generic D and Dc

seems to exhibit Hawking-Page transition, provided L is finite. If D goes to infinity and Dc
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remains fixed, temperature (16) diverges. Still, there is a point at which the specific heat changes

its sign and the transition occurs. This happens at the scale r = L
√

(D − Dc)/(D − 1) ≃ L.

On the other hand, in contrast to what happens in GR, the presence of higher-curvature terms

permits to take the large D limit in a way that T remains finite. This is achieved by taking Dc

to infinity as well by keeping D/Dc fixed. For instance, if we define Dc = D(1 − α), then the

scale at which the transition takes place is governed by α, obtaining r ≃ L
√

α.

Let us study the case of asymptotically flat solutions. This is obtained by taking the large

L limit. In the theories defined by (2)-(6) this corresponds to having only the highest curvature

term Rk turned on. In this limit, we find

T =
~(D − Dc)

2π(Dc − 1)rH
. (17)

The entropy, on the other hand, is

S =
πrD−Dc+1

H (Dc − 1)

~GD,Dc
(D − Dc + 1)

. (18)

Because of the presence of higher-curvature terms in the action, these black holes happen not

to obey the Bekenstein-Hawking area law. Instead, entropy is a different monotonic function of

the horizon area A, namely S ∝ A
D−Dc+1

D−2 . From (18) and (12) we also observe that even in the

particular limit in which the black holes retain their gravitational potential, the entropy and the

mass go S ∝ M when D is large. This implies that such a behavior is not necessarily associated

to the non-interacting picture, at least not in a simple way.

Black p-branes

The study of the thermodynamics of black holes (10)-(11) enables to study the thermodynamical

stability of other black objects of the theory. For instance, consider black p-branes. That is,

consider solutions of the form ΣD−p × T p, with T p being a p-torus and ΣD−p being a black hole

of the type discussed above. This type of solutions was considered in Refs. [18, 19], where it

was shown that metric

ds2 = −fdt2 + f−1dr2 + r2dΩ2
D−2−p +

∑p

i=1
dz2

i

with

f(r) = 1 −
(r0

r

)2(D−p−Dc)/(Dc−1)
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are solutions of the theory (2)-(6) in the limit L → ∞.

One can analyze the thermodynamical instability of black p-branes by comparing the entropy

of such a configuration with that of a black hole. This requires a careful analysis of the parame-

ters involved in each configuration when comparing them in the microcanonical ensemble. The

thermodynamical stability analysis yields the following result for the quotient of entropies [18]

SBlack p-brane

SBlack hole
=

(D − Dc + 1)

(D − Dc − p)
(2GD,Dc

)λ1Mλ2(AD,Dc,p)
λ3 , (19)

with

AD,Dc,p =
Γ(D − Dc − p + 1)Γ(D − 1)Γ((D − p − 1)/2)

Γ(D − Dc + 1)Γ(D − 1 − p)Γ((D − 1)/2)

πp/2

V ol(T p)
(20)

and with critical exponents

λ1 =
1

D − Dc − p
− 1

D − Dc
(21)

λ2 =
D − Dc + 1 − p

D − Dc − p
− D − Dc + 1

D − Dc

(22)

λ3 =
1

D − Dc − p
(23)

From (19) we observe that the thermodynamical analysis of the black hole / black brane

transition in this theory is qualitatively similar to that of GR: There always exists a critical

mass above which the black p-brane is the preferable configuration. The natural question arises

as to how this picture is modified in the large D limit. For instance, in the large D limit

with Dc fixed, all the exponents λ1,2,3 tend to zero. This behavior is actually expected because

here we are considering p fixed. A similar behavior is exhibited also in the limit in which the

quotient D/Dc remains fixed. An interesting limit is given by taking both parameters to infinity

by keeping the difference D−Dc finite. In this limit, exponents λ1,2,3 remain finite while AD,Dc,p

scales as ∼ Dp/2/V ol(T p). It would be interesting to study the instability of p-brane solutions

of this theory in a similar way to what has been done in Refs. [20, 21] at large D. The analysis

of mechanical stability, on the other hand, can hardly be accomplished for these theories. This

is mainly because of two reasons: First, the higher-curvature terms in the action introduce

higher powers of the derivatives that make the complexity of the equations to grow dramatically

even for large D. Secondly, the special theories that are being selected by demanding (6) have

the property of having a unique maximally symmetric vacuum, and this produces that the
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equations of motion factorize in a way that the first orders in perturbation theory identically

vanish, making necessary to go beyond the linear approximation. It would also be interesting to

study the large D limit of Lovelock theory in relation to other issues as holographic applications,

causality bounds [22, 23], and other subjects in which this theory presents remarkable curiosities

as well. This is matter of further study.
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