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Abstract
In the present work, we employ a nonlocal Nambu–Jona–Lasinio (NJL) model
with a Gaussian form factor that is dependent on the spatial components of the
momentum (3D-FF). Focusing on the temperature-baryon chemical potential
plane, we investigate some aspects of the phase diagram. Initially, we propose an
assumption that the range of interactions in momentum space may be modified
by temperature, allowing us to obtain the critical temperature values based on
lattice QCD (LQCD) predictions. Subsequently, we consider this model within a
hybrid framework to examine the effects of temperature, together with neutrino
trapping, in compact object configurations.
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1 INTRODUCTION

The study of the QCD phase diagram, which contin-
ues to attract significant attention, shows the differ-
ent phases of strongly interacting matter according to
temperature and baryon chemical potential (Fukushima
& Hatsuda 2011). In environments of extraordinary
temperature and density, like those witnessed in the
early universe or within neutron stars (NSs; Lattimer
& Prakash 2016; Page & Reddy 2006), nuclear matter
shifts between different phases, including the quark-gluon

plasma, hadronic matter, and the color superconducting
phases.

However, at low energies, QCD becomes nonper-
turbative, and effective models emerge as essential
tools for describing the relevant phenomena in that
regime (Hatsuda & Kunihiro 1994; Klevansky 1992;
Vogl & Weise 1991). On the one hand, at low temperatures
and high densities or baryonic chemical potential, effective
models should be capable of representing and predicting
the phenomena occurring within compact stars. Fur-
thermore, for nearly zero baryonic chemical potential,
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effective models should align with the predictions of
lattice QCD (LQCD; Ding et al. 2015; Karsch 2002).

In previous work (Contrera et al. 2022), we exten-
sively analyzed the outcomes of a nonlocal chiral quark
model including color superconductivity and vector repul-
sive interactions, at zero temperature. The objective was
to use the resultant equation of state (EOS) for quark mat-
ter (QM) along with a hadronic EOS to comprehensively
depict the properties of cold, deleptonized NSs within a
hybrid framework. We identified the optimal parameters
of the QM model that satisfy maximum mass, radii, and
tidal deformability observational constraints (Abbott & e.
a 2018; Ayriyan et al. 2021; Hebeler et al. 2013; Miller & e.
a 2021).

With that background, in this study, we expand our
previous model considering finite temperature, while
meeting two essential criteria: compatibility with LQCD
and consistency with multimessenger astrophysical obser-
vations.

First of all, we aim to explore the higher-temperature
region of the phase diagram, corresponding to vanishing
baryonic chemical potential, while ensuring compatibility
with the critical temperature described by LQCD (Borsanyi
et al. 2020; Karsch & Laermann 2004), where the chi-
ral symmetry restoration and the confinement/deconfine-
ment transition take place.

The local NJL model (Nambu & Jona-Lasinio 1961a,b)
lacks confinement. However, by incorporating the
Polyakov loop potential (Fukushima & Skokov 2017;
Polyakov 1978), it becomes feasible to describe both tran-
sitions. It is worth emphasizing that the inclusion of the
Polyakov-loop leads to the breakdown of the color SU(3)
symmetry to SU(2). Consequently, the rotational invari-
ance concerning the orientation choice of the 2SC gap
under color neutrality constraints might be compromised
(as pointed out in Gomez Dumm et al. (2008)). Conse-
quently, the determination of the true minimum of the
thermodynamic potential becomes a nontrivial task. We
propose a simple approach to mimic color confinement
and fit the chiral critical temperature to LQCD data. We
parameterize the interaction range as a function of tem-
perature, assuming that temperature can alter the range
of interactions in momentum space.

Subsequently, to extend the study to finite temperature
T and higher densities, we utilize the same parameters of
the QM model from Contrera et al. (2022) to ensure the
fulfillment of constraints relevant to the cold NS scenario.
Incorporating T, we account for the trapped neutrinos in
the compact star matter to examine their combined effects
on the maximum mass and radii of the compact object
configurations.

This work is structured as follows. In Section 2, we offer
a succinct overview of the formalism. We incorporate the

LQCD constraint to the critical temperature predicted by
our model and we show the obtained phase diagrams. In
Section 3, we present a study of hybrid compact object con-
figurations at various temperatures, taking into account
the neutrino chemical potential and the presence of elec-
trons in the system. Finally, in Section 4, we outline our
concluding remarks.

2 FORMALISM AND
NUMERICAL RESULTS

Here, we present the properties of QM using a nonlocal
chiral quark model that includes interactions involving
scalar and vector quark-antiquark pairs, as well as the
scalar antitriplet of diquark interactions. The resulting
pressure is

Pq = −
(𝜎2 − 𝜎

2
0)
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2
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+ 𝜔

2
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+ 2∫
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]2
(3)
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mc + g(p⃗)𝜎, 𝜖 =
√

p⃗2 +m2
e and g(p⃗) the form factor pre-

sented subsequently. The mean field values, 𝜎, and Δ are
obtained by solving a system of coupled gap equations,
supplemented by a constraint equation for 𝜔:

𝜕ΩMFA

𝜕𝜎

= 0 ,

𝜕ΩMFA

𝜕Δ
= 0 ,

𝜕ΩMFA

𝜕𝜔

= 0. (4)

The solutions for the gap equations in the vacuum,
at T = 𝜇 = 0, are denoted with the subscript 0 and are
included in the quark pressure Pq following the renor-
malization procedure described in Contrera et al. (2022),
where a more complete description and details of the
model can be found.

From the quarks pressure, we can easily derive several
other important quantities. In particular, quark and lep-
ton densities and the quark chiral condensate and chiral
susceptibility (Contrera et al. 2022). By analyzing the last
two order parameters of the theory, the phase diagram is
obtained. In general, one can find regions in which the
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chiral symmetry is either broken (𝜒SB) or approximately
restored, and phases in which the system remains either
in an asymptotically free phase (NQM) or in a two-flavor
superconducting phase (2SC).

When exploring the behavior of QM in NS cores,
we must account for the simultaneous presence of elec-
trons and the corresponding (anti)neutrinos. Thus, treat-
ing these leptons as a free relativistic Fermi gas, the total
pressure of the QM plus leptons is given by P = Pq + Plep,
where the lepton pressure is defined as

Plep = 2 T
∑

s=± ∫
d3p⃗
(2𝜋)3

ln
[
1 + e−

𝜖+s 𝜇e
T

]

+

(
𝜇

4
𝜈e

24𝜋2 +
𝜇

2
𝜈e

T2

12
+ 7𝜋2 T4

360

)
. (5)

In addition, it is necessary to take into account that
QM has to be in 𝛽-equilibrium with electrons through the
𝛽-decay reactions. Thus, we have an additional relation
between fermion chemical potentials, namely,

𝜇Qq = 𝜇uc − 𝜇dc = −𝜇e + 𝜇𝜈e (6)

for c = r, g, b, and e denotes electrons. As a consequence,
the number of independent chemical potentials is reduced
further. Finally, in the core of NSs, we also require the sys-
tem to be electric and color charge neutral, then, the elec-
tron and color chemical potentials (𝜇e and 𝜇8, respectively)
get fixed by the condition that charge and color number
densities vanish. In essence, in the context of QM in NSs,
the values of Δ, 𝜎, 𝜔, 𝜇e, and 𝜇8 can be determined for
each combination of temperature T and baryonic chem-
ical potential 𝜇B. In this study, we treat 𝜇𝜈e as an input
parameter, as explained in detail below. This determina-
tion involves solving Equation (4), along with additional
constraints, such as chemical equilibrium, 𝛽-equilibrium,
and electric and color charge neutrality. This comprehen-
sive approach enables the establishment of the EOS for QM
within the specific thermodynamic regime under consid-
eration.

To fully specify the described nonlocal NJL model one
has to fix, at T = 𝜇B = 0, the model parameters as well as
the instantaneous form factor g(p⃗) that characterize the
nonlocal interactions between quarks in both channels qq
and qq. As in Contrera et al. (2022), we consider a Gaussian
form factor in momentum space,

g(p⃗) = exp[−p⃗ 2∕Λ2
0].

Fitting LQCD results of Burgio et al. (2012), in the
Coulomb gauge, for the normalized quark effective
mass M(p⃗)∕M(0) (Contrera et al. 2022), we obtain Λ0 =
885.5 MeV. Given the form factor functions, it is possible to

set the model parameters to reproduce the observed meson
phenomenology. Therefore, by requiring that the model
reproduces the empirical values of the pion mass m𝜋 =
138 MeV and the pion weak decay constant f𝜋 = 92.4 MeV,
it can be determined the remaining model parameters
mc = 2.3 MeV and GS = 9.9 GeV−2.

In the present QM model, the presence of 2SC
color superconductivity at finite temperature leads to a
clear color symmetry between red and green (we con-
sidered Δ5 = Δ7 = 0, Δ2 = Δ). However, this symme-
try contradicts the color gauge framework where the
Polyakov loop takes on a diagonal representation (Abuki
et al. 2009; Diakonov & Oswald 2004). Several studies (e.g.,
Blanquier (2017); Roessner et al. (2007); Gomez Dumm
et al. (2008)) have integrated both effects in their respec-
tive diagonal gauges. However, it is essential to consider
this approach as an approximation, as explained in the
concluding section of Gomez Dumm et al. (2008).

Therefore, the standard mechanism for introducing
color confinement cannot be applied in a NJL model with
superconductivity. In addition, when the NJL is coupled
to the Polyakov loop, the chiral critical temperature can
be adjusted to LQCD results by the parameter T0 that
appears in the Polyakov effective potential  [T0] (Pagura
et al. 2012).

In this study, where a nonlocal NJL-like model with
diquarks is considered, to mimic color confinement and be
able to fit the chiral critical temperature at 𝜇B = 0 to LQCD
data, the range of the interaction Λ will be parameterized
as a function that depends on the temperature and a free
dimensionless parameter 𝜅. In this way, we are assuming
that the range of the interactions in momentum space can
be modified by the temperature.

In our approach, performed in the mean-field approxi-
mation, the corrections due to interactions to the coupling
constant should be provided by the loop diagrams coming
from ring diagrams.

Since the range of the interactions in nonlocal models
is controlled by the form factor in the quark currents, we
propose, similar to what is found in QED,1 a temperature
dependence for the energy scale in our model, Λ(T). As a
first approximation, we propose a polynomial function in
T as a thermal correction for the interaction range, namely

Λ(T) = Λ0

(
1 + 𝜅

(
T
Λ0

)2
)
, (7)

In addition to the prior suggestion, other functional
forms have been considered, such as exponential and

1In QED, the loop contributions to the partition function generate
dependence on the energy scale and temperature in the coupling
constant of the theory (Kapusta & Gale 2011).
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F I G U R E 1 Chiral critical temperature T𝜒

c , at vanishing
chemical potential, as function of 𝜅.

trigonometric functions. We have verified that all of them
lead to a similar thermal behavior for the form factor.
Consequently, the chiral critical temperatures (at zero 𝜇B)
obtained for these functional forms, as functions of 𝜅,
are almost identical. This indicates that the phenomenol-
ogy predicted by the model is not sensitive to a specific
temperature dependence for Λ.

In the current parameter configuration, the transition
from the phase of chiral symmetry breaking to normal QM
occurs as a gradual crossover. The critical temperature is
determined by the peak of the chiral susceptibility, which
is denoted by −𝜕⟨qq⟩∕𝜕mc.

In Figure 1 we plot the obtained chiral critical tem-
perature (T𝜒

c ) at zero baryonic chemical potential as a
function of 𝜅 for the set of parameters previously defined.
It is straightforward to note the equivalence between this
behavior and that obtained in Pagura et al. (2012) for the
so-called Set C, which is the one where the chiral transition
at 𝜇B = 0 is always, as a function of T0, of crossover type.

It can be easily verified that the parameterization pro-
posed in Equation (7) as a function of 𝜅 (covering the range
−1 < 𝜅 < 0.5) up to temperature values of 250 MeV, does
not modify Λ(T) by more than a 10%, and it is possible to
adjust the value of the chiral critical temperature T𝜒

c from
140 to almost 220 MeV. Furthermore, if we fit the critical
temperature curve to a function 𝜅(T) of the form

𝜅(T) = a − e
b−T

c , (8)

we obtain a = 0.857 ± 0.001, b = 171.66 ± 0.05 and c =
44.48 ± 0.05. This function allows calculating 𝜅 to have
the desired chiral critical temperature at zero baryonic
chemical potential. In particular for 𝜅 equal to −0.12
and −0.50 we obtain the critical temperatures calculated

F I G U R E 2 Λ(T)∕Λ0 as a function of the temperature for
different values of 𝜅.

by LQCD for SU(2) and SU(3), namely T𝜒

c = 173 and
158 MeV, respectively (Borsanyi et al. 2020; Karsch &
Laermann 2004). This effect is illustrated in Figure 2,
depicting the Λ(T)∕Λ0 variation with temperature. The
shaded area represents the range −1 < 𝜅 < 0.5 discussed
earlier. The dotted and dashed lines represent the specific
values of 𝜅 = −0.12 and 𝜅 = −0.50 respectively, derived
from the fitting of the critical temperatures. We observe
that the ratio Λ(T)∕Λ0 demonstrates minimal sensitiv-
ity to low temperatures, thus preserving the entirety of
the phase diagram, except for the high-temperature and
low-chemical potential region. This specific area aligns
with the critical temperatures predicted by LQCD, thus
serving as our focal point for matching.

Finally, as depicted in Figure 3, the impact of Equation
(7) on the phase diagram is shown for 𝜂D = GD∕GS = 1.1
and 𝜂V = GV∕GS = 0.5. These parameters effectively repli-
cate the modern astrophysical data at T = 0, as mentioned
in Contrera et al. (2022). The phase transition curves for
𝜅 = 0,−0.12,−0.50 are denoted by black, blue, and red
lines, respectively. The onset of diquark condensation is
minimally influenced by the value of 𝜅. Similarly, the
distinct chiral restoration curves overlap at lower tem-
peratures. As the chemical potential decreases, however,
the curves gradually separate, aligning with the values
illustrated in Figure 1.

3 ASTROPHYSICAL
APPLICATIONS

We use a two-phase description to account for the tran-
sition from nuclear matter to QM in order to obtain
the mass-radius relations of proto-NS or post-merger
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F I G U R E 3 Phase diagrams for 𝜂D = 1.1 and 𝜂V = 0.5 with
𝜇
𝜈e
= 0 for 𝜅 = 0,−0.12,−0.5 in black, blue and red lines,

respectively.

objects. For QM we use the nonlocal NJL model pre-
sented above, which includes a density-dependent bag
pressure and whose free parameters have been chosen
to better reproduce modern astrophysical constraints. On
the other hand, the interactions between baryons in the
hadronic phase of nuclear matter are modeled using
the density-dependent relativistic mean-field (DDRMF)
Walecka model with the well-known DD2 parametriza-
tion (Malfatti et al. 2019; Typel 2018; Typel & Wolter 1999).
In addition, our study incorporates a NS crust, includ-
ing the Baym-Pethick-Sutherland (BPS) model (Baym
et al. 1971) to characterize the hadronic EOS at densities
below the nuclear saturation density.

To obtain the hadronic and QM EOS, the energy den-
sity, 𝜖, is determined by the Gibbs relation:

𝜖 = −P + TS +
∑

𝑗

𝜇𝑗 n𝑗 , (9)

where P = Pq,B + Plep, S = 𝜕P
𝜕T

and n𝑗 = 𝜕P
𝜕𝜇

𝑗

(𝑗 stands for all
the particles of each phase, including leptons).

The phase transition between hadronic and QM is
described by a Maxwell construction, where it is required
that the total pressure P and Gibbs free energy per baryon
G∕nB of the two phases coincide at the phase transition
point, being G the last term in Equation (9) and nB =
𝜕P∕𝜕𝜇B, the number baryon density. Outside the phase
transition, the phase with lower Gibbs free energy per
baryon is to be chosen as the physical one. Once the pres-
sure of the phase transition (Pt) has been found, the hybrid
EOS es constructed with the energy densities correspond-
ing to each phase.

In a NS at finite temperature, neutrinos are trapped
in the stellar core. Within the scope of our analysis, we

F I G U R E 4 Hadron and QM EOS for T = 50 MeV,
considering the relation 𝜇

𝜈e
= 𝛼T, with 𝛼 = 2.2 and 2.3.

consider that the trapped neutrinos exhibit a linear tem-
perature dependence (considering different astrophysical
scenarios as in Lugones & Grunfeld 2021). In this work,
this linear relation is specifically characterized by 𝜇𝜈e =
2.2 T, which constitutes the maximum possible value for
𝜇𝜈e that leads to hybrid EOS at T = 50 MeV, as it is shown
in Figure 4. Note that for the hadronic phase, at densi-
ties lower than nB ∼ 5.10−2 fm−3 (corresponding to P < 5
MeV.fm−3), G∕nB increases as nB decreases, but the transi-
tion is considered where the crossing occurs in the positive
slope region.

To rate and compare the obtained hybrid EOS with
astrophysical observational constraints (Abbott & e.
a 2018; Hebeler et al. 2013; Miller & e. a 2021), the
Tolman-Oppenheimer-Volkoff (TOV) equations for a
static nonrotating, spherical-symmetric star (Oppen-
heimer & Volkoff 1939; Tolman 1939) has to be solved. As
can be seen in fig. 7 of Contrera et al. (2022), the corre-
sponding EOS at T = 0 satisfies very well all the modern
observational constraints.

In Figure 5, the mass-radius relations for the hybrid
compact object configurations are presented. The
density-dependent DD2 model with a BPS EOS at lower
densities is used to represent the inner and outer star crusts
in the hadronic phase, while the QM model described ear-
lier stands for the inner core matter of the stars. The solid
dots in the lines indicate the Hadron-to-QM onsets. Three
distinct relevant temperatures are displayed, namely
T = 0, 25 and 50 MeV in orange, green, and blue lines,
respectively. Each considered value could be identified
with each of the following scenarios (see Lugones & Grun-
feld (2021)): (i) cold NS with extremely low temperatures
and no trapped neutrinos, (ii) proto-NS with intermediate
temperatures and nonzero quantity of trapped neutrinos,
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F I G U R E 5 Compact hybrid object configurations for 𝜅 = 0,
𝜇
𝜈e
= 2.2 T, T = 50, 25, 0 MeV.

and (iii) post-merger object that could reach relatively high
temperatures, with significant neutrino trapping amount.

Configurations featuring low radii and maximum
masses are clustered around 2.3M⊙, indicating a slight
decline with variations in T and 𝜇𝜈e . However, their corre-
sponding radii increase some kilometers with increasing
temperature. In addition, it can be observed that for the
highest T and𝜇𝜈e case (blue line), there is a region of unsta-
ble configurations (traced line in the plot), but two kinds of
stable configurations rise in the region of remarkable high
star mass and radius: with lower central densities, there is
no QM in the inner core, but beyond the Hadron-QM onset
(blue solid dot) there is a small region of stable configura-
tions with QM cores and, even though, high star mass and
radius values.

4 CONCLUSIONS

In this study, we adopt a nonlocal Nambu–Jona–Lasinio
(NJL) model incorporating a Gaussian form factor that
depends on the spatial components of the momentum
(3D-FF). Focusing on the T − 𝜇B plane, we explore several
aspects within the phase diagram. Initially, we hypothe-
size that the range of interactions in momentum space
may vary with temperature, enabling us to derive crit-
ical temperature values based on LQCD predictions.
The impact of this assumption for Λ(T) on the phase
diagram is notably significant in the low-density and
high-temperature region, aligning with expectations and
corresponding to the available LQCD results. Further-
more, we integrate our QM model into a hybrid frame-
work to examine the combined effects of temperature
and neutrino trapping in compact object configurations.

The hadronic phase is characterized by the DDRMF EOS
with DD2 parametrization, which accounts for tempera-
ture and neutrinos trapped within the system. The model’s
input parameters are selected to align with contempo-
rary multi-messenger observational data (as previously
introduced in Contrera et al. (2022) at zero temperature).
After conducting a thorough analysis of the QM phase
diagram, considering the interplay of trapped neutrinos
and temperature, we established both factors influence
the diagram. Our analysis assumes a linear relationship
between the neutrino chemical potential and temperature,
expressed as 𝜇𝜈e = 𝛼T. Our findings consistently indicate
the presence of hybrid configurations for temperatures up
to 50 MeV. However, with a slightly higher linear rela-
tionship denoted by an increased 𝛼 value, the hybrid con-
figurations disappear, giving rise to pure hadronic stellar
objects. While our results indicate that temperature and
neutrinos have a negligible impact on the maximum mass
of the hybrid configuration, we observe an expansion in
the radius of the ’hot’ compact object. Moreover, it can be
noted a substantial effect in the onset of hybrid star config-
urations with the combined influence of temperature and
trapped neutrinos. Finally, for the case of higher T and 𝜇𝜈e

(representing a post-merger scenario), it can be observed
as a region of high mass and radius stable compact objects,
with and without QM in their inner cores.

ACKNOWLEDGMENTS
This work has been partially funded by CONICET,
ANPCyT, and UNLP (Argentina) under Grants No. PIP
11220210100150CO, PICT19-00792, PICT20-01847, and
X960.

ORCID
G. A. Contrera https://orcid.org/0000-0002-5984-3454
A. G. Grunfeld https://orcid.org/0000-0002-6523-7469

REFERENCES
Abbott, B. P., et al. 2018, Phys. Rev. Lett., 121(16), 161101.
Abuki, H., Ciminale, M., Gatto, R., & Ruggieri, M. 2009, Phys. Rev. D,

79, 034021.
Ayriyan, A., Blaschke, D., Grunfeld, A., Alvarez-Castillo, D., Grigo-

rian, H., & Abgaryan, V. 2021, Eur. Phys. J. A, 57(11), 318.
Baym, G., Pethick, C., & Sutherland, P. 1971, Astrophys. J., 170, 299.
Blanquier, E. 2017, Eur. Phys. J. A, 53(6), 137.
Borsanyi, S., Fodor, Z., Guenther, J. N., et al. 2020, Phys. Rev. Lett.,

125(5), 052001.
Burgio, G., Schrock, M., Reinhardt, H., & Quandt, M. 2012, Phys.

Rev. D, 86, 014506.
Contrera, G., Blaschke, D., Carlomagno, J. P., Grunfeld, A., & Liebing,

S. 2022, Phys. Rev. C, 105(4), 045808.
Diakonov, D., & Oswald, M. 2004, Phys. Rev. D, 70, 105016.
Ding, H.-T., Karsch, F., & Mukherjee, S. 2015, Int. J. Mod. Phys. E,

24(10), 1530007.

 15213994, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asna.20230170 by U

N
L

P - U
niv N

acional de L
a Plata, W

iley O
nline L

ibrary on [22/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-5984-3454
https://orcid.org/0000-0002-5984-3454
https://orcid.org/0000-0002-6523-7469
https://orcid.org/0000-0002-6523-7469


CONTRERA et al. 7 of 7

Fukushima, K., & Hatsuda, T. 2011, Rept. Prog. Phys., 74, 014001.
Fukushima, K., & Skokov, V. 2017, Prog. Part. Nucl. Phys., 96, 154.
Gomez Dumm, D., Blaschke, D. B., Grunfeld, A. G., & Scoccola, N. N.

2008, Phys. Rev. D, 78, 114021.
Hatsuda, T., & Kunihiro, T. 1994, Phys. Rept., 247, 221.
Hebeler, K., Lattimer, J. M., Pethick, C. J., & Schwenk, A. 2013,

Astrophys. J., 773, 11.
Kapusta, J. I., & Gale, C. 2011, Finite-Temperature Field Theory: Prin-

ciples and Applications, Cambridge University Press (Cambridge,
UK).

Karsch, F. 2002, Nucl. Phys. A, 698, 199.
Karsch, F., & Laermann, E. 2004, in: Quark-Gluon Plasma 3, eds.

R. C. Hwa & X.- N. Wang, World Scientific (Singapore), 1.
Klevansky, S. P. 1992, Rev. Mod. Phys., 64, 64996708.
Lattimer, J. M., & Prakash, M. 2016, Phys. Rept., 621, 127.
Lugones, G., & Grunfeld, A. G. 2021, Phys. Rev. D, 104(10), L101301.
Malfatti, G., Orsaria, M. G., Contrera, G. A., Weber, F., &

Ranea-Sandoval, I. F. 2019, Phys. Rev. C, 100(1), 015803.
Miller, M. C., et al. 2021, Astrophys. J. Lett, 918(2), L28.
Nambu, Y., & Jona-Lasinio, G. 1961a, Phys. Rev., 122, 345.
Nambu, Y., & Jona-Lasinio, G. 1961b, Phys. Rev., 124, 246.
Oppenheimer, J. R., & Volkoff, G. M. 1939, Phys. Rev., 55, 374.
Page, D., & Reddy, S. 2006, Ann. Rev. Nucl. Part. Sci., 56, 327.
Pagura, V., Gomez Dumm, D., & Scoccola, N. N. 2012, Phys. Lett. B,

707, 76.

Polyakov, A. M. 1978, Phys. Lett. B, 72, 477.
Roessner, S., Ratti, C., & Weise, W. 2007, Phys. Rev. D, 75, 034007.
Tolman, R. C. 1939, Phys. Rev., 55, 364.
Typel, S. 2018, Particles, 1(1), 2.
Typel, S., & Wolter, H. H. 1999, Nucl. Phys., A656, 331.
Vogl, U., & Weise, W. 1991, Prog. Part. Nucl. Phys., 27, 195.

AUTHOR BIOGRAPHY

G. A. Contrera is a researcher at Instituto de Fisica La
Plata (IFLP), affiliated with CONICET and the Depart-
ment of Physics, Faculty of Exact Sciences, National
University of La Plata (UNLP). Additionally, the author
serves as an Adjunct Professor in the same Physics
Department.

How to cite this article: Contrera, G. A.,
Carlomagno, J. P., & Grunfeld, A. G. 2023,
Astron.Nachr., e20230170. https://doi.org/10.1002/
asna.20230170

 15213994, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/asna.20230170 by U

N
L

P - U
niv N

acional de L
a Plata, W

iley O
nline L

ibrary on [22/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/asna.20230170
https://doi.org/10.1002/asna.20230170
https://doi.org/10.1002/asna.20230170
https://doi.org/10.1002/asna.20230170

	Fulfilling modern astrophysical observations and lattice QCD constraints based on a nonlocal NJL model with 3D form factor 
	1 INTRODUCTION
	2 FORMALISM AND NUMERICAL RESULTS
	3 ASTROPHYSICAL APPLICATIONS
	4 CONCLUSIONS

	ACKNOWLEDGMENTS
	ORCID
	REFERENCES
	AUTHOR BIOGRAPHY

