

pubs.acs.org/joc Article

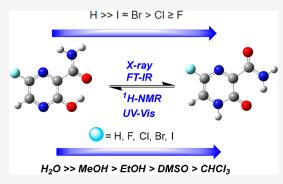
1 Tautomerism and Rotamerism of Favipiravir and Halogenated 2 Analogues in Solution and in the Solid State

3 Angel H. Romero,* Germán Fuentes, Leopoldo Suescun, Oscar Piro, Gustavo Echeverría,

4 Lourdes Gotopo, Horacio Pezaroglo, Guzmán Alvarez, Gustavo Cabrera, Hugo Cerecetto,

s and Marcos Couto*

Cite This: https://doi.org/10.1021/acs.joc.3c00777


ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

6 ABSTRACT: Favipiravir is an important selective antiviral against RNA-7 based viruses, and currently, it is being repurposed as a potential drug for the 8 treatment of COVID-19. This type of chemical system presents different 9 carboxamide-rotameric and hydroxyl-tautomeric states, which could be 10 essential for interpreting its selective antiviral activity. Herein, the tautomeric 11 3-hydroxypyrazine/3-pyrazinone pair of favipiravir and its 6-substituted 12 analogues, 6-Cl, 6-Br, 6-I, and 6-H, were fully investigated in solution and in 13 the solid state through ultraviolet-visible, ¹H nuclear magnetic resonance, 14 infrared spectroscopy, and X-ray diffraction techniques. Also, a study of the 15 gas phase was performed using density functional theory calculations. In 16 general, the keto-enol balance in these 3-hydroxy-2-pyrazinecarboxamides is 17 finely modulated by external and internal electrical variations via changes in

18 solvent polarity or by replacement of substituents at position 6. The enol tautomer was prevalent in an apolar environment, whereas 19 an increase in the level of the keto tautomer was favored by an increase in solvent polarity and, even moreso, with a strong hydrogen-20 donor solvent. Keto tautomerization was favored either in solution or in the solid state with a decrease in 6-substituent 21 electronegativity as follows: $H \gg I \approx Br > Cl \geq F$. Specific rotameric states based on carboxamide, "cisoide" and "transoide", were 22 identified for the enol and keto tautomer, respectively; their rotamerism is dependent on the tautomerism and not the aggregation

1. INTRODUCTION

24 Keto-enol tautomerism is one of the most important $_{25}$ equilibria in nature, being involved in a variety of chemical $_{26}$ and biological processes. $^{1-6}$ It is operative in nucleic acid 27 bases, amino acids, and a great number of biochemical 28 processes that are dependent on proton-transfer reactions. For 29 example, it is supposed that the high level of histidine in active 30 sites of diverse types of enzymes may be associated with the 31 tautomerism of the NH proton into the imidazole ring, which 32 favors proton transfer in catalytic steps. ^{7,8} Also, the canonical 33 keto-amino forms of DNA nucleobases play a pivotal role in 34 the formation of Watson-Crick base pairing structure via 35 intermolecular hydrogen bonding. 9-11 The latter also plays an 36 important role in the design of anticancer and antiviral chemotherapeutic agents based upon the lethal mutagenesis 38 concept; regardless of whether a sufficient number of 39 mutagenic nucleoside analogues are incorporated into viral 40 genomes, an increase in the rate of viral mutation occurs with 41 an affinity for viral replication. 12-21 Meanwhile, rotamerism, 42 which is a concept that is less common than tautomerism, is 43 known to play an important role in the stabilization of peptide 44 and protein structures. 22,23

Favipiravir [1, T705 (X = F in Chart 1)] is a 3-hydroxy-2- 45 cl pyrazinecarboxamide with a fluorine atom at position 6. Its 46

Chart 1. Keto-Enol Tautomeric Equilibrium in 3-Hydroxy-2-pyrazinecarboxamide

structure is defined by the tautomeric 3-hydroxypyrazine/3-47 pyrazinone (3HP/3OP) pair, where a hydrogen atom is 48 transferred between the N and O sites of the pyrazine ring, as 49 depicted in Chart 1. Also, favipiravir shows rotamerism derived 50 from the free rotation of the 2-carboxamide group. Favipiravir 51

Received: April 9, 2023

52 has shown to be a potent antiviral against a broad spectrum of 53 RNA viruses such as influenza viruses (types A–C), 24 H5N1 54 virus, 25 hepatotropic phlebovirus, 26 West Nile virus, 27 Norwalk 55 virus (norovirus), 28 encephalitis viruses, 29 arenaviruses, 30 bunyavirus, 31 and Ebola virus. 32 Since the origin of the 57 SARS-CoV-2 pandemic 2019 and in the absence of vaccines in 58 the first year of the pandemic, this drug emerged as an 59 attractive chemotherapeutic alternative, being extensively 60 investigated in clinical trials and applied as medication in 61 Rusia, China, and India. 33-35 Favipiravir was approved in India 62 for COVID-19 treatment, 36 and in general, the drug has 63 demonstrated to be effective for patients with moderate 64 symptoms of COVID-19. Turrently, favipiravir is being 65 repurposed for the treatment of COVID-19.

With regard to the origin of the antiviral activity of 67 favipiravir, it is suggested as a guanine/adenine analogue that 68 the (3HP/3OP) tautomerism and carboxamide rotamerism are 69 pivotal issues in its selective antiviral activity. Favipiravir acts as 70 a prodrug where its corresponding active T705-ribonucleotide 71 is responsible for the blocking of the RNA replication in RNA 72 viruses via selective inhibition of the RNA polymerase. 41 That 73 prodrug metabolite is formed through a nucleophilic 74 substitution between the tautomeric NH nitrogen of favipiravir 75 and the anomeric carbon of the furanose heterocycle, which 76 could be favored by the presence of the keto tautomer. A 77 recent study showed that 3-hydroxy-2-pyrazinecarboxamide (T-1105), the 6-hydrogenated analogue of favipiravir, dis-79 played antiviral activities against influenza virus and foot-and-80 mouth disease virus on a scale comparable to that of favipiravir, 81 but interestingly, treatment with T-1105 generated a significant 82 proportion of the T-1105-ribonucleotide metabolite, which 83 was larger than the proportions generated from T-705. 42 The 84 latter implies that T-1105 is more reactive than T-705, which 85 could be attributed to the tentative dominance of the keto 86 tautomer in 6-hydrogenated T-1105. On the contrary, 87 molecular dynamics studies of favipiravir and its halogenated 88 derivatives (6-Cl and 6-Br) on the RNA polymerase enzyme 89 showed that the relative affinities of the keto tautomer of all 90 halogenated derivatives for the RNA polymerase active site are 91 barely higher than those found for the corresponding enol 92 tautomers. 43 The effect of the halogen also was important, 93 indicating that the enzyme affinities increase as a function of 94 the halogen at position 6 in the following order: 6-Br \sim 6-Cl >95 6-F. Then, understanding the keto-enol equilibrium in the 6-96 hydrogenated and -halogenated 3-hydroxy-2-pyrazinecarbox-97 amides can be of great importance for directing the rational 98 design of antiviral drugs, including those for treatment of 99 COVID-19, based on the role of tautomerism/rotamerism as 100 well as for interpreting the biological activity of some of their 101 derivatives (e.g., favipiravir, 3-hydroxy-2-pyrazinecarboxamide, 102 or a 6-brominated analogue).42

At the moment, there is scarce information relative to the 104 tautomerism and rotamerism of favipiravir and its 6-substituted 105 analogues. Recently, Antonov studied the tautomerism of 106 favipiravir in solution (acetonitrile, toluene, and water) from 107 theoretical and experimental points of view, finding that keto 108 tautomerization is favored in a protic environment like water 109 whereas the enol tautomerism is preferred in an aprotic solvent 110 like acetonitrile and toluene. Haso, Antonov studied 111 theoretically the tautomerism of the 6-hydrogenated analogue 112 [X = H (Chart 1)] using the M06-2X/def2TZVP approach in 113 solution and in the gas phase, finding that this 3-hydroxy-2-114 pyrazinecarboxamide has a stronger tendency toward keto

tautomerism than does favipiravir. 44b Meanwhile, Safin and 115 Srimongkolpithak separately reported the crystal structure of 116 favipiravir, showing the dominance of the enol tautomer in the 117 solid state. 44c,d Other theoretical studies have provided 118 information about the tautomerism of favipiravir and its 6- 119 substituted analogues, finding that the keto tautomer may be 120 favored in protic and polar environments. 44e,f Beyond the 3- 121 hydroxy-2-pyrazinecarboxamides, other hydroxypyrazines tend 122 to favor the keto tautomer in a protic solvent, 45 although the 123 tautomeric equilibrium is slightly shifted toward the enol form 124 in moderately polar and nonpolar environments. 46 It was also 125 found that enol tautomerization in the hydroxypyrazines can 126 be modulated by the incorporation of an electron-deficient 127 substituent into the pyrazine ring. For example, from 128 ultraviolet (UV) spectroscopy studies, the 2,6-dihydroxy-3,5- 129 diphenylpyrazine was found as 6-hydroxy-3,5-diphenylpyrazin- 130 2-one (keto tautomer) in a protic solution, whereas its 6-131 chlorinated analogue, 2-chloro-6-hydroxy-3,5-diphenylpyra- 132 zine, was prevalently found as the enol tautomer. 45b Despite 133 the advances in the study of favipiravir, a more detailed study 134 of favipiravir and its 6-substituted analogues is needed to 135 provide a general vision of the factors governing tautomerism 136 and rotamerism in this type of 3-hydroxy-2-pyrazinecarbox- 137 amide. It could be useful for the rational design of antivirals 138 and for interpreting the selective antivirals of these analogues. 139 Herein, we investigate the tautomerism and rotamerim of 140 favipiravir and its 6-hydrogenated and -halogenated 3-hydroxy- 141 2-pyrazinecarboxamides either in the solid state or in solution 142 through ultraviolet-visible (UV-vis)/nuclear magnetic reso- 143 nance (NMR) spectroscopic studies and X-ray crystallogra- 144 phy/Fourier transform infrared (FTIR) spectroscopic analysis, 145 respectively. The main goal is to understand how the internal 146 and external electronic influence may modulate the tautomeric 147 and rotameric states of the 6-substituted 3-hydroxy-2-148 pyrazinecarboxamides, seeking to understand how keto 149 tautomerization may be favored. The internal influence was 150 studied by the incorporation of different groups with a varied 151 electronic nature (F, Cl, Br, I, and H) at position 6 of the 152 pyrazine ring, whereas the external influence was studied by 153 changes in the polarity of the solvent. To complement, a 154 conformational theoretical study in the gas phase was 155 performed to interpret the relative thermodynamic stability 156 of tautomers and to understand the factors that govern the 157 tautomeric equilibrium.

2. RESULTS AND DISCUSSION

2.1. Chemical Synthesis. This tautomeric and rotameric 159 study was focused on five 3-hydroxy-2-pyrazinecarboxamides 160 functionalized at position 6 with halogens (F, Cl, Br, and I) 161 and a hydrogen atom (H). The corresponding fluorine (1a) 162 and chlorine (1b) derivatives were purchased from commercial 163 sources, whereas the rest of the 3-hydroxy-2-pyrazinecarbox- 164 amides (1c-e) were prepared from reported strategies with a 165 few modifications as depicted in Scheme 1A. Compound 1e 166 s1 was prepared by condensing the 2-aminomalonodiamide with 167 glyoxal (60%).⁴⁷ Meanwhile, 1c and 1d were prepared by 168 halogenation of **1e** with NBS⁴⁸ and NIS,⁴⁹ respectively, in 169 DMF upon controlled heating (80 °C). With 3-hydroxy-2- 170 pyrazinecarboxamides 1a-e in hand, their O-alkylated forms 171 (2a-e, respectively) were synthesized by coupling the 172 corresponding 3-hydroxy-2-pyrazinecarboxamides (1a-e) 173 with an excess of n-pentyl iodide under heating (Scheme 174 1B). Compounds 2a-e were prepared for the purpose of 175

Scheme 1. Synthetic Strategies for the Preparation of (A) 3-Hydroxy-2-pyrazinecarboxamides 1a-c and (B) Their O-Alkylated Analogues 2a-e^a

^aReaction conditions: (a) H_3PO_4 (20%), concentrated HCl, 80 °C, 2 h; (b) NBS (1.6 equiv), DMF, 80 °C, 6 h; (c) NIS (1.6 equiv), DMF, 80 °C, 6 h; (d) *n*-pentyl iodide (5-10 equiv), 100 °C, 12 h.

176 comparison as a structural version of the enol tautomers of 177 compounds 1a-e. It was useful for characterizing either the 178 absorption profile of the enol tautomer of compounds 1a-e in 179 the UV-vis spectra or the typical vibrational band of the enol tautomer in IR spectra. Also, these alkylated compounds were 181 useful for analyzing the rotamerism in this type of structure. All 182 compounds, 1a-e and 2a-e, were characterized through 183 NMR and IR spectroscopy and analysis of X-ray diffraction.

2.2. Theoretical Tautomeric and Rotameric States. To provide a general vision of the tautomeric and rotameric states preferences of 3-hydroxy-2-pyrazinecarboxamides 1a-e, a theoretical study of their optimized structures was performed the gas phase using the M06-2X functional in combination with the def2TZVP basis set. Alternatively, the B3LYP/6-190 31G(d,p) approach was employed. To analyze the tautomerism, the total energies of the keto and enol tautomers of each of the five derivatives were obtained. From calculations, the enol tautomer was recognized as the most stable tautomer parameter of all studied 3-hydroxy-2-pyrazinecarboxamides 1a-e, exhibiting negative energy differences for the keto-enol equilibrium calculated from M06-2X/def2TZVP (Table 1).

the electronic nature of the 6-substitution, revealing a 198 consistent decrease in the magnitude of the calculated energy 199 difference for the keto-enol equilibrium (more negative) in 200 the following order as a function of 6-functionalization: 6-F > 201 6-Cl > 6-Br > 6-I > 6-H. Interestingly, it was found that each 202 tautomeric form presented a specific rotameric carboxamide 203 configuration. The enol tautomer was characterized by having 204 a "cisoide" rotameric carboxamide moiety with respect to the 205 3-hydroxyl moiety, which implies the 3-oxo/hydroxyl moiety in 206 front of the 2-carboxamide oxygen that is stabilized by an 207 intramolecular hydrogen bond between the hydroxyl hydrogen 208 and the carboxamide oxygen (-O-H-O=C-NH2-), as 209 depicted in Table 1. Meanwhile the keto tautomer showed 210 a"transoide" conformation for the 2-carboxamide moiety, 211 where the 3-oxo/hydroxyl moiety is in an opposite orientation 212 to the 2-carboxamide oxygen and the rotameric stage is 213 stabilized by an intramolecular hydrogen bond between the 3- 214 oxopyrazine moiety and one of the carboxamide NH2 protons 215 (-C=O-H-NH-CO-), as depicted in Table 1. On the 216 contrary, a similar tendency was found via the B3LYP/6-217 31G(d,p) approach with a small deviation in the tendency for 218 the 6-iodo derivative, **1e** (Table 1).

To obtain more information about the carboxamide 220 rotamerism, a conformational analysis was performed on 6- 221 fluoro-3-hydroxy-2-pyrazinecarboxamide 1a as the platform 222 model. The conformational analysis for the enol tautomer was 223 focused on structures having a rotating hydroxyl moiety with a 224 "cisoide" (Figure 1A) or "transoide" carboxamide, whereas the 225 f1 keto tautomer was focused on structures having only a rotating 226 carboxamide moiety (Figure 1C). 55-58 Within the enol 227 tautomer, there are four preferential conformational forms: 228 E A, E B, E C, and E D (Figure 1D). Among them, enol 229 tautomer E A ("cisoide" carboxamide) was identified as the 230 most stable enolic conformer, followed by conformer E C 231 ("transoide" carboxamide) ($\Delta E = 2.0 \text{ kcal/mol}$) and least 232 stable conformers E B ($\Delta E = 5.9 \text{ kcal/mol}$) and E D ($\Delta E = 233$ 5.9 kcal/mol). Among the "cisoide" rotameric states (E A and 234 E B) of the enol tautomer, it should be noted that the 235 existence of an intramolecular hydrogen bond between the 236 carboxamide oxygen and the hydroxylic hydrogen (-O-H- 237 O=C-NH₂-) stabilized the enol tautomer in E A. Mean- 238 while, among the "transoide" rotameric states of the enol 239 tautomer, the stabilization via hydrogen bonding between one 240

Table 1. Relative Stabilities of the Most Stable Enol and Keto Tautomers of 3-Hydroxy-2-pyrazinecarboxamides 1a-e in the Gas Phase

$E_{\rm tot} \left({ m kcal/mol} \right)^a$					
entry	compound (X)	enol	keto	$\Delta E_{\text{keto-enol}}^{b}$ (kcal/mol)	$\Delta E_{ m keto-enol}^{c}$ (kcal/mol)
1	1a (F)	-381226.8	-381213.4	-13.37	-12.60
2	1b (Cl)	-607344.4	-607331.8	-12.63	-11.94
3	1c (Br)	-1933875.0	-1933862.4	-12.54	-11.74
4	1d (I)	-505330.2	-505318.0	-12.16	-12.03
5	1e (H)	-318943.7	-318933.4	-10.26	-9.62

"Calculations derived from M06-2X/def2TZVP. Energy differences derived from M06-2X/def2TZVP. Energy differences derived from B3LYP/6-31G(d,p). Individual total energies for enol and keto tautomers for 1a—e can be found in Table ST2.

The Journal of Organic Chemistry

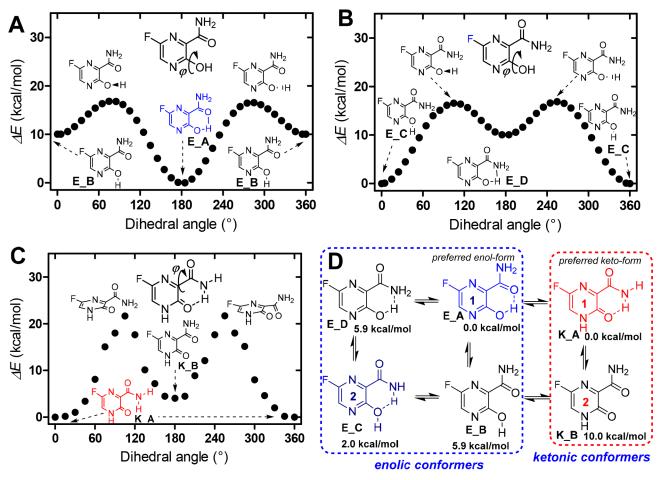


Figure 1. Conformational analysis of (A and B) enol and (C) keto tautomers of favipiravir relative to the dihedral angle between the pyrazine ring plane and the rotating carboxamide/hydroxyl moieties. (D) General scheme of the most stable enol and keto tautomers of favipiravir. Note that the energies of the enol tautomers $(E_B, E_C, \text{ and } E_D)$ and the keto tautomer (K_B) are indicated as a function of the most stable enol tautomer (E_A) , respectively, as differences in energies. Conformational energies were determined via the M06-2X/def2TZVP approach.

241 of the carboxamide NH₂ protons and the hydroxylic oxygen 242 (O=C-NH-H-O-H) in conformer E C is more favorable 243 than that established between the carboxamide nitrogen and 244 hydroxylic proton $[O=C(H_2N)-H-O-]$ in conformer E-D. 245 With regard to the keto tautomer, the computed energies of 246 the different conformers confirmed that the K A tautomer was clearly the most preferred conformer, whereas the K B tautomer was recognized as the second most stable conformer with an energy difference of 10.0 kcal/mol (Figure 1D). Tautomer K A was characterized by a "transoide" conformation featuring intramolecular hydrogen bonding between one of the carboxamide NH₂ protons and the 3-oxo moiety. Conformers of the keto tautomers having the 2-carboxamide oriented out of the molecular pyrazine plane were identified as the most energetic conformers (less stable) by >18.8 kcal/mol (Figure 1C). Like the ketonic conformers, enolic conformers 257 having hydroxyl or carboxamide groups out of the molecular 258 plane displayed the highest total energies (6.3-12.6 kcal/mol 259 over tautomer K A) (Figure 1A,B). All of these tendencies found for the enol or keto tautomers of favipiravir are expected to be similar for the rest of the studied 3-hydroxy-2-262 pyrazinecarboxamides 1b-e and could be the dominant 263 tendency in solution and in the solid state.

264 2.3. Tautomerism and Rotamerism in the Solid State.
 265 To gain insight into the tautomeric and rotameric forms of the

3-hydroxy-2-pyrazinecarboxamides 1a-e in the solid state, X- 266 ray crystallographic and infrared spectroscopic analyses were 267 performed. Beginning with the X-ray diffraction analysis, the 268 crystal structures of all studied 3-hydroxy-2-pyrazinecarbox- 269 amides 1a-e and some of their 3-O-alkylated analogues (2b-270) d) were determined. ORTEP structures are shown in Figures 271 f2 2A-E and 3A-C for compounds 1a-e and 2b-d, 272 f2f3 respectively. From 3-hydroxy-2-pyrazinecarboxamides 1a-e, 273 their crystal structure allowed us to identify the dominant 274 tautomer in the solid state, which provided us a general 275 perspective of keto-enol tautomerism for each of the 3-276 hydroxy-2-pyrazinecarboxamides 1a-e. For compounds 1a 277 and 1b, only the enol tautomer was distinguished from their 278 crystalline structures (panels A and B, respectively, of Figure 279 2). That enol tautomer showed a "cisoide" conformation for 280 the 2-carboxamide moiety with the formation of an 281 intermolecular hydrogen bond between the 3-hydroxylic 282 proton and the carboxamide oxygen (3-O-H-O=C-NH₂). 283 This H-bond was also described in the gas phase studies for 284 the enol tautomer (Figure 1A). Meanwhile, a keto/enol 285 mixture was found for the 6-bromo (1c) and 6-iodo (1d) 3- 286 hydroxy-2-pyrazinecarboxamides with a keto-enol distribution 287 in the solid state of 1:2 for the 6-bromo molecule and 2:1 for 288 the 6-iodo molecule (Figure 3A,B). Importantly, their keto 289 tautomers exhibited a common rotameric state with a 290

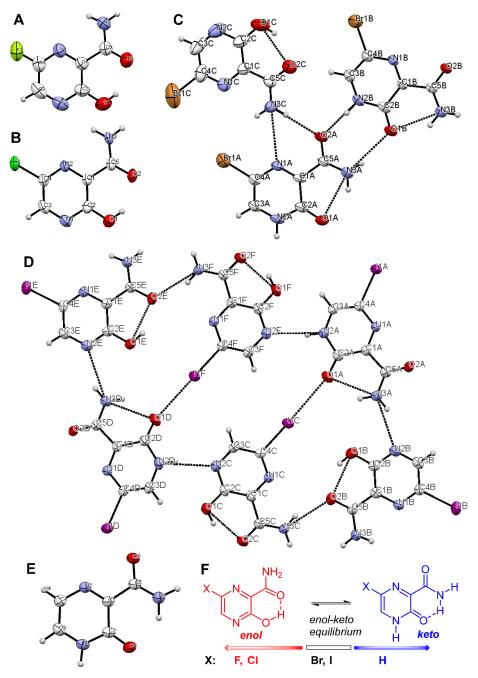


Figure 2. Tautomers and rotamers identified in the solid state for the studied 3-hydroxy-2-pyrazinecarboxamides (A) 1a, (B) 1b, (C) 1c, (D) 1d, and (E) 1e: white for carbon, blue for nitrogen, gray for hydrogen, light green for fluorine, green for chlorine, light brown for bromine, and purple for iodine. (F) General dependence of tautomerism as a function of the 6-substitution. ORTEP drawings of compounds 1a-e showing thermal ellipsoids at the 50% probability level.

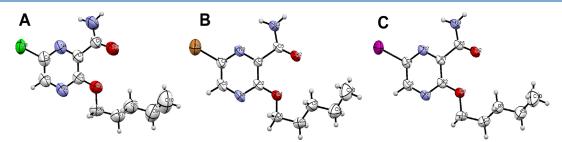


Figure 3. Crystal structures of 3-O-alkylated analogues (A) 2b, (B) 2c, and (C) 2d. ORTEP drawings of compounds 2b-d showing thermal ellipsoids at the 50% probability level.

able	'able 2. Infrared Bands [in cm ⁻¹ (intensities in parentheses)] for Tautomeric 3-Hydroxy-2-pyrazinecarboxamides 1a—e and Their 3-O-Alkylated Analogues 2a—e	ntensities in F	oarentheses)]	for Tautomeri	c 3-Hydroxy-2	2-pyrazinecarl	boxamides 1a-	-e and Their	3-O-Alkylated	l Analogues 2	a–e
			z z x	NH N	Z-I O Z ZI	×	N N O O O O O O O O O O O O O O O O O O				
	vibrational band	2a	la	2b	1b	2c	lc	2d	14	2e	1e
-	$N-H \ \nu_s$	3390 (19)	3349 (10)	3464 (15)	3343 (16)	3462 (20)	3426 (14)	3462 (18)	3432 (8)	3360 (18)	3352 (12)
	$N-H u_{as}$	3364 (19)								3302 (10)	broad
7	N-H ν_{s} , N-H ν_{as} , or O-H ν_{s}	3224 (11)	3214 (17)	3260 (6)	3271 (13)	3275 (11)	3273 (12)	$\sim 3200 (18)$	3223 (8)	3182 (14)	$\sim 3150 (8)$
		$\sim 3190 (10)$		$\sim 3150 (8)$	3206 (19)	~3200 (15)	3225 (14)	$\sim 3150 (10)$		3131 (12)	$\sim 3100 (8)$
				$\sim 3100 (10)$		3138 (17)	3142 (12)				
3	$C-H \nu_s$	2955 (21)	2972 (12)	2951 (12)	2931 (12)	2968 (17)	2969 (11)	2949 (20)	2982 (7)	2957 (18)	2980 (16)
	$C-H u_{as}$	2931 (12)	2853 (8)	2930 (12)	2889 (11)	2951 (19)	2951 (11)	2920 (19)		2891 (10)	2937 (14)
		2850 (9)		2850 (8)		2895 (17)	2855 (10)	2852 (14)			
4	$C=O_{(1)} \nu_s$	1679 (63)	1670 (37)	1705 (25)	1669 (47)	1703 (34)	1682 (22)	1703 (33)	1674 (12)	1659 (45)	1684 (23)
	$C=O_{(II)} \nu_s$	1613 (21)	1653 (33)			1645 (18)	1645 (25)	1668 (28)	1636 (14)	1645 (45)	1650 (25)
								1635 (23)			1645 (28)
s	$C=N \nu_s$	1613 (21)	1600 (22)	1589 (13)	1604 (30)	1589 (20)	1593 (23)	1587 (17)	1593 (12)	1622 (45)	1585 (22)
	$C = C \nu_s$	1559 (25)	1558 (20)	1540 (8)	1532 (18)	1546 (15)	1558 (23)	1539 (14)	1558 (16)	1568 (21)	1541 (20)
	$C = C \nu_{as}$			1518 (8)		1525 (16)		1519 (13)		1533 (25)	
9	N−H δ	1430 (64)	1465 (19)	1470 (16)	1470 (48)	1470 (26)	1460 (37)	1467 (19)	1429 (22)	1465 (18)	1445 (17)
			1430 (50)	1433 (25)				1429 (27)		1435 (44)	

The Journal of Organic Chemistry

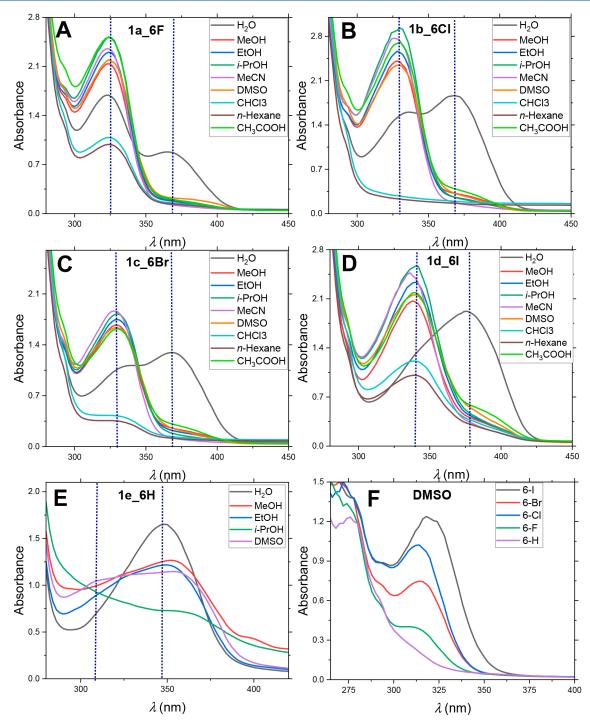


Figure 4. UV—vis spectra of 3-hydroxy-2-pyrazinecarboxamides 1a—e in different environments (A—E, respectively) and O-pentyl derivatives under DMSO (F). Further UV—vis spectra for O-pentyl derivatives in different solvents can be found in Figure S14.

²⁹¹ "transoide" 2-carboxamide conformation showing an intra²⁹² molecular hydrogen bond between one of the carboxamide
²⁹³ NH₂ protons and the 3-oxo oxygen (-CONH-H-O=C-),
²⁹⁴ whereas their enol tautomers showed a "cisoide" rotameric
²⁹⁵ conformation. With regard to 6-bromo derivative 1c, the three
²⁹⁶ symmetry-independent tautomers were connected through five
²⁹⁷ intermolecular hydrogen bonds. (i) Two of these hydrogen
²⁹⁸ interactions connect two keto tautomers through the NH
²⁹⁹ pyrazine proton and the 3-oxo moiety of one of them with the
³⁰⁰ carboxamide oxygen and carboxamide NH₂ proton, respec³⁰¹ tively, of the other keto tautomer. (ii) The other two hydrogen

bonding interactions connect an enol tautomer through its 2- 302 carboxamide NH₂ protons with the pyrazine N1 and 303 carboxamide oxygen of one of the keto tautomers. (iii) The 304 last intermolecular bonding connects an enol tautomer through 305 its carboxamide oxygen with the C–H aromatic proton of one 306 of the keto tautomers as depicted in Figure 2C. Meanwhile, the 307 crystal structure of compound 1d was determined to be a 308 cyclic hexamer (two keto tautomers vs four enol tautomers), 309 which was stabilized by eight intermolecular hydrogen bonding 310 interactions. Each keto tautomer interacts simultaneously with 311 three enol tautomers, forming two hydrogen bonds through its 312

Table 3. UV-Vis Absorption Bands for 3-Hydroxy-2-pyrazinecarboxamides 1a-e in Different Solvents

$$\begin{picture}(20,10) \put(0,0){\line(1,0){16}} \put(0,$$

	$\lambda_{ m abs} \ (m nm) \ (m enol:keto \ ratio)^a$								
	gas phase ^b	H_2O	MeOH	EtOH	i-PrOH	MeCN	DMSO	n-hexane	acetic acid
1a	280.0/320.4	322/366 (1.9)	324/370 (12.4)	324/370 (13.1)	324/370 (13.0)	324/370 (19.6)	324/372 (10.1)	324	324
1b	282.0/321.6	336/368 (0.83)	328/368 (7.5)	328/370 (10.2)	330/370 (11.8)	326/370 (16.8)	330/372 (8.7)	328	330
1c	308.6/341.1	340/370 (0.77)	330/372 (5.0)	330/372 (8.4)	330/372 (11.0)	328/370 (17.4)	330/370 (7.1)	328	330
1d	304.6/347.1	344/376 (0.71)	338/372 (4.3)	340/376 (5.1)	340/376 (5.1)	338/378 (7.3)	340/380 (4.1)	340	340
1e	270.4/297.8	310/348 (0.0)	312/346 (1.2)	_ ^c	_ ^c	302/348 (4.8)	308/356 (1.9)	_ ^c	344

"The enol:keto ratio was estimated from a mean between the total areas of the absorption enol (lower band) and keto (higher band) wavelengths as follows: $A_{\text{enol}}/A_{\text{keto}}$. Theoretical absorption wavelengths calculated in the gas phase [B3LYP/6-31G(d,p)]. No measurement by low solubility.

313 pyrazine NH proton and one of their carboxamide NH₂ 314 protons with pyrazine N4 of two enol tautomers, and the 315 interaction with the third enol tautomer is a halogen bond 316 between its iodine atom as the σ -hole and the carboxamide 317 oxygen of the enol tautomer as the electron donor. This 318 implies six intermolecular interactions. The other two 319 interactions were derived from two pairs of enol tautomers, 320 where each pair consisted of hydrogen bonds between one of 321 the carboxamide NH₂ protons of one of the enol tautomers 322 and the carboxamide oxygen of the other enol tautomer. With 323 regard to 3-hydroxy-2-pyrazinecarboxamide 1e, its crystal 324 structure is constituted purely by the keto tautomer. That 325 keto tautomer showed a specific "transoide" carboxamide 326 conformation as described above. Further X-ray details such as 327 the packing rearrangement, intermolecular interactions, and 328 general crystallographic data can be found in Figures S1-S5 329 and Tables S1-S51.

To gain further insight into the rotamerism of this type of 331 structure, we analyzed the rotamerism in the solid state of 332 some of their 3-O-alkylated analogues (2b-d), which is the 333 closest version of the enol tautomer of compounds 1a-e. 334 From the X-ray data, all three 3-O-alkylated analogues showed 335 a "cisoide" rotameric carboxamide (Figure 3A-C). That 336 rotameric disposition is similar to that found for the enol 337 tautomer of compounds 1a-e, which reflects the fact that the 338 carboxamide rotamerism in this type of chemical structure is a 339 chemical property more dependent on the tautomerism than 340 on internal electronic changes in the pyrazine ring. Further 341 crystallographic information and the typical crystal packing 342 rearrangement can be found in Figures S6-S8.

To complement the analysis in the solid state, the vibrational 344 bands of 3-hydroxy-2-pyrazinecarboxamides 1a-e and their O-345 alkylated analogues 2a-e were analyzed from IR spectra. IR 346 spectra and a summary of the data can be found in Figures S9— 347 S13 and Table 2, respectively. The IR spectra of compounds 348 2a-e allowed us to obtain an approximation of the typical 349 vibrational bands of the enol tautomers of compounds 1a-e. 350 In general, from 3-O-alkylated analogues, it should be noted 351 that compounds 2a and 2b showed similar vibrational bands (in magnitude and relative intensity) compared to those of 353 their hydroxyl analogues 1a and 1b, respectively, which 354 supports the idea that these 3-hydroxy-2-pyrazinecarboxamides 355 are predominantly enolic tautomers in the solid state (see 356 entries 4 and 5 of Table 2). In addition, a higher intensity for 357 the IR band in the 3200 cm⁻¹ region in compounds 1a and 1b 358 compared to that region of their 3-O-alkylated analogues also

supports the existence of the enol tautomer because the 359 stretching vibration of the H-O bond increases the relative 360 intensity of the IR band at 3200 cm⁻¹. Meanwhile, for 361 compounds 1c-e, appreciable differences compared to their 362 O-alkylated analogues were observed for the 1700-1620 cm⁻¹ 363 (C=O stretching) or 1600-1500 cm⁻¹ (C=N and C=C 364 stretching) region. In these IR regions, 3-O-alkylated analogues 365 2c-e were characterized by a unique IR band at 1700 cm⁻¹ 366 concerning the typical C=O stretching as well as a pair of IR 367 bands at 1590-1570 and 1560-1530 cm⁻¹ with a relatively 368 higher abundance from 1.3- to 1.8-fold for the first one. In 369 contrast, for compounds 1c-e, the following observations were 370 made: (i) a new IR band in the 1700-1620 cm⁻¹ zone having 371 two IR bands at 1680 and 1640 cm⁻¹ of comparable 372 abundances and (ii) a comparable abundance between their 373 two IR bands at 1600-1500 cm⁻¹, the IR band at 1560-1530 374 cm⁻¹ being barely more abundant than the IR band at 1590- 375 1560 cm⁻¹ in some cases. Another important difference found 376 for compounds 1c-e in contrast to their 3-O-alkylated 377 analogues was a significant reduction of the 3220 cm⁻¹ band. 378 All of these mentioned features supported the idea that 379 compounds 1c-e are mainly in their keto tautomeric forms or 380 exist as an enol/keto mixture with the keto tautomer being 381 slightly dominant in one case, i.e., compound 1e. Finally, a 382 comparison among compounds 1a-e in the IR region near 383 3400 cm⁻¹ and near 3200 cm⁻¹ showed that the intensity of 384 the IR band at 3200 cm⁻¹ was higher than that of the IR band 385 at 3340-3460 cm⁻¹ for compounds 1a and 1b, while a more 386 equivalent proportion between the mentioned IR bands was 387 found for compounds 1c and 1d. Meanwhile, compound 1e 388 displayed an IR band at 3352 cm⁻¹ with an intensity that was 389 higher than that of the almost unappreciable IR band at 3150 390 cm⁻¹. All of this evidence, assuming that the IR band at 3200 391 cm⁻¹ corresponds in part to the stretching of the H-O bond, 392 supports the idea that compounds 1a and 1b are found 393 preferentially in the enol form, compounds 1c and 1d are 394 found as a clear enol/keto mixture, and compound 1e is found 395 predominantly or purely in the keto form.

2.4. Tautomeric Structures in Solution. The tautomeric 397 equilibrium of 3-hydroxy-2-pyrazinecarboxamides **1a–e** was 398 initially investigated through UV—vis spectroscopy using 399 various solvents. From UV—vis spectra, two absorption 400 bands were distinguished from a fresh solution of 3-hydroxy-401 2-pyrazinecarboxamides **1a–e** (Figure 4). In general, halo-402 f4 genated pyrazines **1a–d** exhibited two absorption bands at 403 322—340 and 370—376 nm, whereas nonhalogenated pyrazine 404

Table 4. UV-Vis Absorption Bands for 3-O-Pentyl-2-pyrazinecarboxamides 2a-e in Different Solvents

			$\lambda_{ m abs}$	(nm)	
entry	compound	H ₂ O	MeOH	MeCN	DMSO
1	2a	316	312	310	308
2	2b	322	316	316	314
3	2c	322	318	316	314
4	2d	330	322	318	318
5	2e	278	278	276	274

405 1e displayed minor absorption bands at 300-312 and 346-406 356 nm (Table 3). In an effort to associate each absorption 407 band to each tautomeric form (enol or keto tautomer) of the 408 3-hydroxy-2-pyrazinecarboxamides, first, we analyzed the UV 409 spectra of their 3-O-alkylated derivatives 2a-e to obtain an 410 approximation of the absorption band of the enol forms of 1a-411 e (Table 4). From the UV-vis spectra of 3-O-alkylated 412 analogues 2a-e, a unique absorption band was found for all O-413 alkylated derivatives 2a-e with absorption values from 308 to 414 330 nm for halogenated compounds 2a-d and from 274 to 415 278 nm for nonhalogenated derivative 2e. These absorption 416 bands are comparable in magnitude to the lowest absorption 417 bands found for compounds 1a-e, which suggests that the 418 typical lowest absorption found for 3-hydroxy-2-pyrazinecar-419 boxamides 1a-e is associated with the enol tautomer, whereas 420 the largest values can be attributed to the keto tautomer. To 421 support the assignment further, a theoretical absorption study 422 using the B3LYP/6-31G(d,p) approach was performed in the 423 gas phase for the keto and enol forms of derivatives 1a-e. 424 From the optimized structures, the enol tautomers presented 425 the lowest absorption bands with values ranging from 279 to 426 309 nm, whereas the keto tautomers displayed the largest 427 absorption bands from 320 to 347 nm (Table 3). According to 428 these theoretical data, the lowest absorption values found from 429 the experimental measurements correspond to the enol 430 tautomer of the 3-hydroxy-2-pyrazinecarboxamides, whereas 431 the highest absorption bands are associated with the keto 432 tautomer. Additional calculations were performed using the 433 M06-2X/def2TZVP functional, but that approach provided us 434 with an underestimation of the absorption bands (Table ST2). With the correct matching between absorption wavelengths 436 with each one of the tautomeric forms of the tested 3-hydroxy-437 2-pirazinecarboxamides, it should be noted that the keto/enol 438 balance of these hydroxyl-pyrazines depends on two factors: 439 (i) the nature of the solvent and (ii) the substitution at 440 position 6. Beginning with the effect of the solvent, in general, 441 the enol tautomer was identified as the main tautomeric form 442 for most of the studied pyrazines 1a-e, although its prevalence 443 in solution was more remarkable with a decrease in polarity 444 and hydrogen-donor nature of the solvent as follows: n-hexane 445 ~ CHCl₃ > MeCN > i-PrOH > DMSO > EtOH > MeOH > 446 water (Table 3). An almost exclusive enol tautomer was 447 detected in a nonpolar solvent like chloroform or *n*-hexane for 448 most of studied compounds 1a-e, a dominance of the enol 449 tautomer over the keto tautomer in polar solvents like 450 acetonitrile and DMSO with enoliketo ratios of 19.6-10.1, 451 16.8-8.7, 17.4-7.1, 7.3-4.1, and 4.8-1.9 for compounds 1a-

452 e, respectively, a remarkable enol/keto balance with discrete

dominance of the enol tautomer in protic solvents like alcohols 453 with enol:keto ratios of approximately 12, 7-10, 5-8, 4-5, 454 and 1.2 for compounds 1a-e, respectively, and a prevalence of 455 the keto tautomer in most of the cases (except compound 1a) 456 in a water solvent with enoliketo ratios of 1.9, 0.83, 0.77, 0.71, 457 and 0 for compounds 1a-e, respectively. Table 3 shows that it 458 should be noted that the tautomeric balance is dependent on 459 the chemical function at position 6, where the enol proportion 460 increases with the electronegativity of that 6-function as 461 follows: 6-F > 6-Cl > 6-Br > 6-I > 6-H. This indicates, for 462 example, for compound 1e (6-H) the strong dominance of the 463 keto tautomer in water (almost 100% abundance), a 464 comparable existence in methanol (\sim 50%), and an appreciable 465 occurrence in nonprotic solvents (Table 3). Then, the UV-vis 466 technique offered a good perspective on the tautomerism of 3-467 hydroxy-2-pyarzinecarboxamides 1a-e, although it did not 468 provide useful information to elucidate the rotameric 469 configuration of the carboxamide moiety.

To obtain information about carboxamide rotamerism in 471 solution, a ¹H NMR study was performed using different 472 deuterated solvents taking advantage of the possible chemical 473 differences between the carboxamido NH2 protons of the keto 474 tautomeric form (see the keto tautomer in Figure 5). From ¹H 475 f5 NMR spectra, it should be noted that there is a significant 476 difference between the chemical shifts of the carboxamide NH₂ 477 protons as a function of solvent polarity (Table 5). That 478 t5 difference increased with the polarity and hydrogen-donor 479 character of the solvent for all studied 3-hydroxy-2-480 pyrazinecarboxamides 1a-e, being almost zero for a nonpolar 481 solvent like chloroform. For example, for 6-fluorinated 482 derivative 1a, a chemical shift difference of 0.45 ppm was 483 found in water, and a continuous decrease in the chemical shift 484 difference was observed with a decrease in the polarity and 485 hydrogen-donor nature of the solvent, i.e., 0.4, 0.33, 0.23, and 486 0.06 ppm for methanol, acetonitrile, DMSO, and chloroform, 487 respectively. Halogenated derivatives 1b-d displayed a similar 488 shift difference trend with approximate values of 0.7, 0.48, 0.3, 489 0.26, and 0.07 ppm in water, methanol, acetonitrile, DMSO, 490 and chloroform, respectively, whereas nonhalogenated deriv- 491 ative 1e displayed higher shift differences under all environ- 492 ments with values of 1.04, 0.82, 0.65, 0.58, and 0.67 ppm in 493 water, methanol, acetonitrile, DMSO, and chloroform, 494 respectively. In general, the chemical shift difference between 495 the carboxamido NH₂ protons increased with an increase in 496 solvent polarity or a decrease in 6-substitution electro- 497 negativity, this behavior being similar to that observed for 498 the tautomeric forms of 3-hydroxy-2-pyrazinecarboxamides 499 1a-e in solution. Thus, it is clear that the rotamerism is a 500

I

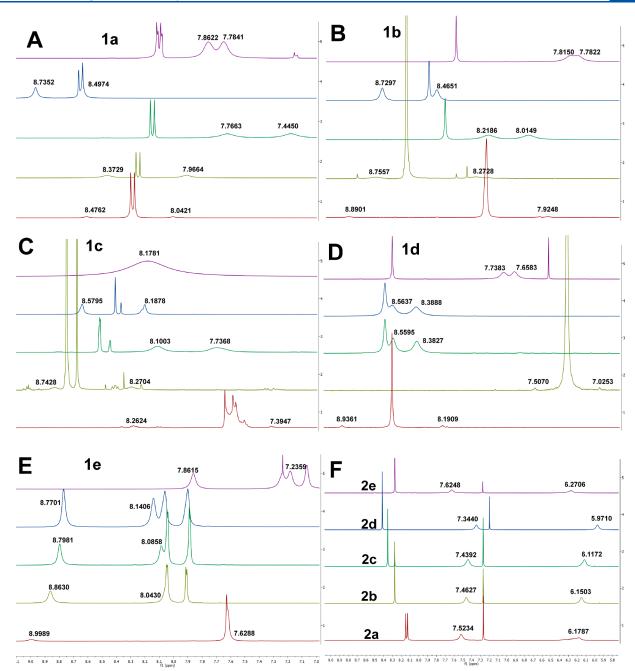


Figure 5. 1 H NMR spectra of 3-hydroxy-2-pyrazinecarboxamides 1a—e under different environments (A—E, respectively) and the *O*-pentyl derivative in DMSO- d_{6} (F). Chemical shifts expressed in parts per million, and spectra visualized in a window from 5.8 to 9.0 ppm. Further detailed spectra can be found in Figures S15—S19.

J

501 function of the tautomerism and, a "transoide" carboxamido 502 moiety, which exhibits distinguished differences in the 503 chemical shifts of its carboxamido protons, can be mainly 504 found in protic environments that favor keto tautomerization. To establish a correlation between the enol:keto proportions 506 and chemical shift differences between carboxamido NH₂ 507 protons, we plotted the enol:keto proportions, derived from 508 UV—vis spectra, against the chemical shift differences between 509 the carboxamido NH₂ protons (Figure 6). In general, good 510 correlations were found in different solvents (water, methanol, 511 acetonitrile, and DMSO), where, consistently, the enol:keto 512 ratios decreased with an increase in the chemical shift 513 difference. That consistent and linear correlation confirmed 514 that the keto tautomer is dominated by a "transoide" rotameric

conformation [K_A (Figure 1D)] in solution, whereas the enol 515 tautomer is defined by having a "cisoide" rotameric 516 conformation [E_A (Figure 1D)]. Thus, the large chemical 517 shift difference between the carboxamide NH₂ protons under 518 polar or protic environments implies that compounds 1a—e are 519 predominantly found as the keto tautomer, which is a 520 tautomeric form characterized by two differentiated carbox-521 amide protons derived from the "transoide" conformation. 522 Meanwhile, the discrete or null chemical shift difference 523 between the carboxamide protons in a nonpolar environment 524 reveals that compounds 1a—e are prevalently found in the enol 525 form, whose carboxamide NH₂ protons are differentiated from 526 each other by the "cisoide" rotameric configuration in turn to 527 the carboxamide moiety [E A (Figure 1D)]. These findings 528

Table 5. Chemical Shift Differences between Carboxamido (NH) Protons in ¹H NMR Spectra of 3-Hydroxy-2-pyrazinecarboxamides 1a-e in Different Solvents at 25 °C

	$\Delta\delta~(ext{ppm})~(ext{range})^a$					
	H ₂ O	MeOH	MeCN	DMSO	CHCl ₃	
1a	0.45 (8.48-8.03)	0.40 (8.36-7.96)	0.33 (7.76-7.43)	0.23 (8.73-8.50)	0.06 (8.00-7.94)	
1b	0.94 (8.89-7.93)	0.49 (8.75-8.26)	0.21 (8.22-8.01)	0.26 (8.72-8.46)	0.05 (7.83-7.78)	
1c	0.87 (8.26-7.39)	0.49 (8.75-8.26)	0.40 (8.12-7.72)	0.39 (8.58-8.19)	~0.00	
1d	0.75 (8.94-8.19)	0.49 (7.51-7.02)	0.19 (8.56-8.37)	0.17 (8.56-8.39)	0.08 (7.74-7.66)	
1e	1.37 (9.00-7.63)	0.82 (8.86-8.04)	0.71 (8.80-8.09)	0.63 (8.77-8.14)	0.62 (7.86–7.24)	

^aChemical shift values were taken from the corresponding spectra in Figure 5.

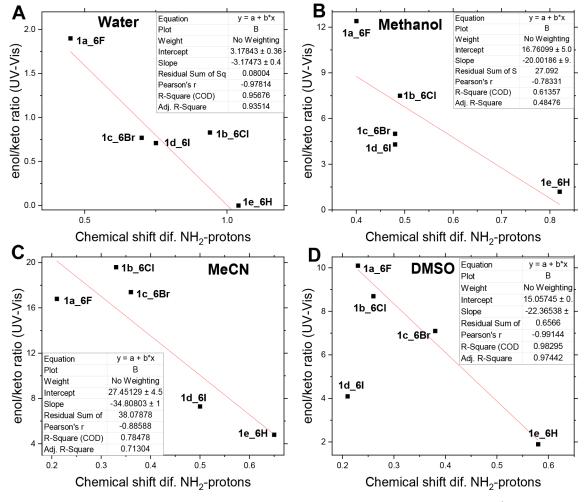


Figure 6. Correlation between the chemical shift (in parts per million) difference for carboxamido NH₂ protons from ¹H NMR with the keto:enol ratio from UV–vis measurements in (A) water, (B) methanol, (C) acetonitrile, and (D) DMSO.

529 revealed that the rotamerism in 3-hydroxy-2-pyrazinecarbox-530 amides **1a**—**e** is a chemical feature that is independent of 531 aggregation state or external/internal electronic changes, being 532 dependent on only the tautomerism of these molecules, where 533 "cisoide" and "transoide" carboxamides are the preferred 534 rotameric conformations for the enol and keto tautomers, 535 respectively. Finally, Figure 6 shows that compound **1e** (6-H)

showed the largest chemical shift differences in any solvent $_{536}$ (including chloroform; $\Delta\delta=0.67$ ppm), whereas compound $_{537}$ 1a (6-F) showed the smallest chemical shift differences. $_{538}$ Consequently, the keto and enol tautomers are the most $_{539}$ preferred forms for compounds 1e and 1a, respectively, $_{540}$ emerging as a starting point for rationally modulating the $_{541}$

542 tautomerism for the sake of convenience in this type of 543 chemical system.

To obtain further information about the carboxamide rotamerism of this type of 3-hydroxypyrazine, we analyzed the rotamerism of 3-O-pentyl derivatives **2a**—**e** in solution 147 from 14 NMR measurements using solvents with varied polarity, i.e., methanol, acetone, and chloroform (Table 6).

Table 6. Chemical Shift Differences between Carboxamido NH₂ Protons in ¹H-NMR Spectra for 3-O-(Pentyloxy)-2-pyrazinecarboxamides 2a—e in Different Solvents at 25 °C

		$\Delta\delta$ (ppm) (range)					
	MeOH	acetone	CHCl ₃				
2a	0.34 (7.41-7.07)	0.56 (7.39-6.83)	1.16 (7.54-6.38)				
2b	0.38 (6.66-6.28)	0.60 (7.55-6.95)	1.31 (7.46-6.15)				
2c	0.32 (8.08-7.74)	0.59 (7.55-6.96)	1.33 (7.44-6.11)				
2d	no NH ₂ signal found	0.65 (7.41-6.76)	1.37 (7.34-5.97)				
2e	0.39 (7.91–6.52)	0.71 (7.39–6.68)	1.36 (7.62–6.26)				

549 From the results, appreciable chemical shift differences were 550 observed between the carboxamide NH₂ protons and were 551 dependent on the polarity and hydrogen bond nature of the 552 solvent. Contrary to those of 3-hydroxy-2-pyrazinecarboxa-553 mides 1a-e, the chemical shift differences increased with a 554 decrease in the polarity solvents: chloroform > acetone > 555 methanol. This suggests that the 3-O-alkylated analogues 556 present a "transoide" conformation with an intramolecular 557 hydrogen bond between the 3-oxygen and one of the 558 carboxamido NH₂ protons (R-O-H-NHC=O) in an apolar 559 solvent, whereas in a protic solvent, the "cisoide" rotameric $560\,$ conformation seems to be prevalent as determined by the small 561 chemical shift difference. The results suggest that the "transoide" conformation is the most stable rotameric 563 conformation of 3-O-alkylated derivatives 2a-e because the 564 intramolecular hydrogen bonding provides a major stabiliza-565 tion in the chemical system and the presence of a hydrogen-566 donor solvent probably compromises that stabilization by the 567 preference of the 3-alkylated oxygen to interact via hydrogen 568 bonding with the solvent. This latter facet induces the rotation 569 of the carboxamide moiety toward the "cisoide" conformation 570 in a protic solution to minimize the steric hindrance between 571 the 3-oxo moiety and the 2-carboxamide. Thus, the rotamerism 572 in 3-O-alkylated derivatives 2a-e can be modulated by 573 changes in solvent polarity. On the contrary, in the 3-574 hydroxy-2-pyrazinecarboxamide, the rotamerism is more 575 dependent on the influence of the solvent because the 576 presence of a 3-hydroxylic proton promoted the "cisoide" 577 conformation by the extra stabilization via intramolecular 578 hydrogen (-O-H-O=C-NH₂) bonding. Furthermore, it is 579 important to mention that the interacting dynamic of the enol 580 tautomer of the 3-hydroxy-2-pyrazinecarboxamides in a protic 581 environment can involve another chemical phenomenon like a 582 proton-transfer process to form the keto tautomer. Finally, like 583 that of 3-hydroxy-2-pyrazinecarboxamides, the rotamerism of 584 the 3-O-alkylated derivatives does not seem to depend on the

internal electronic changes because discrete changes in the 585 chemical shift difference between the carboxamide protons are 586 appreciated when a comparison is established for a common 587 solvent, i.e., DMSO in Figures 5F. Further cases are illustrated 588 in Figures S20–26.

Finally, we studied the effect of temperature on the 590 equilibrium. The experiments were performed in DMSO-d₆ 591 and a deuterated water environment for all five derivatives 592 (1a-e) at 298, 313, and 328 K (Table S52). In that table, no 593 appreciable changes were found for the chemical shift 594 differences between the carboxamide NH2 protons at the 595 studied temperatures. The latter finding in conjunction with 596 the similar enol:keto ratios found for the solid state and 597 nonpolar solution suggests that the tautomerism of these 3- 598 hydroxy-2-pyrazinecarboxamides is mainly governed by in- 599 ternal or external electronic changes. These internal and 600 external electronic features were modulated by introduction of 601 a specific substitution (F, Cl, Br, I, or H) with varied 602 electronegativity at position 6 and by changes in the polarity of 603 the solvent, respectively. In general, the proportion of the keto 604 tautomer in solution was significantly increased with the 605 polarity of the solvent for all studied derivatives 1a-e as 606 follows: water > methanol > ethanol > isopropanol > 607 acetonitrile > DMSO > n-hexane. The strong preference of 608 the keto tautomer in a protic solvent suggests that the 609 tautomerization from the enol to keto form could be favored 610 with an increase in the acidic or hydrogen-donor character of 611 the solvent: water > methanol > ethanol > isopropanol. With 612 regard to the internal electronic influence, the proportion of 613 the keto tautomer consistently increased with a decrease in the 614 electronegativity of the 6-substituent either for the solid state 615 or for the solution state: $H \gg I > Br > Cl > F$ (Figure 7). The 616 f7 convergence of these two pieces of evidence reveals that the 617 tautomerization from the enol to keto form in solution is 618 facilitated by the hydrogen-donor character of the solvent and 619 the basicity of pyrazine N4 (Figure 8). Calculation of the 620 f8 Mulliken charges on pyrazine N4 of the enolic 3-hydroxy-2- 621 pyrazinecarboxamides 1a-e showed that the basicity (reflected 622 by high negative Mulliken charge values) was increased in the 623 following order as a function of the electronegativity of the 6- 624 substitution: $6\text{-H} > 6\text{-I} \sim 6\text{-Br} > 6\text{-Cl} \sim 6\text{-F}$. This allowed us to 625 interpret the tautomerization in the studied 3-hydroxy-2-626 pyrazinecarboxamides as a function of the hydrogen-donor 627 character of solvent and the basicity of pyrazine N4 as depicted 628 in Figure 8.

3. CONCLUSIONS

In summary, this report offers a detailed perspective on the 630 tautomerism and rotamerism in the gas, solid, and solution 631 state for a series of 3-hydroxy-2-pyrazinecarboxamides. In 632 general, we found that the tautomerism of the 3-hydroxy-2- 633 pyrazinecarboxamides was dependent on internal or external 634 electronic changes, it being possible to modulate the 635 prevalence of a specific tautomer by altering the electronic 636 nature of the 6-substitution (internal variable) and solvent 637 polarity (external variable). Then, the keto tautomer was 638 favored either in the solid state or in the solution state as a 639 function of the 6-substitution: H > Br > I > Cl > F. The 640 specificity in the tautomeric form was more controlled by 641 solvent polarity, achieving almost 100% keto tautomer in water 642 solution for some derivatives (1c and 1d and strongly 1e) and 643 almost 100% enol tautomer in a nonpolar solvent for some 644 derivatives (1a and 1b). Then, the prevalence of the keto 645

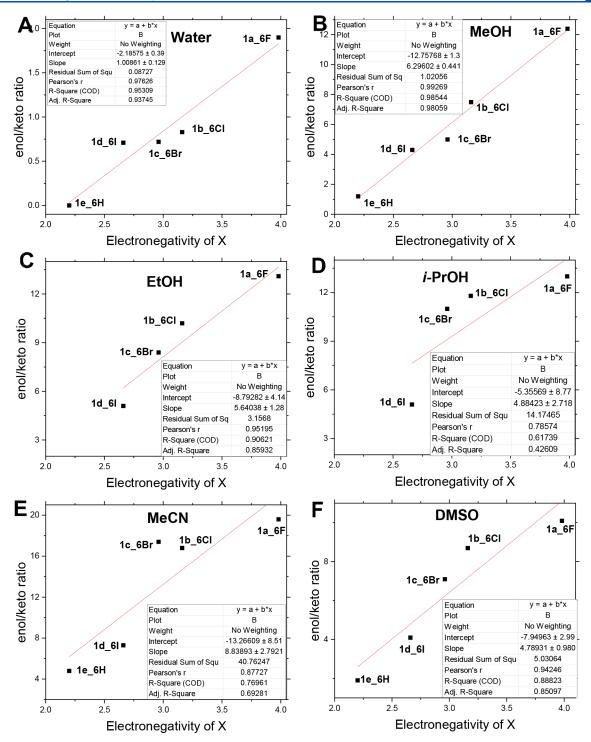


Figure 7. Correlation between the keto:enol ratio and the electronegativity of the substituent at position 6 in different environments: (A) water, (B) methanol, (C) ethanol, (D) isopropanol, (E) acetonitrile, and (F) DMSO.

646 tautomer was favored as a function of solvent polarity as 647 follows: water > methanol > ethanol > isopropanol > CH₃CN 648 > DMSO > *n*-hexane. All of these results allowed us to gain a 649 better understanding on the factors governing the keto—enol 650 equilibrium of 3-hydroxy-2-pyrazinecarboxamides, which could 651 be of great interest for further study directed to control the 652 antiviral activity of 3-hydroxy-2-pyrazinecarboxamides through 653 control of the keto—enol equilibrium toward the keto form. In 654 reference to the different proportions of antiviral ribonucleo-655 tides observed biologically for favipiravir and its dehalogenated

derivative (T-1105), our results are in complete agreement 656 with these experimental data. The predominant tautomer, 657 under all of the conditions, for T-1105 is the one that reacts 658 with the anomeric carbon of furanose. The dependence of the 659 tautomerism on the internal electronic features also presents a 660 new possibility for modulating the occurrence of the keto 661 tautomer, which could be preferred for a convenient drug 662 metabolization to form the corresponding RTP metabolite. 663 That tautomer can be favored with an increase in the basicity 664 of tautomeric pyrazine N4, which can be modulated by 665

Increase of hydrogen exchange = increase keto/enol ratio

Increase of N4-basicity with decrease of X electronegativity

Figure 8. Tentative mechanism for tautomerization of the 3-hydroxy-2-pyrazinecarboxmaides from the enol to keto tautomer as a function of internal (electronegativity of X) and external (protic solvent) electronic features. $q_{\rm M}$ is the Mulliken charge (expressed in arbitrary units) on pyrazine N4. Mulliken charge distributions were calculated at the B3LYP/6-31G(d,p) level for the enolic 3-hydroxy-2-pyrazinecarboxamides. A detailed Mulliken charge distribution can be found in Figure S44.

666 incorporation of a non-electron-deficient substituent at 667 position 6 and including position 5 of the pyrazine core.

Moreover, we demonstrated that the rotamerism in turn in the 2-carboxamide was a function of the tautomerism, giving a composition of the carboxamide was a function for the enol tautomer and a composition of the selective activity of this type of system as an RNA composition in the selective activity of this type of system as an RNA composition with the point of composition of the point of composition of the point of composition of the composition of composition of the composition of composition of composition of composition of the composition of compositi

4. EXPERIMENTAL SECTION

Materials and Instruments. 6-Fluoro-3-hydroxy-2-pyrazinecar-681 682 boxamide (favipiravir) (1a) and 6-chloro-3-hydroxy-2-pyrazinecar-683 boxamide (1b) were purchased from commercial sources (Jacky Zhou 684 (Dideu)]. The rest of the studied derivatives were synthesized from 685 specific protocols. Details can be found in the synthetic procedures. 686 Solvents (MeOH, isopropanol, MeCN, DMSO, CH3COOH, and n-687 hexane) were anhydrous HPLC grade and purchased from commercial sources (Sigma-Aldrich, Fluka, or Merck). Ethanol was purchased from Droguera Industrial Uruguaya as a rectified ethanol 690 (95%). Ultrapure grade water was obtained by filtration of deionized 691 water with a Millipore system. Melting points are recorded with a 692 micro melting point apparatus and are uncorrected. TLC was 693 performed using commercially available 100-400 mesh silica gel 694 plates (GF254), visualized under UV light (at 254 nm). Absorption 695 data were obtained from a Thermo Scientific Varioskans Flash 696 Multimode instrument for air-equilibrated solutions at 25 °C. ¹H $697\ NMR$ and $^{13}C\ NMR$ spectra were recorded on a 400 MHz NMR 698 spectrometer (Bruker-400). Multiplicity is indicated as follows: s, 699 singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of doublets; brs, 700 broad singlet. Chemical shifts were measured in parts per million (δ) ,

and coupling constant (J) are given in hertz. Proton chemical shifts 701 were given relative to tetramethylsilane $(\delta\ 0.00)$ in a CDCl $_3$ or 702 DMSO- d_6 solvent. Carbon chemical shifts are internally referenced to 703 the deuterated solvent signals in CDCl $_3$ ($\delta\ 77.00$) or DMSO- d_6 ($\delta\ 704\ 40.02$). IR spectroscopic analysis was performed on a Shimadzu IR 705 Prestige 21 instrument. Single-crystal samples of these compounds 706 were mounted on a glass tip, and data were collected in an Oxford 707 Xcalibur Gemini Eos CCD diffractometer employing graphite- 708 monochromated Mo K $\alpha\ (\lambda = 0.71073\ \text{Å})$ radiation.

Synthesis of 3-Hydroxy-2-pyrazinecarboxamides 1c-e. 6- 710 Bromo-3-hydroxy-2-pyrazinecarboxamide (1c), 48 3-hydroxy-6-iodo-2- 711 pyrazinecarboxamide (1d), 49 and 3-hydroxy-2-pyrazinecarboxamide 712 (1e) 47 were prepared using reported protocols with a few 713 modifications. Reaction mixtures were heated by using a sand bath. 714 NMR spectra for compounds 1a-e can be found in Figures S43—S65. 715

6-Fluoro-3-hydroxy-2-pyrazinecarboxamide ($\overline{1}$ **a**). $R_f = 0.7$ 716 (AcOEt). Mp: 187–189 °C dec. ¹H NMR (400 MHz, DMSO- d_6): 717 δ 13.52 (s, 1H), 8.70 (s, 1H), 8.54 (s, 1H), 8.46 (s, 1H). ¹³C{¹H} 718 NMR (100 MHz, DMSO- d_6): δ 169.2, 160.2, 154.1–151.7 (J = 242.0 719 Hz, 1C), 136.2–135.9 (J = 35.0 Hz, 1C), 122.7 (J = 7.0 Hz, 1C). ¹⁹F 720 NMR (500 MHz, CDCl₃): δ –92.73.

6-Chloro-3-hydroxy-2-pyrazinecarboxamide (1b). $R_f = 0.6$ 722 (AcOEt). Mp: 199–201 °C dec. ¹H NMR (400 MHz, DMSO- d_6): 723 δ 13.54 (s, 1H), 8.73 (s, 1H), 8.50 (s, 1H), 8.47 (s, 1H).

6-Bromo-3-hydroxy-2-pyrazinecarboxamide (1c). $R_f=0.5$ 725 (AcOEt). Mp: 238 °C dec. ¹H NMR (400 MHz, DMSO- d_6): δ 726 13.52 (s, 1H), 8.70 (s, 1H), 8.54 (s, 1H), 8.46 (s, 1H). ¹³C{¹H} NMR 727 (100 MHz, DMSO- d_6): δ 168.55, 160.64, 148.10, 130.36 (CH), 728 126.30.

3-Hydroxy-6-iodo-2-pyrazinecarboxamide (1d). $R_f=0.5~730~(AcOEt)$. Mp: 207–209 °C dec. 1H NMR (400 MHz, DMSO- d_6): 731 δ 13.41 (s, 1H), 8.62 (s, 1H), 8.56 (s, 1H), 8.40 (s, 1H). $^{13}C\{^1H\}$ 732 NMR (100 MHz, DMSO- d_6): δ 179.89, 167.81, 161.85, 152.10, 733 134.38.

3-Hydroxy-2-pyrazinecarboxamide (1e). $R_f = 0.2$ (AcOEt). Mp: 735 247–250 °C dec (Lit. 251–253 °C). 1 H NMR (400 MHz, DMSO- 736 d_6): δ 13.36 (s, 1H), 8.71 (s, 1H), 7.80–8.30 (m, 3H). 13 C(1 H) NMR 737 (100 MHz, DMSO- d_6): δ 167.36, 159.68, 140.10 (CH), 130.24 738 (CH), 122.02.

Typical Procedure for the O-Alkylation of the Halogenated 3-Hydroxypyrazine-2-carboxamides with *n*-Pentyl lodide.⁵⁰ 741 To a 10 mL bottom glass were added the corresponding 3-hydroxy-2- 742 pyrazinecarboxamides 1a—e (40 mg, 0.15—0.30 mmol, 1.0 equiv) and 743 *n*-pentyl iodide (250–500 μL, 1.5—3.0 mmol, 10 equiv) under air. 744 The mixture was stirred and heated at 100 °C for 12 h. The reaction 745 mixture was monitored by TLC. The reaction mixture was purified by 746 flash column chromatography using *n*-hexane/EtOAc (8:2) as the 747 eluent to afford the product from fluorinated (1a), chlorinated (1b), 748 and brominated (1c) derivativea, *n*-hexane/EtOAc (9:1) as the eluent 749 to afford the iodated (1d) derivative, and *n*-hexane/EtOAc (6:4) as 750 the eluent to afford the nonhalogenated compound (1e). The 751 compounds were isolated as white solids. Reaction mixtures were 752 heated using a sand bath. NMR spectra for compounds 2a—e can be 753 found in Figures S66—S102.

6-Fluoro-3-(pentyloxy)-2-pyrazinecarboxamide (2a). White solid 755 (19.8 mg, 34%). Mp: 69–70 °C. ¹H NMR (400 MHz, CDCl₃): δ 756 8.15–8.13 (d, J = 8.0 Hz, 1H), 7.51 (br, 1H), 6.18 (br, 1H), 4.51 (t, 757 2H), 1.88 (m, 2H), 1.42 (m, 4H), 0.92 (t, 3H). ¹³C{¹H} NMR (100 758 MHz, CDCl₃): δ 163.3, 156.6, 155.10–152.78 (J = 232.0 Hz, 1C), 759 132.1–131.7 (J = 40.0 Hz, 1C), 128.3–128.2 (J = 7.0 Hz, 1C), 66.8, 760 28.4, 28.1, 22.4, 13.96. ¹⁹F NMR (500 MHz, CDCl₃): δ 92.27. Anal. 761 Calcd for C₁₀H₁₄FN₃O₂: C, 52.86; H, 6.21; N, 18.49. Found: C, 762 52.72; H, 6.11; N, 18.40.

6-Chloro-3-(pentyloxy)-2-pyrazinecarboxamide (**2b**). White solid 764 (17.4 mg, 31%). Mp: 74–76 °C. 1 H NMR (400 MHz, CDCl₃): δ 8.27 765 (s, 1H), 7.47 (br, 1H), 6.15 (br, 1H), 4.51 (t, 2H), 1.88 (m, 2H), 1.42 766 (m, 4H), 0.92 (t, 3H). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 163.5, 767 157.9, 143.8, 138.8, 132.0, 68.6, 28.3, 28.0, 22.4, 13.96. Anal. Calcd 768 for C₁₀H₁₄ClN₃O₂: C, 49.29; H, 5.79; N, 17.24. Found: C, 49.21; H, 769 5.72; N, 17.20.

771 6-Bromo-3-(pentyloxy)-2-pyrazinecarboxamide (2c) (3.26 O-772 substituted/N-substituted mixture). White solid (16.5 mg, 31%). 773 Mp: 95–97 °C. O-Substituted. 1 H NMR (400 MHz, CDCl₃): δ 8.35 774 (s, 1H), 7.44 (br, 1H), 6.13 (br, 1H), 4.51 (t, 2H), 1.88 (m, 2H), 1.42 775 (m, 4H), 0.92 (t, 3H). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 161.5, 776 156.3, 144.6, 131.1, 126.4, 66.47, 26.3, 26.0, 20.3, 11.9. N-Substituted. 777 1 H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H), 7.44 (br, 1H), 6.13 (br, 778 1H), 4.48 (t, 2H), 1.88 (m, 2H), 1.42 (m, 4H), 0.88 (t, 3H). 13 C{ 1 H} 779 NMR (100 MHz, CDCl₃): δ 161.5, 155.8, 141.7, 136.7, 129.98, 66.5, 780 27.0, 26.3, 20.7, 12.1. Anal. Calcd for C $_{10}$ H $_{14}$ BrN $_{3}$ O $_{2}$: C, 41.68; H, 781 4.90; N, 14.58. Found: C, 41.62; H, 4.85; N, 14.47.

782 6-lodo-3-(pentyloxy)-2-pyrazinecarboxamide (2d). White solid 783 (16.1 mg, 32%). Mp: 104–105 °C. ¹H NMR (400 MHz, CDCl₃): δ 784 8.43 (s, 1H), 7.35 (br, 1H), 5.98 (br, 1H), 4.51 (t, 2H), 1.88 (m, 2H), 785 1.42 (m, 4H), 0.92 (t, 3H). 13 C{¹H} NMR (100 MHz, CDCl₃): δ 786 162.7, 157.9, 151.1, 133.9, 101.2, 67.3, 27.3, 27.0, 21.3, 12.9. Anal. 787 Calcd for C₁₀H₁₄IN₃O₂: C, 35.84; H, 4.21; N, 12.54. Found: C, 35.76; 788 H, 4.17; N, 12.40.

789 3-(Pentyloxy)-2-pyrazinecarboxamide (**2e**). White solid (23.5 mg, 790 39%). Mp: 93–94 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 1H), 791 7.62 (br, 1H), 6.27 (br, 1H), 4.51 (t, 2H), 1.88 (m, 2H), 1.42 (m, 792 4H), 0.92 (t, 3H). 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 164.8, 158.9, 793 143.96, 136.1, 133.6, 67.7, 28.4, 28.1, 22.4, 13.97. Anal. Calcd for 794 C₁₀H₁₅N₃O₂: C, 57.40; H, 7.23; N, 20.08. Found: C, 57.31; H, 7.17; 795 N, 19.89.

796 UV–Vis Spectroscopic Studies. The UV–vis absorption spectra 797 were recorded for air-equilibrated solutions at room temperature. 798 Measurements were performed in a 96-well polystyrene plate 799 (NUNC). The UV–vis absorption spectra were recorded with a 800 UV–vis spectrophotometer at 2 nm resolution. A sample stock 801 DMSO solution (3 mM) was prepared, and the absorption spectra 802 were separately recorded with a 100 μ L solution of water, EtOH, 803 MeOH, MeCN, DMSO, and n-hexane with 3.5% DMSO. All 804 absorption experiments were performed by triplicate. Absorption 805 spectra for derivatives 2a–e can be found in Figure S14.

NMR Studies. The 1 H NMR spectra of 3-hydroxy-2-pyrazine-sor carboxamides 1a-e and O-alkylated derivatives 2a-e were recorded sos under various conditions. A sample stock solution ($D_{2}O$, $CD_{3}OD$, so9 MeCN, DMSO- d_{6} , and $CDCl_{3}$) (10 mg in 0.5 mL) was prepared. 19 F s10 NMR spectra were recorded for derivatives 1a and 2a. Effects of s11 temperature at 298, 318, and 328 K were explored for some samples. s12 The time effect was measured at 0, 72, and 144 h. All experiments s13 were performed in triplicate. NMR spectra for tautomerism and s14 rotamerism with different environments, temperatures, and times can s15 be found in Figures S15–S42, and the effect of temperature is s16 presented in Table S53.

Fourier Transformed Infrared (FTIR) Spectroscopy. Solid 818 state IR spectra were directly recorded on a Bomen FTIR 819 spectrophotometer. IR spectra can be found in Figures S9—S13, 820 and IR spectroscopic data in Table S52.

X-ray Data Collection and Structural Determination. Light 821 822 white and yellow block-shaped crystals of compounds 1a-e and 2b-823 d were obtained after slow evaporation of methanol, acetonitrile, and 824 chloroform solutions for 10 days. X-ray diffraction intensities were 825 collected (ω scans with ϑ and κ offsets), integrated, and scaled with 826 the CrysAlisPro26 suite of programs. The unit cell parameters were 827 obtained by least-squares refinement (based on the angular settings 828 for all collected reflections with intensities larger than 7 times the 829 standard deviation of measurement errors) using CrysAlisPro. Data 830 were corrected empirically for absorption employing the multiscan 831 method implemented in CrysAlisPro. The structures were determined 832 by the intrinsic phasing procedure implemented in SHELXT, 60 and 833 the corresponding non-H molecular model was refined by a full-834 matrix least-squares method on F^2 with anisotropic displacement 835 parameters employing SHELXL. 61 Crystallographic structural data for 836 the eight structures have been deposited at the Cambridge 837 Crystallographic Data Centre (CCDC) with reference numbers 838 2240718 (1a), 2247867 (1b), 2240721 (1c), 2240760 (1d), 2247868 839 (1e), 2240766 (2b), 2247869 (2c), and 2247870 (2d). Details of the 840 crystallographic experiment can be seen in Tables S1-S3. Structural

data for bond lengths, bond angles, torsion angles, and hydrogen bond 841 distances are summarized in Tables S4–S33 for derivatives 1a–e and 842 in Tables S34–S51 for derivatives 2b–d. Crystal packing rearrangement can be found in Figures S1–S8 for compounds 1a–e and 2b–d, 844 respectively.

Theoretical Calculation. All DFT calculations were carried out at 846 the Copernico Cluster of the computational center at Science Faculty 847 (Universidad Central Venezuela). All theoretical calculations, in the 848 gas phase, were performed using density functional theory (DFT) 849 with the Gaussian 09 quantum chemistry software. 62 To achieve a 850 balance between the computational cost and the accuracy of the 851 calculations, two combined DFT-based approaches were employed: 852 (i) the M06-2X functional⁵¹ in combination with the def2TZVP basis 853 and (ii) the B3LYP functional⁵³ in combination with the 6- 854 31G(d,p) basis set.⁵⁴ The geometries of the enol (1a-e) and keto 855 (1a'-e') tautomers of the 3-hydroxy-2-pyrazinecarboxamides were 856 optimized. Calculations were performed in the gas phase. All 857 structures were optimized in the ground state without restrictions, 858 using tight optimization criteria and an ultrafine grid in the 859 computation of two-electron integrals and their derivatives. 860 Optimization calculations were performed using the Berny algorithm 861 and were successfully completed with the following parameters: 862 maximum force, 0.000450; root-mean-square (RMS) force, 0.000300; 863 maximum displacement, 0.001800; RMS displacement, 0.001200; 864 predicted change in energy, -1.488276×10^{-8} Hartree for most 865 studied cases. The relative stability of the tautomers was presented as 866 the difference between the total energies of the enol and keto forms 867 $(\Delta E = E_E - E_K)$. A negative value indicates the more stable enol form 868 and vice versa. For conformational analysis, under the same B3LYP/6-869 31G(d,p) approach, the calculations were performed using SCAN 870 commando with following parameters: RMS gradient normalization, 871 0.000311 hartree/Bohr; scan coordinate, 4.4567; maximum force, 872 0.000046; RMS force, 0.000014; maximum displacement, 0.001759; 873 RMS displacement, 0.000627; predicted energy change, -2.85×10^{-8} 874 hartree. Finally, for absorption wavelength calculations, the 10 lowest 875 excited states of compounds 1a-e were obtained from the optimized 876 structures at the time-dependent DFT (TD-DFT) level under 877 commando, td = (singlets, nstates = 10) using the B3LYP/6-31G(d,p) 878 approach.⁶⁴ The vibrational frequencies calculated numerically using 879 NUMFORCE showed that the excited state structures were minima 880 on the potential energy surface. The vibrational frequencies of the 881 stationary point geometries of the molecules (tautomers) were 882 calculated at the same computational level. Vibrational frequency 883 calculations were performed to obtain vibrational zero-point energies 884 and to validate that the located structures corresponded to the energy 885 minima. The structures should have only positive harmonic 886 vibrations. Theoretical UV-vis spectra for the enol and keto 887 tautomers of compounds 1a-e can be found in Figures S1 and S2 888 of the Theoretical Supporting Information (TSI). HOMO-LUMO 889 energy levels and Mulliken charges were extracted from optimized 890 geometries (Figures S3 and S4 of the TSI). All calculation outputs can 891 be found in the TSI.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published 895 article, in the Supporting Information, and openly in Mendeley 896 Data at DOI: 10.17632/tcrfh22jv5.1.

Supporting Information

The Supporting Information is available free of charge at 899 https://pubs.acs.org/doi/10.1021/acs.joc.3c00777.

UV-vis, IR, and NMR spectra in different environments 901 and detailed X-ray data (PDF) 902 Theoretical data (PDF) 903

Accession Codes

CCDC 2240718, 2240721, 2240760, 2240766, and 2247867— 905 2247870 contain the supplementary crystallographic data for 906

898

904

972

907 this paper. These data can be obtained free of charge via 908 www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_ 909 request@ccdc.cam.ac.uk, or by contacting The Cambridge 910 Crystallographic Data Centre, 12 Union Road, Cambridge 911 CB2 1EZ, UK; fax: +44 1223 336033.

912 **AUTHOR INFORMATION**

913 Corresponding Authors

914 Angel H. Romero — Grupo de Química Orgánica Medicinal, 915 Facultad de Ciencias, Universidad de la República, 11400 916 Montevideo, Uruguay; orcid.org/0000-0001-8747-5153; 917 Email: angel.ucv.usb@gmail.com

918 Marcos Couto – Grupo de Química Orgánica Medicinal, 919 Facultad de Ciencias, Universidad de la República, 11400 920 Montevideo, Uruguay; Email: mcouto@fcien.edu.uy

921 Authors

928

929

930

931

932

933

934

935

936

937

938

939

940

941

943

944

945

946

947

948

949

950

922 **Germán Fuentes** – Grupo de Química Orgánica Medicinal, 923 Facultad de Ciencias, Universidad de la República, 11400 924 Montevideo, Uruguay

925 **Leopoldo Suescun** — Cryssmat-Lab/DETEMA, Facultad de 926 Química, Universidad de la República, 11800 Montevideo, 927 Uruguay; © orcid.org/0000-0002-7606-8074

Oscar Piro — Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina

Gustavo Echeverría — Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata 1900, Argentina

Lourdes Gotopo – Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, 1040 Caracas, Venezuela

Horacio Pezaroglo — Laboratorio de Resonancia Magnética Nuclear, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay

Guzmán Álvarez – Laboratorio de Moléculas Bioactivas, CENUR Litoral Norte, Universidad de la República, 60000 Paysandú, Uruguay

Gustavo Cabrera — Laboratorio de Síntesis Orgánica, Escuela de Química, Facultad de Ciencias, Universidad Central de Venezuela, 1040 Caracas, Venezuela

Hugo Cerecetto — Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Area de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; orcid.org/0000-0003-1256-3786

952 Complete contact information is available at:

953 https://pubs.acs.org/10.1021/acs.joc.3c00777

954 Notes

955 The authors declare no competing financial interest.

956 **ACKNOWLEDGMENTS**

957 This work was supported by the Comisión Sectorial de 958 Investigación Científica (CSIC, Uruguay), Universidad de la 959 República under the Program "Conocimiento especializado 960 para enfrentar la emergencia planteada por el COVID 19 y sus 961 impactos". A.H.R., L.S., G.Á., H.C., and M.C. thank 962 PEDECIBA-Química (Uruguay) and Sistema Nacional de 963 Investigadores (SNI, Uruguay) for financial support. A.H.R. 964 thanks Agencia Nacional de Investigación e Innovación (ANII) 965 for financial support under code PD NAC 2018 1 150515.

The authors are also grateful to Copernico Cluster (Facultad 966 de Ciencias, Universidad Central de Venezuela) for supplying 967 computational resources. The authors also thank CONICET 968 (Grant PIP 0651) and UNLP (Grant 11/X857) of Argentina 969 for financial support. G.E. and O.P. are Research Fellows of 970 CONICET.

REFERENCES

(1) Singh, V.; Fedeles, B. I.; Essigmann, J. M. Role of tautomerism in 973 RNA biochemistry. *RNA* **2015**, *21*, 1–13.

(2) Fedeles, B. I.; Li, D.; Singh, V. Structural Insights Into 975 Tautomeric Dynamics in Nucleic Acids and in Antiviral Nucleoside 976 Analogs. *Front. Mol. Biosci.* **2022**, *8*, 823253.

(3) Shukla, M. K.; Leszczynski, J. Tautomerism in nucleic acid bases 978 and base pairs: a brief overview. WIREs Computational Molecular 979 Science 2013, 3, 637–649.

(4) Slocombe, L.; Al-Khalili, J. S.; Sacchi, M. Quantum and classical 981 effects in DNA point mutations: Watson-Crick tautomerism in AT 982 and GC base pairs. *Phys. Chem. Chem. Phys.* **2021**, 23, 4141–4150. 983

(5) Nemeria, N. S.; Chakraborty, S.; Balakrishnan, A.; Jordan, F. 984 Reaction Mechanisms of Thiamin Diphosphate Enzymes: Defining 985 States of Ionization and Tautomerization of the Cofactor at Individual 986 Steps. FEBS J. 2009, 276, 2432–3446.

(6) Beak, P. Energies and Alkylations of Tautomeric Heterocyclic 988 Compounds: Old Problems - New Answers. *Acc. Chem. Res.* **1977**, *10*, 989 186–192.

(7) Hass, M. A. S.; Hansen, D. F.; Christensen, H. E. M.; Led, J. J.; 991 Kay, L. E. Characterization of Conformational Exchange of a 992 Histidine Side Chain: Protonation, Rotamerization, and Tautomerization of His61 in Plastocyanin from Anabaena variabilis. *J. Am. Chem.* 994 Soc. 2008, 130, 8460–8470.

(8) Vila, J. A.; Arnautova, Y. A.; Vorobjev, Y.; Scheraga, H. A. 996 Assessing the Fractions of Tautomeric Forms of the Imidazole Ring of 997 Histidine in Proteins as a Function of pH. *Proc. Natl. Acad. Sci. U. S.* 998 A. **2011**, 108, 5602–5607.

(9) Goodman, M. F. Mutations Caught in the Act. *Nature* **1995**, 1000 378, 237–238.

(10) Jang, Y. H.; Goddard, W. A.; Noyes, K. T.; Sowers, L. C.; 1002 Hwang, S.; Chung, D. S. First Principles Calculations of the 1003 Tautomers and pKa Values of 8-Oxoguanine: Implications for 1004 Mutagenicity and Repair. *Chem. Res. Toxicol.* **2002**, *15*, 1023–1035. 1005

(11) Wang, W.; Hellinga, H. W.; Beese, L. S. Structural Evidence for 1006 the Rare Tautomer Hypothesis of Spontaneous Mutagenesis. *Proc.* 1007 *Natl. Acad. Sci. U.S.A.* **2011**, *108*, 17644–17648.

(12) Guasch, L.; Yapamudiyansel, W.; Peach, M. L.; Kelley, J. A.; 1009 Barchi, J. J., Jr; Nicklaus, M. C. Experimental and Chemoinformatics 1010 Study of Tautomerism in a Database of Commercially Available 1011 Screening Samples. *J. Chem. Inf. Model.* **2016**, *56*, 2149–2161.

(13) Li, D.; Fedeles, B. I.; Singh, V.; Peng, C. S.; Silvestre, K. J.; Simi, 1013 A. K.; Simpson, J. H.; Tokmakoff, A.; Essigmann, J. M. Tautomerism 1014 provides a molecular explanation for the mutagenic properties of the 1015 anti-HIV nucleoside 5-aza-5,6-dihydro-2'-deoxycytidine. *Proc. Natl.* 1016 *Acad. Sci. U. S. A.* **2014**, *111*, No. E3252-E3259.

(14) Ortega-Prieto, A. M.; Sheldon, J.; Grande-Pérez, A.; Tejero, H.; 1018 Gregori, J.; Quer, J.; Esteban, J. I.; Domingo, E.; Perales, C. Extinction 1019 of hepatitis C virus by ribavirin in hepatoma cells involves lethal 1020 mutagenesis. *PLoS One* **2013**, *8*, No. e71039.

(15) Dietz, J.; Schelhorn, S. E.; Fitting, D.; Mihm, U.; Susser, S.; 1022 Welker, M. W.; Füller, C.; Däumer, M.; Teuber, G.; Wedemeyer, H.; 1023 Berg, T.; Lengauer, T.; Zeuzem, S.; Herrmann, E.; Sarrazin, C. Deep 1024 sequencing reveals mutagenic effects of ribavirin during monotherapy 1025 of hepatitis C virus genotype 1-infected patients. *J. Virol.* **2013**, 87, 1026 6172–6181.

(16) Moreno, H.; Grande-Pérez, A.; Domingo, E.; Martín, V. 1028 Arenaviruses and lethal mutagenesis. Prospects for new ribavirin- 1029 based interventions. *Viruses* **2012**, *4*, 2786–2805.

(17) Graci, J. D.; Cameron, C. E. Quasispecies, error catastrophe, 1031 and the antiviral activity of ribavirin. *Virology* **2002**, *298*, 175–180. 1032

- 1033 (18) Crotty, S.; Maag, D.; Arnold, J. J.; Zhong, W.; Lau, J. Y.; Hong, 1034 Z.; Andino, R.; Cameron, C. E. The broad-spectrum antiviral 1035 ribonucleoside ribavirin is an RNA virus mutagen. *Nat. Med.* **2000**, 1036 *6*, 1375–1379.
- 1037 (19) Slocombe, L.; Al-Khalili, J. S.; Sacchi, M. Quantum and classical 1038 effects in DNA point mutations: Watson-Crick tautomerism in AT 1039 and GC base pairs. *Phys. Chem. Chem. Phys.* **2021**, 23, 4141–4150.
- 1040 (20) Baranovich, T.; Wong, S. S.; Armstrong, J.; Marjuki, H.; 1041 Webby, R. J.; Webster, R. G.; Govorkova, E. A. T-705 (favipiravir) 1042 induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J. 1043 Virol. 2013, 87, 3741–3751.
- 1044 (21) Domingo, E.; Martin, V.; Perales, C.; Grande-Pérez, A.; García-1045 Arriaza, J.; Arias, A. Viruses as quasispecies: Biological implications. 1046 *Curr. Top. Microbiol. Immunol.* **2006**, 299, 51–82.
- 1047 (22) Schäker-Hübner, L.; Haschemi, R.; Büch, T.; Kraft, F. B.; 1048 Brumme, B.; Schöler, A.; Jenke, R.; Meiler, J.; Aigner, A.; Bendas, G.; 1049 Hansen, F. K. Balancing Histone Deacetylase (HDAC) Inhibition and 1050 Drug-likeness: Biological and Physicochemical Evaluation of Class I 1051 Selective HDAC Inhibitors. ChemMedChem 2022, 17, 1052 No. e202100755.
- 1053 (23) Nicholls, A.; McGaughey, G. B.; Sheridan, R. P.; Good, A. C.; 1054 Warren, G.; Mathieu, M.; Muchmore, S. W.; Brown, S. P.; Grant, J. 1055 A.; Haigh, J. A.; Nevins, N.; Jain, A. N.; Kelley, B. Molecular Shape 1056 and Medicinal Chemistry: A Perspective. *J. Med. Chem.* **2010**, 53, 1057 3862–3886.
- 1058 (24) Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; 1059 Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; Narita, 1060 H.; Shiraki, K. In vitro and in vivo activities of anti-influenza virus 1061 compound T-705. *Antimicrob. Agents Chemother.* 2002, 46, 977–981. 1062 (25) Kiso, M.; Takahashi, K.; Sakai-Tagawa, Y.; Shinya, K.; Sakabe, 1063 S.; Le, Q. M.; Ozawa, M.; Furuta, Y.; Kawaoka, Y. T-705 (favipiravir) 1064 activity against lethal H5N1 influenza A viruses. *Proc. Natl. Acad. Sci.* 1065 U.S.A. 2010, 107, 882–887.
- 1066 (26) Gowen, B. B.; Wong, M. H.; Jung, K. H.; Smee, D. F.; Morrey, 1067 J. D.; Furuta, Y. Efficacy of favipiravir (T-705) and T-1106 pyrazine 1068 derivatives in phlebovirus disease models. *Antiviral Res.* **2010**, 86, 1069 121–127.
- 1070 (27) Morrey, J. D.; Taro, B. S.; Siddharthan, V.; Wang, H.; Smee, D. 1071 F.; Christensen, A. J.; Furuta, Y. Efficacy of orally administered T-705 1072 pyrazine analog on lethal West Nile virus infection in rodents. 1073 Antiviral Res. 2008, 80, 377–379.
- 1074 (28) Rocha-Pereira, J.; Jochmans, D.; Dallmeier, K.; Leyssen, P.; 1075 Nascimento, M. S. J.; Neyts, J. Favipiravir (T-705) inhibits in vitro 1076 norovirus replication. *Biochem. Biophys. Res. Commun.* **2012**, 424, 1077 777—780.
- 1078 (29) Yamada, K.; Noguchi, K.; Komeno, T.; Furuta, Y.; Nishizono, 1079 A. Efficacy of favipiravir (T-705) in rabies postexposure prophylaxis. *J.* 1080 *Infect. Dis.* **2016**, 213, 1253–1261.
- 1081 (30) Gowen, B. B.; Wong, M. H.; Jung, K. H.; Sanders, A. B.; 1082 Mendenhall, M.; Bailey, K. W.; Furuta, Y.; Sidwell, R. W. In vitro and 1083 in vivo activities of T-705 against arenavirus and bunyavirus 1084 infections. *Antimicrob. Agents Chemother.* **2007**, *51*, 3168–3176.
- 1085 (31) Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-1086 Fontela, C.; Günther, S. Successful treatment of advanced Ebola virus 1087 infection with T-705 (favipiravir) in a small animal model. *Antiviral* 1088 *Res.* **2014**, *105*, 17–21.
- 1089 (32) Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), A 1090 Broad Spectrum Inhibitor of Viral RNA Polymerase. *Proc. Jpn. Acad.* 1091 *Ser. B Phys. Biol. Sci.* **2017**, *93*, 449–463.
- 1092 (33) Manabe, T.; Kambayashi, D.; Akatsu, H.; Kudo, K. Favipiravir 1093 for the treatment of patients with COVID-19: a systematic review and 1094 meta-analysis. *BMC Infect. Dis.* **2021**, *21*, 489–501.
- 1095 (34) Lai, C. C.; Chao, C. M.; Hsueh, P. R. Clinical efficacy of 1096 antiviral agents against coronavirus disease 2019: A systematic review 1097 of randomized controlled trials. *J. Microbiol. Immunol. Infect.* **2021**, 54, 1098 767–775.
- 1099 (35) https://clinicaltrials.gov.

- (36) Joshi, S.; Parkar, J.; Ansari, A.; Vora, A.; Talwar, D.; Tiwaskar, 1100 M.; Patil, S.; Barkate, H. Role of favipiravir in the treatment of 1101 COVID-19. *Int. J. Infect Dis.* **2021**, *102*, 501–508.
- (37) Joshi, S.; Vora, A.; Venugopal, K.; Dadhich, P.; Daxini, A.; 1103 Bhagat, S.; Patil, S.; Barkate, H. Real-World Experience with 1104 Favipiravir for the Treatment of Mild-to-Moderate COVID-19 in 1105 India. *Pragmatic Obs. Res.* **2022**, *13*, 33–41.
- (38) De Savi, C.; Hughes, D. L.; Kvaerno, L. Quest for a COVID-19 1107 Cure by Repurposing Small-Molecule Drugs: Mechanism of Action, 1108 Clinical Development, Synthesis at Scale, and Outlook for Supply. 1109 Org. Process Res. Dev. 2020, 24, 940–976.
- (39) Al Bujuq, N. Methods of Synthesis of Remdesivir, Favipiravir, 1111 Hydroxychloroquine, and Chloroquine: Four Small Molecules 1112 Repurposed for Clinical Trials during the Covid-19 Pandemic. 1113 Synthesis 2020, 52, 3735–3750.
- (40) Chakraborty, C.; Sharma, A. R.; Bhattacharya, M.; 1115 Agoramoorthy, G.; Lee, S. S. The Drug Repurposing for COVID-19 1116 Clinical Trials Provide Very Effective Therapeutic Combinations: 1117 Lessons Learned From Major Clinical Studies. *Front. Pharmacol.* 1118 2021, 12, 704205.
- (41) Gaonkar, S. L.; Deepika, D.; Hakkimane, S. S. Favipiravir (6- 1120 Fluoro-3-hydroxy-2-pyrazinecarboxamide) a Broad Spectrum Inhib- 1121 itor of Viral RNA Polymerase in COVID-19 Treatment. *Chem. Select* 1122 **2021**, *6*, 12652–12662.
- (42) (a) Huchting, J.; Vanderlinden, E.; Van Berwaer, R.; Meier, C.; 1124 Naesens, L. Cell line-dependent activation and antiviral activity of T- 1125 1105, the non-fluorinated analogue of T-705 (favipiravir). *Antiviral* 1126 *Res.* 2019, 167, 1–5. (b) Furuta, Y.; Takahashi, K.; Shiraki, K.; 1127 Sakamoto, K.; Smee, D. F.; Barnard, D. L.; Gowen, B. B.; Julander, J. 1128 G.; Morrey, J. D. T-705 (favipiravir) and related compounds: Novel 1129 broad-spectrum inhibitors of RNA viral infections. *Antiviral Res.* 2009, 1130 82, 95–102. (c) Huchting, J.; Vanderlinden, E.; Winkler, M.; Nasser, 1131 H.; Naesens, L.; Meier, C. Prodrugs of the Phosphoribosylated Forms 1132 of Hydroxypyrazinecarboxamide Pseudobase T-705 and Its De-Fluoro 1133 Analogue T-1105 as Potent Influenza Virus Inhibitors. *J. Med. Chem.* 1134 2018, 61, 6193–6210.
- (43) (a) Assis, L. C.; Alves de Castro, A.; Almirao de Jesus, J. P.; 1136 Ferreira da Cunha, L. F.; Nepovimova, E.; Krejcar, O.; Kuca, K.; 1137 Castro Ramalho, T.; de Almeida La Porta, F. Theoretical insights into 1138 the effect of halogenated substituent on the electronic structure and 1139 spectroscopic properties of the favipiravir tautomeric forms and its 1140 implications for the treatment of COVID-19. RSC Adv. 2021, 11, 1141 35228. (b) Du, Y. X.; Chen, X. P. Favipiravir: Pharmacokinetics and 1142 Concerns About Clinical Trials for 2019-nCoV Infection. Clin. Pharm. 1143 Ther. 2020, 108, 242–247.
- (44) (a) Deneva, V.; Slavova, S.; Kumanova, A.; Vassilev, N.; 1145 Nedeltcheva-Antonova, D.; Antonov, L. Favipiravir-tautomeric and 1146 complexation properties in solution. Pharmaceuticals 2023, 16, 45. 1147 (b) Antonov, L. Favipiravir tautomerism: a theoretical insight. Theor. 1148 Chem. Acc. 2020, 139, 145. (c) Konstantinova, I. D.; Andronova, V. 1149 L.; Fateev, I. V.; Esipov, R. S. Favipiravir and its structural analogs: 1150 Antiviral activity and synthesis methods. Acta Naturae 2022, 14, 16-1151 38. (d) Babashkina, M. G.; Frontera, A.; Kertman, A. V.; Saygideger, 1152 Y.; Murugavel, S.; Safin, D. A. Favipiravir: insight into the crystal 1153 structure, Hirshfeld surface analysis and computational study. J. 1154 Iranian Chem. Soc. 2022, 19, 85-94. (e) Tiyasakulchai, T.; 1155 Charoensetakul, N.; Khamkhenshorngphanuch, T.; Thongpanchang, 1156 C.; Srikun, O.; Yuthavong, Y.; Srimongkolpithak, N. Scalable synthesis 1157 of favipiravir via conventional and continuous flow chemistry. RSC 1158 Adv. 2021, 11, 38691. (f) Umar, Y. Theoretical studies of the 1159 rotational and tautomeric states, electronic and spectroscopic 1160 properties of favipiravir and its structural analogues: a potential 1161 drug for the treatment of COVID-19. J. Taibah Univ. Sci. 2020, 14, 1162 1613-1625. (g) Yasir, H. M.; Hanoon, F. H. DFT and TD-DFT 1163 Study of Favipiravir Tautomerism as RNA Polymerase Inhibitors: 1164 COVID-19. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 928, 072066. (45) (a) Sato, N.; Matsumoto, K.; Takishima, M.; Mochizuki, K. 1166

- 1169 1997, 21, 3167-3172. (b) Cheeseman, G. W. H.; Godwin, R. A.
- 1170 Pyrazines. Part IV. 2,6-Dihydroxy-3,5-diphenylpyrazine and related
- 1171 compounds. J. Chem. Soc. C 1971, 2977-2979. (c) Sato, N. In
- 1172 Comprehensive Heterocyclic Chemistry, 2nd ed.; Katritzky, A. R., Rees,
- 1173 C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, U.K., 1996; Vol. 6, p 1174 241.
- (46) (a) Hatherley, L. D.; Brown, R. D.; Godfrey, P. D.; Pierlot, A. 1175
- 1176 P.; Caminati, W.; Damiani, D.; Melandri, S.; Favero, L. B. J. Phys.
- 1177 Chem. 1993, 97, 46. (b) Mata, S.; Cortijo, V.; Caminati, W.; Alonso, J.
- 1178 L.; Sanz, M. E.; Lopez, J. C.; Blanco, S. Tautomerism and
- 1179 Microsolvation in 2-Hydroxypyridine/2-Pyridone. J. Phys. Chem. A 1180 **2010**, 114, 11393-11398.
- 1181 (47) Toyama Chemical Co. Ltd. Method for producing 3-hydroxy-2-1182 pyrazinecarboxamide. JP 5739618 B2, 2015.
- (48) Method for producing 3,6-dichloro-2-pyrazinecarbonitrile. JP 1183 1184 5559604B2
- 1185 (49) Fused ring heterocycle kinase modulators. WO 2006/015124, 1186 2006.
- (50) Feng, B.; Li, Y.; Li, H.; Zhang, X.; Xie, H.; Cao, H.; Yu, L.; Xu, 1187 1188 Q. Specific N-Alkylation of Hydroxypyridines Achieved by a Catalyst 1189 and Base-Free Reaction with Organohalides. J. Org. Chem. 2018, 83,
- (51) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals 1191 1192 for main group thermochemistry, thermochemical kinetics, non-
- 1193 covalent interactions, excited states, and transition elements: two new
- 1194 functionals and systematic testing of four M06-class functionals and
- 1195 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.

1190 6769-6775.

- 1196 (52) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, 1197 triple zeta valence and quadruple zeta valence quality for H to Rn: 1198 design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 1199 3297.
- 1200 (53) Becke, A. D. A new mixing of Hartree-Fock and local densityfunctional theories. J. Chem. Phys. 1993, 98, 1372. 1201
- (54) Petersson, G. A.; Al-Laham, M.A. A Complete Basis Set Model 1203 Chemistry. II. Open-Shell Systems and the Total Energies of the First-1204 Row Atoms. J. Chem. Phys. 1991, 94, 6081-6090.
- (55) Romero, A. H.; Squitieri, E. Effect of heterosubstituent and ring 1206 puckering angle on linear and nonlinear properties of exo-insaturated 1207 four-membered heterocycles, Y = CCH₂CH₂X: A comparative ab 1208 initio, DFT and semi-empirical study. Mol. Phys. 2016, 114, 2232-1209 2247
- 1210 (56) Romero, A. H. A theoretical conformational study on the 1211 structural parameters involved in the ring strain of exo-insaturated 1212 four-membered heteroccyles, YCCH2CH2X. Mol. Phys. 2016, 114, 1213 3040-3054.
- (57) Romero, A. H.; Squitieri, E. Potential use of small basis set on 12.14
- 1215 the calculations of electronic properties of some four-membered 1216 heterocycles: A conformational study. Mol. Phys. 2017, 115, 261-277.
- (58) Romero, A. H. A theoretical conformational study on the
- 1218 multipole momento of exo-insaturated four-membered heteroccyles, $Y = CCH_2CH_2X$. Mol. Phys. **2017**, 115, 2528–2546. 1219
- (59) CrysAlisPro, ver. 1.171.38.41; Rigaku Oxford Diffraction, 2015.
- (60) Sheldrick, G. M. SHELXT-Integrated Space-Group and 1222 Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3-8.
- (61) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. 1223 1224 **2008**, A64, 112-122.
- (62) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
- 1226 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
- 1227 B.; Petersson, G. A.; et al. Gaussian 09, rev. A.1; Gaussian, Inc.: 1228 Wallingford, CT, 2009.
- 1229 (63) Fuentes, G.; García, M. F.; Cerecetto, H.; Álvarez, G.; Couto,
- 1230 M.; Romero, A. H. One-Step Synthesis of Favipiravir from
- 1231 Selectfluor® and 3-Hydroxy-2-pyrazinecarboxamide in Ionic Liquid.
- 1232 Org. Biomol. Chem. 2023, 21, 3660-3668.
- 1233 (64) Benkyi, I.; Tapavicza, E.; Fliegl, H.; Sundholm, D. Calculation
- 1234 of vibrationally resolved absorption spectra of acenes and pyrene.
- 1235 Phys. Chem. Chem. Phys. 2019, 21, 21094-21103.