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Abstract. A novel overlapping approach, termed the Overset IEFG-FE method (Ov-IEFG-FEM), is
proposed for solving transient heat conduction problems with concentrated moving heat sources. This
mesh-less/mesh-based chimera-type method combines improved element-free Galerkin (IEFG) and finite
element (FE) methods. The Ov-IEFG-FEM uses a coarse FE mesh to discretise the problem geometry,
while a set of overlapping patch nodes moves with the heat source, enhancing accuracy via the IEFG
technique to capture marked thermal gradients. In regions outside the heat source area where accuracy
requirements are lower, the thermal problem is solved using the FE method (FEM). The method involves
solving the problem over these two overlapping domains and transferring numerical information between
the approximations performed on both. The Ov-IEFG-FEM aims to provide an enriched solution by cou-
pling temperature fields computed on the patch nodes and the coarse background mesh using IEFG and
FE methods, respectively. Numerical experiments demonstrate the method potential in accurately and
efficiently solving transient heat conduction problems with concentrated moving heat sources, including
marked non-linear aspects related to temperature-dependent properties and phase change phenomena.
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1 Introduction

Most numerical solutions reported in the literature for transient heat conduction problems with mov-
ing heat sources are based on mesh-based discretisation techniques such as the finite element method
or the finite volume method, often requiring significant refinements along the scanning path to achieve
an appropriate capture of high temperatures and marked thermal gradients. It is also well-known that
performing mesh refinements along the heat source path or adaptive re-meshing techniques can be very
cumbersome, and sometimes even unfeasible in problems involving heat sources following curved scan-
ning paths in complex 3-D geometries[1–3]. Mesh-less or mesh-free methods have a emerged as an
interesting alternative to the most commonly used mesh-based techniques due to two main reasons[4]:
(i) the capability of easily attain higher-order approximations with continuous derivatives, and (ii) the
enhanced flexibility of adding or removing nodes during adaptive local refinements. Such versatility of
mesh-less methods has also enabled the implementation of such numerical techniques in the solution of
both linear and non-linear applied problems involving concentrated moving heat sources[1, 2]. Although
the potential of mesh-less methods, these numerical techniques still pose noteworthy challenges in terms
of computational efficiency, which primarily arise from the need for identifying neighbouring nodes that
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define the support domain for numerical approximations and the construction of shape functions via more
computationally expensive unconventional procedures[1, 2, 4]. The emergence of hybrid mesh-less/mesh-
based approaches has introduced very interesting alternatives that combine the strengths of mesh-less
methods with the less computationally demanding approximations usually involved in standard mesh-
based techniques[5]. The mesh-less element-free Galerkin (EFG) method shares similarities with FEM,
notwithstanding differences in the construction of shape functions and assembly of the algebraic sys-
tem of equations. These analogies primarily arise from both numerical techniques being developed in
a weak formulation of the governing equations, promoting the development of hybrid EFG-FEM-based
approaches[5]. These techniques improve computational efficiency by using EFG methods only in re-
gions demanding high numerical accuracy[5], and the less computationally expensive FEM is used in the
rest of the problem domain. Although hybrid EFG-FEM approaches have provided excellent results in
scenarios demanding high accuracy[5], these techniques commonly require well defined coupling bound-
aries where EFG and FEM regions share common nodes. Implementing these approaches in transient
heat conduction with concentrated moving heat sources might pose challenges due to the need of redefin-
ing the EFG-FEM coupling boundaries at each time step, such EFG computations are performed only
near the moving heat source location. This communication aims to highlight the potential of a recently
developed chimera-type scheme based on the Improved EFG (IEFG) and the FEM to overcome these
challenges. The proposed Overset IEFG-FEM (Ov-IEFG-FEM) offers an enriched accurate solution,
smoothly transitioning from EFG to FEM regions dispensing with predefined topological relationship.

2 Governing equations and problem description

The Ov-IEFG-FEM will be used to solve a problem emulating the thermal conditions of the direct metal
laser sintering (DMLS) of AlSi10Mg alloys, with the geometric features depicted in Fig. 1. The enriched
solution is obtained solving the governing equations of transient heat conduction in the domain ΩFEM
with boundaries ΓFEM = ΓD ∪ ΓN and the domain ΩIEFG with boundaries ΓIEFG, and performing an
appropriate coupling via a reciprocal transfer of information. The thermal problem in ΩFEM is:

ρcp
∂T
∂t

= ∇.(k∇T )+ Q̇ in ΩFEM × [0, t f ],

T = TD on ΓD × [0, t f ], and k∇T · n̂ = qN on ΓN × [0, t f ], (1)

whereas the thermal problem in ΩIEFG is:

ρcp

(
∂T
∂t

− v⃗ ·∇T
)
= ∇.(k∇T )+ Q̇+ρH f

(
∂ fs

∂t
− v⃗ ·∇ fs

)
in ΩIEFG × [0, t f ],

T = T̃FEM on ΓIEFG × [0, t f ]. (2)

It is important to note that the effect of the moving heat source can be incorporated either through
the volumetric term Q̇ or as a concentrated surface heat flux via a Neumann condition. The choice
depends on the specific model used for the moving heat source, as discussed in [1, 2]. Phase change
terms, dependent on fs and H f , are exclusively incorporated within ΩIEFG since melting/solidification
only occurs in proximity to the moving heat source represented by the surface Gaussian distribution
qN = 2ηQ̇T/(πr2

0)e
−2[(x−||v||×t)2+y2]/r2

0 . The temperature fields in the weak formulation of Eqs. (1) and (2)
are approximated using standard linear interpolating finite element basis functions ϕ(I)

FEM(⃗x) and improved
moving least squares (IMLS) approximations ϕ(I)

IEFG(⃗x), respectively:

TFEM(⃗x) =
nFEM

∑
I=1

ϕ(I)
FEM(⃗x)T̂ (I)

FEM for all x⃗ ∈ ΩFEM, TIEFG(⃗x) =
nIEFG

∑
I=1

ϕ(I)
IEFG(⃗x)T̂

(I)
IEFG for all x⃗ ∈ ΩIEFG. (3)
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Figure 1: Detail on the discretisation of ΩFEM and representation of ΩIEFG. The nodes representing ΩIEFG con-
stantly moves tracking the scanning path, according to the the heat source velocity v⃗. This movement ensures that,
at every time step, the heat source remains precisely centered within the arrangement of nodes.

Substituting the approximations given in (3) into the weak formulation of Eqs. (1) and (2) gives rise to
the following systems of equations:

CFEM
˙̂TFEM +KFEMT̂FEM = Q(T )

FEM in ΩFEM

CIEFG
˙̂TIEFG +

(
KIEFG −AIEFG +K(p)

IEFG

)
T̂IEFG = Q(T )

IEFG +Q(p)
IEFG in ΩIEFG (4)

The Dirichlet condition T̃FEM on the immersed boundaries ΓIEFG is obtained through local reconstruction
of FEM-based results via IMLS approximations over the sub-domain ΩRec ∈ ΩFEM (yellow region in
Fig. 1). This allows the transfer of information from ΩFEM to ΩIEFG using the penalty matrix K(p)

IEFG and
vector Q(p)

IEFG in the system of equations for ΩIEFG. Numerical information from IEFG-based results is
reciprocally transferred to the FE mesh using IMLS approximations TIEFG(⃗x) to compute temperatures
at FE mesh nodes within ΩIEFG. These nodal values are then prescribed in the system of equations for
ΩFEM. The iterative procedure continues until convergence is achieved in the coupling along ΓIEFG and
with respect to non-linearities related to phase change and temperature-dependent thermal properties.

3 Numerical results

The Ov-IEFG-FEM simulations for the thermal problem have been performed with laser power ab-
sorptivity η = 0.95 and heat source effective radius r0 = 100,µm. Results for total heat source power
Q̇T = 150 W with scanning speed ||⃗v|| = 500 mm/s are shown in Fig. 2 (a), with a sensitivity analysis
on melt pool depth to variations in these parameters presented in Fig. 2 (b). The outcomes demonstrate
seamless coupling along ΓIEFG and accurate capture of thermal gradients near the heat source. This indi-
cates an appropriate information transfer between overlapping domains and solution of non-linearities.
The sensitivity analysis on melt pool depth to variations in Q̇T and ||⃗v|| suggests a consistent thermal
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model as it behaves as expected in a wide range process parameters. Solving the phase change effects as
a heat source term improves the convergence during the non-linear thermal problem numerical solution.

(a) Temperature field (b) Dependence of melt pool depth with Q̇T and ||⃗v||.

Figure 2: Numerical solution for the DMLS thermal problem, via the Ov-IEFG-FEM.

4 Conclusions

The Ov-IEFG-FEM introduces a novel approach to solving non-linear transient heat conduction prob-
lems with concentrated moving heat sources. By using a coarse FE mesh and overlapping patch nodes
for IEFG computations, the method achieves enhanced accuracy, seamlessly coupling temperature fields
and capturing thermal gradients. The sensitivity analysis confirms stability across a wide range of pro-
cess parameters, and incorporating phase change effects as a heat source term has improved convergence
in the numerical solution of material non-linearities.
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