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ABSTRACT

Aims. Our goal is to study the gravitational effects caused by the passage of the Large Magellanic Cloud (LMC) in its orbit on the
stellar halo of the Milky Way.
Methods. We employed Gaia Data Release 3 to construct a halo tracers dataset consisting of K-giant stars and RR-Lyrae variables.
Additionally, we compared the data with a theoretical model to estimate the dark matter subhalo mass.
Results. We have improved the characterisation of the local wake and the collective response due to the LMC’s orbit. We have also
estimated for the first time the dark subhalo mass of the LMC to be of the order of 1.7 × 1011 M�, which is comparable to previously
reported values in the literature.
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1. Introduction

Dark matter (DM) is central to the standard cosmological model
(LCDM), providing gravitational support for the formation of
galaxies and systems of galaxies (Mo et al. 2010). Its exis-
tence is backed by a plethora of observational data, includ-
ing galaxies’ rotation curves (Zwicky 1933; Rubin et al. 1970),
strong and weak gravitational lensing effects (Massey et al.
2010; Clowe et al. 2006), and even the presence of baryonic
acoustic oscillation (Planck Collaboration VI. 2020) in the ear-
lier gravitational wells observed in the cosmic microwave back-
ground (CMB).

Despite these successes, we still lack a precise detec-
tion either in the laboratory (Bernabei et al. 2022; Aprile et al.
2023; Barberio et al. 2023; Amaré et al. 2022) or by indirect
astrophysical observation (Abdalla et al. 2022; Acharyya et al.
2023; Abe et al. 2023). Many theoretical candidates arise out
of physics beyond the standard model (BSMP), like weakly
interacting massive particles (WIMPS). These massive (mDM ∼

100 GeV) particles could weakly interact with nucleons, and
therefore their signals have been looked at by several labora-
tory and accelerator experiments. Also, their annihilation sig-
nals could be detectable through γ-ray emission by high-energy
telescopes. Despite a massive experimental effort, DM remains
a theoretical hypothesis, albeit one with impressive empirical
support.

Other DM candidates could be more massive, such as
primordial black holes (PBHs) (Carr & Kühnel 2020), which
were recently constrained with a series of consistency tests.
Nowadays, there is still room to be an essential contribu-
tor to the DM content but this is limited to small windows
in mass (Villanueva-Domingo et al. 2021). Other candidates
include massive ultralight particles (ULDMs) that could reach

masses as low as 10−23 eV (Hui et al. 2017). Therefore, the pos-
sible DM mass range remains unconstrained today. Addition-
ally, DM particles could interact with themselves, and have or
not have spin, and other properties, including their mass, remain
elusive.

Depending on the nature of the DM particle, there are rel-
evant changes in the structure and number of DM halos and
subhalos (Zavala & Frenk 2019). For example, some candidates,
like warm dark matter (WDM), introduce a cut-off scale in the
initial power spectrum of mass fluctuations (mDM ∼ 1 KeV), and
others a scale during the non-linear evolution phase in which the
DM particles self-interact (SIDM) (Tulin & Yu 2018). Both pro-
cesses change the abundance of DM subhalos and the density
profiles of the DM halos in comparison to the predictions of the
cold dark matter (CDM) model.

Buschmann et al. (2018) show, using CDM simulations, that
the gravitational pull of DM subhalos affects the distribution
of stars in galactic halos, and could be used to discover dark
subhalos (those without star formation in situ, a precise predic-
tion of the CDM model) and also allow one to test the nature
of the DM particles itself. This work simulated a passing DM
subhalo’s perturbation to the phase space stellar distribution.
Stars are pulled towards the subhalo as it passes, leaving a dis-
tinctive feature in the halo stars’ velocity and number density,
known as a wake. This phenomenon was previously analyti-
cally described by Weinberg (1986) due to the gravitational fric-
tion that provokes the orbital decay of the satellite galaxies that
inhabit the DM subhalo. There have been some efforts to quan-
tify the magnitude of phase-space perturbations caused by the
passage of DM subhalos using simulations and their possible
detection (Bazarov et al. 2022).

Garavito-Camargo et al. (2019) used CDM simulations to
quantify the impact of the LMC’s passage on the density and
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kinematics of the Milky Way (MW) DM halo and the observ-
ability of these structures in the MW’s stellar halo. Their results
indicated a pronounced wake, which could be decomposed in
a transient response and a collective one in both the DM and
stellar halo distributions. Such an effect was observed for the
first time in the MW halo stars by Conroy et al. (2021). The
authors studied the effects induced by the Magellanic Clouds
System (MCS) merging in selected samples of MW stars with
precise Gaia Satellite measurements. This detection, and the
increasing availability of stellar data from Gaia DR3 release,
has paved the way for a more precise measurement of the
effect. Measurements of the wake on the perturber systems of
reference will allow pursuit further testing of the DM parti-
cle’s nature using this merger data, as was proposed recently
by Foote et al. (2023) (in the context of systems of galaxies
see Furlanetto & Loeb 2002; Buehler & Desjacques 2023). Fur-
thermore, Aguilar-Argüello et al. (2022) and Cunningham et al.
(2020) conducted studies on the decomposition into spherical
harmonics of both density and velocity, respectively, in order to
quantify the response of the DM halo to the passage of the Large
Magellanic Cloud (LMC).

Based on the findings of Conroy et al. (2021), we have used
Gaia Data Release 3 to study the DM subhalo of the Magellanic
Clouds. Our code developments will also allow us to apply the
methodology to other MW satellite galaxies and globular clus-
ters and even to develop methods of detecting the presence of the
dark subhalos predicted by the CDM model.

This work is organised as follows. In Sect. 2, we present the
data samples selection methodology used to identify the effects
of the DM subhalo of the LMC on the MW stellar halo. In
Sect. 3, we briefly describe the theoretical model. Meanwhile,
we present our results in Sect. 4. Section 5 presents the conclu-
sions and future perspectives. Finally, we present in Appendix A
a description of the coordinates’ transformation, in Appendix B
the machine learning algorithm used to estimate radial veloci-
ties, and in Appendix C a validation of our method of inferring
distances.

2. Data reduction

We studied the gravitational response of the MW’s halo to the
passage of the LMC in its orbit. To achieve this, we used the data
from Gaia Data Release 3 (Gaia Collaboration 2023, 2016) and
created two catalogues of halo tracers; namely, K-giant stars and
RR-Lyrae ones. We followed the steps proposed by Conroy et al.
(2021) to address this task.

2.1. K-giant dataset

To construct the K-giant catalogue, we started the analysis with
162 240 774 sources characterised by ruwe values below 1.4,
parallax measurements lower than 0.2 mas, and galactic lati-
tudes of |b| > 10◦ to remove the galactic plane. To ensure data
quality, we performed a series of cleaning procedures. First,
we eliminated sources lacking proper motion and photometric
data. To account for dust extinction, we obtained the dust map
from Green (2018) and considered the Schlegel, Finkbeiner and
Davis (SFD) map to derive the excess colour, E(B − V). Sub-
sequently, we discarded all sources with E(B − V) > 0.3. To
obtain the corrected magnitudes, we considered the following
coefficients: AG/E(B − V) = 2.4, ABP/E(B − V) = 2.58, and
ARP/E(B − V) = 1.65. To focus solely on the giant branch,
we restricted the selection to sources satisfying the condition
1.4 < (BP∗ − RP∗) < 2, where BP∗ and RP∗ represent the cor-

rected magnitudes. Next, following Riello et al. (2021), we per-
formed the 3σ cut upon the corrected BP and RP flux excess fac-
tor (C∗). After completing the data-cleaning process, to ensure
the purity of our catalogue specifically for K-giant stars, we
performed a cross-match with the spectral types provided by
Gaia (gaiadr3.astrophysical parameters) and obtained a dataset
of 490 669 sources. Finally, we restricted our analysis to objects
within a galactocentric distance between 30 kpc and 100 kpc,
leaving 245 086 sources. Among them, only 10 989 had radial
velocities measured by Gaia (Katz et al. 2023).

To estimate the radial velocity for the remaining sources, we
employed a machine learning algorithm, specifically a Random-
ForestRegressor (Pedregosa et al. 2011). The accuracy of our
model is 87.0% (see Appendix B for details).

To determine the photometric distance, we used the MIST
code (Dotter 2016; Choi et al. 2016; Paxton et al. 2011) to gener-
ate an isochrone with the specific LMC parameters, which are an
age of 10 Gyr and a metallicity of [Fe/H] = −1.5. We restricted
the isochrone to an effective temperature from 3800 K to 4400 K,
and fitted the polynomial equation

MG = 2.8894(BP∗ − RP∗)2 − 11.9263(BP∗ − RP∗) + 8.7151. (1)

To validate our distance inference method, we compared our cal-
culated distances with reference values for some globular clus-
ters, the Magellanic Clouds (LMC and SMC), and some satellite
galaxies (see Appendix C for details). Our method successfully
reproduced tabulated distances, since the mean calculated dis-
tances differed by less than 20%.

Afterwards, we implemented several masks to exclude
known objects from our analysis. Specifically, we applied
angular and distance masks to all the globular clusters listed
in Harris (1996) and all the satellite galaxies reported in
Drlica-Wagner et al. (2020).

Following the methodology proposed by Conroy et al. (2021),
we employed proper motions to eliminate structures linked to the
Sagittarius stream. To achieve this, we initially correct the proper
motions due to the solar reflex motion, with the Gala package
(Price-Whelan 2017; Price-Whelan et al. 2020). The used param-
eters were R� = 8.122 kpc (Abuter 2019), (VR,�,Vφ,�,VZ,�) =

(−12.9, 245.6, 7.78) km s−1 (Drimmel & Poggio 2018), and the
distance of the Sun from the Galactic mid-plane, Z� = 20.8 pc
(Bennett & Bovy 2019). For b > 10◦ and |BSgr| < 15◦, where
BSgr is the latitude in the frame of the Sagittarius orbital plane,
we removed part of the northern arm of the stream by taking
out the sources that have µα∗ > −1.3 mas yr−1, −0.4 < µδ <
0.3 mas yr−1, and µδ > 1.7µα∗ + 0.4. To eliminate the rest of
the north arm, we applied a mask to the region with coordinates
b > 0◦ and 180◦ < l < 210◦. The final selection of sources was
based on proper motions; that is, we kept only those that satisfied
µ2
α∗ + (µδ + 0.1)2 < 0.52 (Conroy et al. 2021). By implementing

this criterion, one effectively excludes disk stars, stars belonging
to the Large and Small Magellanic Clouds, the Sagittarius dwarf
spheroidal, and other Sagittarius arms. After this matching, our
final dataset of K giants had 6058 sources.

2.2. RR-Lyrae dataset

To build the RR-Lyrae catalogue, we started the process by
using the 271 779 sources catalogued as RR-Lyrae variables by
Gaia. Initially, we performed data cleaning by keeping stars
with ruwe < 1.4, and excluding those lacking metallicity, as
well as those with errors in metallicity exceeding the absolute
value of the metallicity itself. We then discarded all sources with
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E(B − V) > 0.3, and the galactic plane |b| < 10◦. These cuts
yielded a set of 66 610 stars, of which only 2440 had radial
velocity measurements provided by Gaia.

To increase the amount of data with measured radial veloc-
ities and metallicities, we performed a series of data cross-
matching steps. We used the SEGUE catalogue (Ahn et al.
2012) to complete the radial velocities and metallicities of our
dataset, using the ones measured by Sloan (cross-match with
ID table sdss_dr17.x1p5__specobj__gaia_dr3__gaia_source).
In this case, no extra points were incorporated.

Additionally, we utilised the RR-Lyrae catalogue provided
by Wang et al. (2022) to complete our catalogue with the sources
not present in our dataset (288 points were incorporated) or
to complete our radial velocity and metallicity data. After the
cross-matching process, we ended up with a catalogue of 73 598
sources, of which 6523 have measured radial velocities. To
obtain the radial velocity for the remaining sources, we applied
a combined algorithm of data augmentation + random-forest
regressor. In this case, the accuracy of our model is 49.0% (see
Appendix B for details). Similar to the K-giant approach, we cor-
rected the magnitudes to account for dust extinction. The abso-
lute magnitude is connected to the metallicity through MG =
0.32[Fe/H] + 1.11 (Muraveva et al. 2018); therefore, one can
obtain their distances using the distance modulus relationship.

To ensure consistency, we followed a similar approach to
that used with the K-giants. To eliminate known objects from
the Harris (1996) and Drlica-Wagner et al. (2020) catalogues,
we applied an angular mask, taking into account the distance to
the sources. Additionally, to exclude the Sagittarius stream from
our analysis, we employed the cut-off criterion of |BS gr | < 15◦
for b > 0◦. Then, we focused our analysis on objects with
galactic distances between 30 kpc < Rgal < 100 kpc. In the
final step, we removed stars that did not satisfy the condition
µ2
α∗ + (µδ + 0.1)2 < 0.52 (Conroy et al. 2021) after performing

the solar reflex motion correction to the proper motions. There-
fore, the final sample has 2446 sources.

Since our aim is to extract the mass of the DM subhalo sur-
rounding the Large and Small Magellanic Clouds, we performed
a transformation of coordinates to a new reference system. This
particular coordinate reference system is centred on the centre of
mass (CM) of the MCS, with the x axis aligned with the direc-
tion of the velocity of the CM (see Appendix A for details), and
it is considered a rest frame. In order to obtain the position and
velocity of the CM, we considered the LMC mass to be nine
times the SMC mass (Craig et al. 2022).

3. Theoretical model and likelihood analysis

We used the theoretical model for stellar wakes from DM sub-
halos proposed by Buschmann et al. (2018), where the authors
assumed a Plummer sphere for the density profile of the DM
subhalo. The reference system used in this section corresponds
to the one centred on the CM of the MCS, with the x axis
in the direction of the velocity of the DM subhalo mass (see
Appendix A.1 for details). From the collisionless Boltzmann
equation, they derived the time-independent phase-space distri-
bution function in the subhalo rest frame

f (r̄, v̄,Ms) = f0(v̄)
1 +

2GMs

v2
0

(v̄ + v̄s) · ᾱ
 , (2)
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1

rv
√

1 +
R2

s
r2

√
1 +

R2
s

r2
v̄
v
− r̄

r√
1 +

R2
s

r2 −
v̄·r̄
rv

.

In the equations, f0(v̄) =
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î +
vy

v2
0y
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 · ᾱ.
In order to obtain the mass of the DM subhalo of the MCS, we
performed a statistical analysis using the likelihood function to
compare observational data in the new reference system and the
theoretical model. This analysis was performed by using only the
space data (3D) and the phase-space data (6D). The un-binned
likelihood function for the 6D analysis is (Buschmann et al.
2018)

p6D(Ms, θ) = e−Ns(Ms)
Nd∏

k=1

f (r̄k, v̄k,Ms) , (4)

where Nd is the number of stars in the region of interest (sphere
of radius R centred on the CM of the MCS), Ns is the predicted
number of stars in the same region, and θ are the fixed param-
eters of our model; that is, n0, v0, Rs, and v̄s. For the Plummer
sphere and for the distribution function of Eq. (2), Ns(Ms) can
be computed as (Buschmann et al. 2018)

Ns(Ms) =
4
3
πR3n0 +

4πGMsn0

v0vs
γ F

(
vs

v0

)
,

γ = R2

√
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s

R2 − R2
s arcsinh

(
R
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)
,

F(x) = e−x2
∫ x

0
ey2

dy.

For the Plummer sphere and for the distribution function of
Eq. (3), the predicted number of stars is

Ns(Ms) =
4
3
πR3n0 +

4GMsn0

v0xv0yv0z
γ I (v̄0, vs) ,

I (v̄0, vs) =

∫
d3 p
2π

e−p2
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(
2vs px

v0x

)
( px

v0x

)2

+

(
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v0y

)2

+

(
pz
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)2−1/2

.

For the 3D data, the un-binned likelihood function is

p3D(Ms, θ) = e−Ns(Ms)
Nd∏

k=1

∫
d3v f (r̄k, v̄,Ms) . (5)

To determine the DM subhalo mass, we used a Markov-chain
Monte Carlo (MCMC) method. For this purpose, we utilised the
emcee package (Foreman-Mackey et al. 2013). We considered
the function

λ(Ms) = ln (px (Ms, θ)) , (6)
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Fig. 1. Density distribution of K-giant and RR-Lyrae vari-
ables (Mollweide projection map) with 30 < Rgal < 60 kpc
(top panel) and 60 < Rgal < 100 kpc (bottom panel). The
data was smoothed using an FWHM of 30◦. The magenta
line represents the past orbit of the MCS CM. The dashed
blue and red lines represent the Pisces and Virgo overden-
sities, respectively. The black dots represent the members
of the Magellanic Stellar Stream. The green lines are the
Pisces Plume.

where x stands for the 3D or 6D analysis. The prior used was
10 < log10 Ms < 12. The functions, px, are presented in Eqs. (4)
and (5). We considered 32 walkers and checked the convergence
every 100 steps. To compute the uncertainties, we used the 16th,
50th, and 84th percentiles of the samples in the marginalised
distributions (Foreman-Mackey et al. 2013).

4. Results

In Fig. 1, we present a Mollweide projection map displaying the
distribution of our final dataset of 8504 stars in galactic coor-
dinates (6058 K giants and 2446 RR Lyraes). To enhance the
visual representation, the map has been smoothed using Gaus-
sian functions with a full width at half maximum (FWHM) of
30◦. The colour bar represents the density contrast, indicating
the relative density variation from its mean value across the sam-
ple. The past 1 Gyr orbit of the CM of the MCS is shown with a
magenta line, computed with the gala package using the Milky-
WayPotential (Bovy 2015). The dotted blue and red lines rep-
resent the Pisces (Chandra et al. 2023b) and Virgo overdensities
(Perottoni et al. 2022), respectively. The green lines are the poly-
nomials adjusted by Chandra et al. (2023b) that limit the Pisces
Plume. The black dots represent the members of the Magellanic
Stellar Stream taken from Chandra et al. (2023a). The dark blue
region corresponds to the masked region representing the galac-
tic plane.

Two distinct regions of overdensities can be observed. The
first one, located in the northern hemisphere, with a longitude

range between 225◦ and 315◦, is associated with the collective
response, also known as the global response. On the other hand,
the southern feature appears to cover a larger area (−30◦ < l <
130◦) and exhibits significant prominence at a longitude of 50◦
and a latitude of approximately −26◦. This overdensity is asso-
ciated with the local wake. A more minor component is also
present in the northern hemisphere, within a longitude range of
30◦–90◦. It appears separate from the southern component due to
the masking of the galactic plane, implemented to prevent con-
tamination. The intensity of the wake is greater than that of the
collective response. The ratio between the counts per pixel of the
wake at l = 50◦, b = −26◦ and the counts per pixel of the collec-
tive response at l = 279◦, b = 24◦ (the coordinates of the highest
overdensity of the collective response) is 1.29, considering the
complete dataset. As one can see, the CM of the MCS past orbit
is located over the local wake, and the deviations could be sig-
nalling the effect of the DM mass of the wake according to the
results of Foote et al. (2023).

In the upper panel of Fig. 1, an inner region of the halo is
shown (sources between 30 and 60 kpc from the galactic cen-
tre). It can be noted that both the wake and the collective do not
correspond to either the Pisces or the Virgo overdensities. In pre-
vious works (Belokurov et al. 2019; Conroy et al. 2021), it was
noticed that there exists a subregion produced by the Magellanic
Clouds called the Pisces Plume. The southern overdensity that
we identified as the wake does not fall within this region.

On the other hand, in the lower panel, we plot the outer
region of the halo, between 60 and 100 kpc, a region studied
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by Belokurov et al. (2019) and Conroy et al. (2021). Once
again, the collective does not belong to the Virgo overdensity.
Nevertheless, the global response could be truncated due to the
masking of the galactic plane and the Sagittarius stream. How-
ever, part of the wake lies on the edge of the Pisces overden-
sity, and the maximum of the wake is indeed located in the
Pisces Plume. Additionally, it has been verified that none of the
catalogued points belonging to the Magellanic Stellar Stream
(Chandra et al. 2023a) are found in our dataset.

Comparing our results with the ones obtained by
Conroy et al. (2021), we observe some slight differences
in the locations of the overdensities. Specifically, our sample’s
maximum southern overdensity is slightly displaced further
north. Similarly, the maximum northern overdensity in our sam-
ple is slightly shifted towards the south and east. In particular,
we have also compared only our K-giant sample results with
the final public catalogue developed by Conroy et al. (2021).
The coordinates of the maximum overdensities of the local
wake and the collective response for our dataset are (l = 52◦,
b = −24◦) and (l = 275◦, b = 25◦), respectively; meanwhile,
for Conroy’s data they are approximately (l = 49◦, b = −54◦)
for the wake and (l = 326◦, b = 54◦) for the collective. Our
definition of the local wake is larger than the one proposed by
Conroy et al. (2021), and the ratio between the counts per pixel
of the wake and the counts per pixel of the collective response
at each maximum is 1.5 for our data and 1.33 for Conroy’s
data-set. However, if we consider only K giants located within
60 < Rgal < 100 kpc, we successfully replicated the wake’s
position, with its peak occurring at l = 57◦, b = −51◦. Moreover,
when we compare our map with the simulations presented in
Conroy et al. (2021), we observe quite an agreement regarding
the positions of the overdensities.

In Fig. 2, we plot the superficial overdensity of the wake
along with the past orbit of the CM (magenta line), in a new
coordinate frame; namely, the orbit frame (see Appendix A.2).
In this frame, the plane x∗−y∗ contains the CM orbit and the z∗
axis is perpendicular to the CM orbit. The origin of this new
coordinate frame is the current location of the CM, and the x∗
axis is coincident with the direction of the DM subhalo mass
velocity. As one can see, the wake is located in x∗ < 0 and it
moves towards the perturber. In particular, the lower panel of
Fig. 2 is in good agreement with the results presented in Fig. 1
of Buschmann et al. (2018).

The maximum value of the density is approximately x∗ =
−48.97 kpc, y∗ = 55.65 kpc, and z∗ = −7.94 kpc in the new orbit
frame. Using the stars in a 10 kpc neighbourhood (177 stars), we
computed the velocity dispersion, resulting in (48±3) km s−1. The
characterisation of its complete stellar population and dynamical
properties will be addressed in a forthcoming work.

The Gaia satellite data and spectroscopic surveys have
unveiled the structure, composition, and formation history of
the MW’s stellar halo in recent years (Helmi et al. 2018;
Belokurov et al. 2019; Kruijssen et al. 2020; Callingham et al.
2022). Satellite galaxies, globular clusters, stars, and streams are
now associated with different halo components, which constitute
the remains of our galaxy’s past merger events.

In order to study the possible origin of the stellar popula-
tions of the wake and collective response, we have made an E
vs. Lz diagram (see Fig. 3). We have taken the same coordi-
nate system convention as the one adopted by Callingham et al.
(2022). In this diagram, we have discriminated the different
known mergers of the MW (colour points, data extracted from
Callingham et al. 2022), the LMC (star), the SMC (squared), and
the wake and collective response (cyan and magenta regions,
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Fig. 2. Overdensity as a function of the position. Magenta line: past
orbit of the CM. Magenta star: current position of the CM. Pink arrow:
velocity of the CM. Red arrow: mean velocity of the wake or collective.
Green arrow: mean velocity of a bin of 15 kpc. Cyan star: position of
the galactic centre. Top panel: orbit plane with |z∗| < 10 kpc. Bottom
panel: x∗−z∗ plane (perpendicular to the orbit plane).

respectively). As one can see, both the wake and the collective
are extended regions in the diagram without a defined sign of Lz
but limited in energy; however, it is not in the range of the Gaia-
Sausage-Enceladus energy. The mean values for the wake are
E = −0.703 × 105 km2 s−2 and Lz = 890.433 km kpc s−1; mean-
while, for the collective, they are E = −0.716 × 105 km2 s−2 and
Lz = 902.391 km kpc s−1.

It should be noted that the stellar population of the
MW’s Halo was accreted by mergers of older origin such as
Sequoia, Saggitarius, Helmi, ED-3-4-5-6, Typhon, and L-RL64
(Dodd et al. 2023). Consequently, the recent impact of the LMC
could dynamically affect all these stellar populations; however,
more studies are needed.

Next, we performed a statistical analysis in order to
obtain the DM subhalo mass of the CM, and therefore the
DM subhalo mass of the LMC. The radius for the region
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Fig. 3. E−Lz diagram. The mergers data were taken from
Callingham et al. (2022). Cyan region: wake. Magenta region: collec-
tive response.

of interest was fixed at R = 100 kpc, the subhalo veloc-
ity, vs, was fixed at 314.23 km s−1 (van der Marel et al. 2002;
Martínez-Delgado et al. 2019), and n0 was obtained from the
reduced observational data described in the previous section. For
the velocity dispersion, we performed a statistical analysis of the
data and obtained the velocity standard deviation in each axis.
For the analysis using Eq. (2), we considered the larger com-
ponent of v̄0 in the calculations. We used the described density
profile in Sect. 3 and we present our results in Fig. 4, along with
the DM subhalo mass estimation of the LMC published in the
literature (Watkins et al. 2024; Koposov et al. 2023; Shipp et al.
2021; Vasiliev et al. 2021; Erkal et al. 2019; Peñarrubia et al.
2016; using a different method, indicated with colours) along
with our results (the last three values, with their corresponding
statistical errors).

The DM subhalo mass was computed by using the space
distribution function (case (a)) and the phase-space distribution
function of Eq. (3) (case (b)) and Eq. (2) (case (c)). Our results
are consistent, despite the distribution function used in the analy-
sis. However, the fit obtained using only the space data is slightly
higher than the 6D analysis results. Furthermore, our findings
agree within 3σ with the literature (Vasiliev 2023).

We also performed the statistical analysis (6D Eq. (2)) using
only the data with measured radial velocity (Gaia Collaboration
2023; Ahn et al. 2012; Wang et al. 2022). We found an LMC
subhalo mass of MLMC = 1.594+0.203

−0.196×1011 M�, which is in good
agreement with our results.

5. Conclusions

In this work, we employed the recently published Gaia Data
Release 3, which improves the precision of proper motions along
with the Segue catalogue (Ahn et al. 2012) and the one provided
by Wang et al. (2022). This enabled us to extend the K-giant cat-
alogue originally provided by Conroy et al. (2021), and also to
construct a catalogue for RR-Lyrae stars, both in 6D data. We

1.0 1.5 2.0 2.5 3.0 3.5
MLMC [1011M ]

(c) 6D data, Eq.(2)

(b) 6D data, Eq.(3)

(a) 3D data

Peñarrubia et al. 2016

Erkal et al. 2019

Vasiliev et al. 2020

Shipp et al.2021

Koposov et al. 2023

Correa Magnus & Vasiliev 2021

Watkins 2024

Fig. 4. Dark matter subhalo mass estimation of the LMC. Orange line:
kinematic estimation from MW satellites. Red lines: estimation from
stellar streams. Green line: estimation based on momentum balance in
the Local Group. Blue lines: our results obtained from the likelihood
analysis. Case (a): 3D data, MLMC = 2.289+0.260

−0.240 × 1011 M�. Case (b):
6D data (Eq. (3)), MLMC = 1.787+0.072

−0.069 × 1011 M�. Case (c): 6D data
(Eq. (2)), MLMC = 1.686+0.071

−0.072 × 1011 M�. The error bars of our results
are purely statistical and based on a restricted one-parameter model.

reproduced the previously published results and identified the
overdensities associated with a wake and the collective response
using these two halo tracers. A notable finding of this study is
the extension of the southern overdensity towards lower galacto-
centric distances; that is, between 30 and 100 kpc. Moreover, we
were able to show that the southern overdensity, identified as the
wake, trails the CM of Magellanic Clouds (see Fig. 2).

We have confirmed that the Pisces plume overdensity,
described in Belokurov et al. (2019), is associated with the wake
of the Magellanic Clouds in the outer regions of the MW’s
halo. Furthermore, we have discovered that the overdensity on
the halo’s stellar population, caused by the Magellanic Clouds’
wake and the global response, affects the stars in the MW’s halo,
regardless of which past merger event they were accreted from.

As per the theoretical proposal made by Buschmann et al.
(2018), we were able to estimate the mass of the LMC DM
subhalo for the first time by using Gaia observational data. We
found a reliable estimation of the DM halo surrounding the LMC
by performing two different analyses, using only the space dis-
tribution data and using both the phase and space data. Con-
sidering a relationship between the Large and Small Magellanic
Clouds’ masses, our study has successfully determined the mass
of the DM subhalo of the larger cloud. Even more, our findings
are in agreement with prior results (Correa Magnus & Vasiliev
2021; Koposov et al. 2023; Shipp et al. 2021; Vasiliev et al.
2021; Erkal et al. 2019; Peñarrubia et al. 2016), within 3σ. This
consistency with previous studies indicates the reliability of our
methodology. Additionally, this method gives competitive errors
compared to different mass determination methods. It is impor-
tant to point out that the errors mentioned were calculated using
the assumptions of a Plummer profile for a spherical subhalo.
However, if a more complex multi-parameter model such as an
ellipsoidal Navarrro, Frenk and White (NFW) model were used,
it is anticipated that the errors would increase.
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Appendix A: Large Magellanic Cloud rest frame

A.1. Centre-of-mass rest frame

The coordinate system used to compare the data with the theo-
retical model has its origin in the LMC and SMC CM and the x
axis orientated according to the DM subhalo velocity, v̄s. In order
to obtain the coordinates of our dataset in such a rest frame, we
performed the following steps:
1. we boosted the data to the new frame by r̄boost = r̄obs − r̄cm;
2. we performed the rotations upon the boosted data using the

matrix

M =

 cos θ1 cos θ2 sin θ1 cos θ2 sin θ2
− sin θ1 cos θ1 0

− cos θ1 sin θ2 − sin θ1 sin θ2 cos θ2

 , (A.1)

to obtain the coordinate (x′, y′, z′) in the new rest frame. The
velocity had to be transformed as well and the final velocity had
to be boosted using v̄s = vs î′. The angles are defined as

tan θ1 =
(vcm)y
(vcm)x

, (A.2)

tan θ2 =
(vcm)z√

(vcm)2
x + (vcm)2

y

, (A.3)

where
(
(vcm)x , (vcm)y , (vcm)z

)
is the CM velocity in the solar

coordinate system.

A.2. Orbit frame

The coordinate system used to compare our results with the
Fig. 1 presented by Buschmann et al. (2018) has its origin in the
CM of the MCS, its z∗ axis perpendicular to the orbital plane,
and the x∗ axis orientated in the direction of the velocity of the
DM subhalo. To obtain these new coordinates from the CM rest
frame, we had to perform a rotation of an angle, θorb, according
to the following matrix:

Morb =

 1 0 0
0 cos θorb sin θorb
0 − sin θorb cos θorb

 , (A.4)

where tan θorb = zorb/yorb, zorb
(
yorb

)
is the mean value of the z

(y) coordinate in the CM rest frame of the CM’s past orbit.

Appendix B: Estimation of radial velocities using
machine learning

To complete the phase information for all the halo stars in our
sample, we applied two machine learning techniques to assign
radial velocities to those stars without such measurements.

B.1. K-giant radial velocity

Our first sample consists of 245086 K-giant stars, of which
10989 have measured radial velocities. The last subsample was
used to train a random forest regressor (RF) (Breiman 2001). The
chosen predictors for this study were the angular coordinates,
proper motions, G magnitudes, BP and RP colours, distances to
the Sun and the galactic centre, and the Galactocentric Cartesian
coordinates. To prevent overfitting, a standard cross-validation
analysis was performed. The RF hyper-parameters were tuned
using GridSearchCV from the Scikit Learn library, resulting in
the following values: [n_estimators = 4900, random_state = 0]

Table B.1. Comparison between the mean radial velocity inferred with
machine learning and the values tabulated for MW satellite galaxies
(McConnachie 2012).

Galaxy Vr tabulated [km/s] Vr inferred [km/s]

LMC 262.2 250.62±30.40
SMC 145.6 133.64±30.51

Carina 222.9 213.00±41.37
Draco -291.0 -186.10±45.91

Sculptor 111.4 -0.88±149.37

B.2. RR-Lyrae radial velocity

We observed a decrease in the number of measured radial veloc-
ities for RR-Lyrae stars, resulting in a drop in the fraction of
measured radial velocities to (5510/67276), considering galacto-
centric distances between 10 to 100 kpc. To tackle this issue, we
aimed to model the spatial distribution of radial velocities. To
achieve this, we utilised normalising flows (NFs) (Durkan et al.
2019), as have been implemented by Crenshaw et al. (2021), to
model the joint posterior probability of radial velocities and pre-
dictors using a subsample of the features described earlier. How-
ever, we limited the feature space to prevent any bias against
less luminous stars. Therefore, we did not consider the magni-
tude and colours of stars as predictors in this case.

We used probabilistic modelling to generate a radial velocity
distribution outcome for a significant number of stars (100000).
Therefore, the normalizing flow was used to augment and gener-
alise the training dataset. We evaluated the marginal probability
of the radial velocity given the values of other variables (pre-
dictors) and obtained a vector of probabilities. To complement
this method, we used the RF algorithm to map the posterior con-
ditional radial velocity distribution to the real measured value
in the training sample, similar to the method used for K-giant
stars. The RF hyper-parameters were tuned using GridSearchCV
from the Scikit Learn library, resulting in the following values:
[max_depth = 50, max_ f eatures = 8, min_samples_lea f = 1,
min_samples_split = 6, n_estimators = 800]. It is important
to note that the result of the NFs is a vector that represents the
conditional radial velocity. The vector is measured on a 1000-
dimensional grid that samples velocities ranging from -700 to
700 km/s. To prevent overfitting, cross-validation was employed
by splitting the data in two and using 80% for training and 20%
for validation, similar to the previous case.

B.3. Goodness of fit in radial velocity regression

R-Squared (R2), or the coefficient of determination, is a statis-
tical measure used to determine the proportion of variance in
the dependent variable that can be explained by the independent
variable in a regression model. The statistics were calculated
for our two samples of stars, resulting in values of 0.86 for K-
giant stars and 0.5 for RR-Lyrae ones, respectively. These values
are comparable to those recently reported by Naik & Widmark
(2023) using Bayesian neural networks, and provide us with a
complete sample of halo stars in the phase space.

We tested the inferred stars’ radial velocities by measuring
the mean radial velocities of satellite galaxies and compared
them with the tabulated velocity values (McConnachie 2012).
The results are presented in Table. B.1. Our machine-learning
results show that the average velocity of the stars on these satel-
lite galaxies is well reproduced. The relevant error of the aver-
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age velocity for the Sculptor galaxy is due to the lack of any
measured radial velocity on this object.

Using this method, we can estimate the mean velocity field
in the halo, which is necessary for the likelihood estimation of
the subhalo mass of the LMC.

Appendix C: Validation of estimated distances for
K-giant stars

To test the photometric distance obtained for the K giants, we
computed the photometric distances of the globular clusters
NGC7006, NGC5694, NGC2419, and NGC6229, and of the
LMC, SMC, Carina, Draco, and Sculptor.

The observational data was extracted from Gaia Data
Release 3 (Gaia Collaboration 2023, 2016), using the option sin-
gle object searcher to avoid field-contamination. Additionally,
the data for the LMC and the SMC were selected on a circu-
lar disk in (l, b) centred on the location of each MC, with a
radius of 2◦. For Carina, Draco, and Sculptor we selected data
using an angular mask of three times the tidal radius reported
in Drlica-Wagner et al. (2020). We performed the data reduction
or treatment indicated in the text for the K giant (that is, cor-
rected for dust extinction, discarded all sources with E(B−V) >
0.3, corrected the magnitudes, and performed the 3σ cut upon
the corrected BP and RP flux excess factor (C∗)). Finally, we
selected the giant branch and performed the cross-match with the
K-giant catalogue given by Gaia (gaiadr3.astrophysical param-
eters). For the LMC and SMC, we also restricted the dataset in
the reported Gaia parallax.

We calculated the photometric distance of each source
and the mean value of each object. The results are shown in

10030 40 50 60 70 80 90
Tabulated distance (kpc)

100

30

40

50

60

70

80

90

Ph
ot

om
et

ric
 d

ist
an

ce
 (k

pc
)

NGC7006
NGC5694
NGC2419
NGC6229
LMC
SMC
Carina
Draco
Sculptor

Fig. C.1. Comparison between the photometric distances com-
puted using Eq. (1) and the tabulated distances (Harris 1996;
Drlica-Wagner et al. 2020). Solid olive line: photometric distance
equals tabulated distance. Dashed brown line: ±10% with respect to the
one-to-one line. Solid purple line: ±20% with respect to the one-to-one
line. The vertical lines are the statistical errors.

Fig. C.1 and, as can be seen, the computed photometric dis-
tances and the values reported in the literature (Harris 1996;
Drlica-Wagner et al. 2020) are in good agreement.

We have also applied our fit to K-giant stars from the
Conroy et al. (2021) catalogue and found that our calculated
distances are in agreement with the distances reported by
Conroy et al. (2021) within 10%.
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