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A Fast Robust Recursive Least-Squares Algorithm

Leonardo Rey Vega, Herndn Rey, Jacob Benesty, and Sara Tressens

Abstract—We present a fast robust recursive least-squares (FRRLS)
algorithm based on a recently introduced new framework for designing
robust adaptive filters. The algorithm is the result of minimizing a cost
function subject to a time-dependent constraint on the norm of the filter
update. Although the characteristics of the exact solution to this problem
are known, there is no closed-form solution in general. However, the
approximate solution we propose is very close to the optimal one. We also
present some theoretical results regarding the asymptotic behavior of the
algorithm. The FRRLS is then tested in different environments for system
identification and acoustic echo cancellation applications.

Index Terms—Acoustic echo cancellation, impulsive noise, recursive
least-squares algorithm, robust filtering, system identification.

I. INTRODUCTION

The recursive least-squares algorithm has the ability to solve the
least-squares estimation problem recursively. Through its link with
Kalman estimation [1], it can lead to the optimal estimate in the
mean-square error sense. However, this is based on the assumption
that the error signal e;, which is by definition the difference between
the system and model filter outputs, is Gaussian. In real-world environ-
ments, this assumption can be false. Perturbations such as background
and impulsive noise can deteriorate the performance of many adap-
tive filters under a system identification setup. In echo cancellation,
double-talk situations can also be viewed as impulsive noise sources.
The performance of the RLS can be significantly deteriorated in these
cases.

Several algorithms have been proposed attempting to overcome this
issue [2]—[5]. In this work, we use a recently introduced new framework
for the construction of robust adaptive filters [6] in order to design a ro-
bust RLS algorithm. Throughout this correspondence, the term robust
will be used as “slightly sensitive to large perturbations (outliers)”.

Particularly, we use a universal cost function introduced in [7] that
preserves the system estimate from the effect of impulsive noise (or
double talk) through the memory factor in the classical RLS cost func-
tion. Then, we propose to optimize this function subject to a constraint
on the norm of the adaptive filter update. However, the exact solution
to this problem has no closed form. Therefore, we propose an approxi-
mate solution to the problem. This solution is actually very close to the
optimal one.
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The result is a new algorithm that provides an automatic mechanism
for switching between the standard RLS algorithm and another one that
moves in the same direction but with a different magnitude.

We also present some theoretical results showing that the misalign-
ment vector of the proposed robust RLS algorithm converges in the
mean-square sense.

Since the RLS algorithm (and the robust version introduced here)
has typically an O(M?) computational complexity, where M is the
length of the adaptive filter, we introduce a fast version of it. However,
practical issues regarding eventual nonstationary environments should
be considered. Because of this, certain changes are made in the original
algorithm, leading to the proposed fast robust recursive least-squares
(FRRLYS) algorithm. The performance of the algorithm is tested under
several scenarios in system identification and acoustic echo cancella-
tion applications.

Finally, we present certain definitions and the notation that is used

throughout the correspondence. Let w; = (w; 0, w;1,. .., mi,M,l)T
be an unknown M x 1 linear finite-impulse response system. The 3 x 1
input vector at time ¢, X; = (@, i—1,..., .rl;Mﬂ)l , passes through

the system giving an output y; = x? w;. This output is observed, but it
is usually corrupted by a noise, v;, which will be considered additive.
In many practical situations, v; = ¥; 4+ 7;, where ¥, denotes for the
background measurement noise and #; is an impulsive noise or an un-
detected near-end signal in echo cancellation applications. Thus, each
input x; gives an output d; = x:fvwi + v;. We want to find w;, an esti-
mate of w;. This adaptive filter receives the same input, leading to the
output filtering error ¢; = d; — x! W;_, and to the a posteriori error
epi = di — xf'vAvZ'. The misalignment vector is w; = w; — W;. We
also define the a priori error e,,; = XTWt;l.

II. RECURSIVE LEAST-SQUARES ALGORITHM

The recursive least-squares (RLS) algorithm is the result of the fol-
lowing optimization problem [8]:
A . - i—n ~2 _ _ T~ .
w; = dlgwiIéll}ilM Z)\ &y En=dn —x,W;, 0<A<1 (1)

n=1
where A is the forgetting factor. The solution is given by
w; =& 'z, ®)
where

P, =2, + Xin‘Tw Z; = AZ;—1 + diX; 3)

are the time-averaged correlation matrix and the time-averaged cross-
correlation vector respectively. Using (3) we can write (2) as

W, =&,z 1 +kies (C))

where
_ /\_1@:_11Xi
T 14 /\—1X;T<I>T_11xi

7

=& 'x; )

1

is the Kalman gain [8]. Let us analyze what happens when an impulsive
noise sample is present at time index 7. Since this affects d;, it is clear
that it will have a strong effect on z;. Based on (2) or the second term
in (4) the estimation W; will be very poor. However, the main problem
is that the effect of the impulsive noise at time index ¢ will persist for
several future time steps, severely affecting the estimation process. This
is because of the memory induced by the cost function in (1), which
is usually large as A is close to 1 in typical implementations. So, the
perturbation induced by an impulsive noise sample at time ¢ will be
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hard to forget and will have a significant influence for almost (1 —X\) "
time updates.

A possible solution to this problem was presented in [4], where an
M -estimate cost function is used to find the estimate

P . i—n - _ Y S
W; = arg w?élﬂg’” z_:l A P(én ), &n=dn — X, Wy (6)

with p(-) denoting for the Hampel’s three-part redescending M -esti-
mate function [9]. Although this approach provides insensitivity to im-
pulsive noise samples since the derivative of the Hampel’s function is
bounded, it has two drawbacks. First, the parameters of the Hampel’s
function should depend on the noise and error filtering statistics, which
might not be known, and second, the optimization problem (6) has no
closed-form solution. In [4] and [5], the difficulty of this optimization
is not addressed. In fact, the solution provided is not correct because
the time-averaged correlation matrix and cross-correlation vector de-
rived in those works depend on w;. The implicit approximation in [4]
and [5] is that for a span of time approximately equal to (1 — A)™' the
estimate W, does not change significantly. This might not be true, for
example, at the beginning of the adaptation process or when A is very
close to one. However, it seems that the proposed solution is close to
the true solution and performs well. In [4] and [5], these issues were
not discussed and the authors claimed that the proposed solution is the
optimal one.

In order to make the algorithm robust to impulsive noise we will
propose the following: modify the cost function in order to reduce the
effect of the intrinsic memory of the RLS algorithm when an impulsive
noise sample is present, and include a constraint in the optimization
process in order to reduce the effect of an impulsive noise sample at
time 7.

III. ROBUST RECURSIVE LEAST-SQUARES ALGORITHM

In [7] it has been shown that several classical adaptive algorithms
and new ones can be obtained applying a common universal criterion.
This criterion is formed by the sum of two terms: one of them is the
square of the distance between the old and the new filter estimates and
the other depends on the a posteriori error signal. Therefore, according
to this principle one easy way to find adaptive filters is to minimize at
every time index ¢ the following cost function:

J(Wi) = di (Wi, Wi1) + e %)

where d;(-) is a distance function. Different choices of the distance
function should reflect our knowledge about the space where the true
system is and could lead to different adaptive filters. The distance func-
tions we will consider here are given by:

(Wi, Wi1) = (W, — Wii1) T Qi(Wi — Wy1) (8)
with Q; given by
Qi =3, — xix!. )

More general distance functions could be considered in such a way
that the parameter space would be a Riemmanian space, i.e., a curved
manifold where the distance properties are not uniform along the space.

The unique solution to the problem (7) is given by

h;,=w;, =w,_; + Qflxlez (10)

If we interpret w;_; in (10) as Q;llzi,l, we obtain the standard
RLS algorithm as in (4). The central aspect here is that with the
proposed cost function we are not explicitly identifying Ww;_; with
Q;llzi,l. This is an important issue. The latter has the disadvantage
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that the effect of a single impulsive noise sample at time step ¢ — 1
would be propagated for several steps through the sequence z; (given
that A is close to 1). The use of (10) will still have the advantage of
the decorrelating property of the term ®; 'x;, which increases the
convergence speed of the algorithm.

Now, we focus in finding the way to make the algorithm more robust
to the effect of an impulsive noise sample through the error signal. In
doing so, we propose to use an additional constraint on the optimization
problem:

[IWi = Wit || < i (an
where {6;} is a positive sequence. Its choice will influence the dy-
namics of the algorithm but in any case, (11) guarantees that any noise
sample can perturb the square norm of the filter update by at most the
amount 6,1 . This constraint was successfully used in the past to ob-
tain a robust version of the normalized least-mean-square (NLMS) al-
gorithm [6]. Then, the constrained problem is

W; = arg min
W, ERM

{(Wz‘ — W) Qi(W — W) + 612”}

st ||V — Wi ])® < 6. 12)
If the hypersphere (11) contains (10), the latter will be the solution.
We will have this situation when
e2xP B %% < iy (13)
If (13) is not satisfied, defining t; = W; —w;_; andr; = h; —w,;_1,
it is possible to formulate the optimization problem as

t; = arg min (t; — ri)T{)i(ti — I‘i) s.t. ||tg||2 =6;—1. (14)
t;ERM )

It can be shown that its solution would involve the analytical calcu-
lation of the roots of a 24 degree polynomial which is not possible if
M > 2. For this reason we should look for suboptimal solutions. We
propose to normalize the update in (10) to satisty the constraint (pro-
viding robustness to the algorithm), leading to

- 7 'x;
t; = /61 '7%8155‘11(01').

|87 "= -

If ;1 is small (i.e., all the points on the hypersphere are close to each
other), (15) should be close to the optimal solution. This will be the
most common situation when (13) is not satisfied. Actually, it is easy
to show that the Euclidian distance between the suboptimal and the op-
timal solution is bounded by 21/8,—. It should be clear that (15) is
not the only possible suboptimal solution for (14). However, we expect
it to perform well since it is in the same direction than the one corre-
sponding to the update in (10).

Combining (10), (13), and (15), and defining AW = & 'x;e;,
we put the proposed algorithm in the following way:

W; = W,;_; + min {\/ﬁ,‘,l, AVAV?LSH}

- RLS
AwFT

ey (19

Simply, at time-step ¢, if the squared norm of the RLS update is smaller
than 6,1, the RLS update is performed; if not, it is normalized to have
anorm +/6,—1 and then performed. So the new algorithm has two op-
eration modes: at the beginning, if the values of 8; are not too small the
algorithm will act as an RLS algorithm, providing fast convergence but
being sufficiently robust against noise. If a large noise sample occurs,
then the algorithm will act as an RLS algorithm with a “step-size” given
by v/6:—1/||k:l||e:], avoiding the divergence of the filter. So, we could
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think that this algorithm acts as an RLS algorithm with a switching
“step-size” between the values 1 and v/6;_1/||k:|||e:]-
The only thing that remains is the choice of the delta sequence. We
use the one proposed in [6], which in this case has the form
8; = abi—1 + (1 — &) min {5,-,1, ||k2||26,2} a7
where 0 < a < 1 is a memory factor. This selection should make &;
dependent on the convergence dynamics of the adaptive filter allowing
it (without compromising the robust behavior) to take large values at
the beginning of the adaptation (increasing the speed of convergence)
and lower values at the end (improving the final misadjustment). The
memory factor of the RLS and the parameter o are chosen as

1 1
A=l-Car T ksM

o =

(18)
where x and ks are positive integers, typically between 1 and 6. The

delta sequence is initialized as

9

04
. ’
oM’

bo =

19)

with 2 and o5 standing for the power of the input and observed output
signals respectively, and E. is an integer.

In order to show how well the proposed algorithm behaves with re-
spect to the optimal scheme following the solution of (12), we com-
pared them in a numerical simulation. In addition to the background
noise ¥; (with power Jf), an impulsive noise #; is also added to the
output signal y;. This noise is generated as 1, = w;N;, where w; is
a Bernoulli process with Plw; = 1] = pimp and N; is a zero-mean
Gaussian with power o3 = 1()()()03, where O'Z is the power of the
uncorrupted output signal. Although this noise has finite variance it is
useful to test the robustness of an adaptive algorithm, and it has been
previously used in the literature [4], [S]. We use the mismatch as a mea-
sure of performance, which is defined as

[

10 10g10 {W] .

(20)
We found that both algorithms present an almost identical mismatch
(not shown). For the solution of (14) we implemented a gradient-based
numerical algorithm at any time where the condition (13) is not satis-
fied. This supports the use of the approximate update that can be satis-
factorily implemented in practice, which is not the case of the optimal
solution.

IV. MEAN-SQUARE STEADY-STATE BEHAVIOR

We are interested in the mean-square steady-state behavior of w;.
We will assume that the noise sequence v; is i.i.d., zero-mean and it is
independent of the input regressors x;, which belong to a zero-mean
stationary process. This is a reasonable and standard assumption. As-
suming that the true system is stationary, w; = wy, Vi and using the
definition of the misalignment vector, (16) and (17), it is easy to show
that

k;

(S,‘ bl (}z(s,j_1

W, = W;_1 — —sign(e;). 21
l—a kil
Taking the expectation of the squared norm on both sides
s - 2 6 — b
Ellwll’] = B [IWwia "] = 2B |\ /=4 ——
~ T -
Wiflki, . 6; — by
. Slgn(ei):| +F |:—:| .2
[k || -
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The parameter « is typically close to one. This means that (17) is the
result of low-pass filtering ||W; — W _1||*. Then the variance of the
random variable 6; would be small enough to assume that

[6; = abiy Wl |k, sign(e:)
L—a kil '
_ [E[&] — aElbi_1] wiki .o
=~ T FE ] sign(e;)|, (23)

E [min {(5,'71, ||k2||z€zz}]

E

El8; 1]

~ E[8i_1]P; [z > E[8i_1]] + 2dF.(z) (24)

0

where » = e7||k:||?, i.e., z and ¢?|/k;||* have the same distribution.
P;[A] and F?(z) denote the probability of the event 4 and the dis-
tribution function of z at time-step ¢ respectively. This assumption
on the variance of ¢; is very accurate and was successfully used and
validated in [6]. Observing that E[||%:||*] — E[||Wi—1|*] consti-
tutes a telescoping series, using (23), wo = 0, and assuming that
lim; o E[||%;]|?] exists,

tim B [[[will?] = flwoll* = 3 {—2

B[] — aEi—1]

i=1 1 -
~ ’1’ o 9
W,;_1kg . E[(S,j] — (Jz'E[(S,j_1] }
. 51g11(e,i):| + —————=5. (25
{ 1k | -«
From Appendix A, we know that
— E[5;] — aE[5;_
Z Efbi] — aE[bi4] < 00 (26)
=1 1 -

This implies that we can split the series of the right hand of (25) in two.
Then we should have

= [ [E[5] = aB6i1] . [Wi ki .
Z{WE{ Ik “?’“‘“"”m' @n

=1

However, from Appendix A, we have

Z{ [ E[5:] _QE[(Si—l]} — o (28)
=1 l—o
Using (28) and in order to satisty (27), we should have
sl )
lim B {%fsign(c;)} =0 (29)

where we assume the existence of the limit. Under the additional as-
sumptions that the input regressors are independent and come from
a spherically invariant random process (SIRP), the adaptive filter is
long enough and the value of A is very close to one, it is shown in
Appendix B that (29) implies

lim E [||W;|°] = 0.

71—00

(30)

This is a very interesting result which states that under the hypotheses
taken, after a sufficiently long time and independently of « and &y the
adaptive filter converges to the true system in a mean-square sense. This
is not the case with other robust RLS approaches proposed in the lit-
erature, like [5], where the analysis is done with stronger assumptions.
This result was verified through simulations. It was observed that after
a sufficiently long time the norm of the misalignment vector was in the
order of the machine precision.
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V. PRACTICAL CONSIDERATIONS: FAST VERSION AND
NONSTATIONARY CONTROL

We can implement the proposed algorithm using an RLS algorithm
to compute AW"S at each time step and then apply (16) to perform
the update.

Since the standard RLS algorithm presents a large computational
cost, specially if the length of the adaptive filter is large, we will use a
fast transversal filter (FTF) implementation [10]. The reason for using
this implementation instead of a least-squares lattice implementation
[11] is that the former permits the coefficients of the filter to be ob-
tained directly, which are the desired information in applications that
involve system identification. Moreover, as the coefficients of the filter
are necessary to compute the value of 6; it is clear that an FTF imple-
mentation is better suited for the proposed algorithm.

Finally, a major issue should be considered carefully. As the pro-
posed delta sequence is decreasing, although the algorithm becomes
more robust against perturbations, it also loses its tracking ability. For
this reason, if there is evidence supporting the possibility of being in
a nonstationary environment, an ad hoc control should be included.
The objective is to detect changes in the true system. We use the same
controls proposed in [6], although other schemes might be used. The
advantage of the proposed schemes is that the parameters are not cou-
pled to each other as in other previously proposed algorithms. Each
parameter is used to deal with a specific feature of the environment.
Therefore, this set of parameters allows the algorithm to work well
under many different scenarios. See [6] for a detailed description of the
methods and their parameters. The only difference with the methods
used in [6] is that when a large change in the system is detected, in
addition to re-initialize the delta sequence, we also re-initialize the pa-
rameters used in the prediction part of the fast RLS algorithm.

Table I summarizes the resulting fast robust recursive least-squares
(FRRLS) algorithm. The prediction part is the same as in any FTF
implementation. It has a computational complexity of O(M ). The fil-
tering or joint-process estimation part has also a complexity of O(M ).
The calculation of §; only requires two extra multiplications.

VI. SIMULATION RESULTS

The system is taken from a measured acoustic impulse response and
it was truncated to M = 512. Its gain is scaled so that the input and
output powers are equal, i.e., 02 = 0;. The adaptive filter length is
set to M in each case. We use the mismatch as a measure of perfor-
mance. The plots are the result of single realizations of all the algo-
rithms without any additional smoothing. A zero-mean Gaussian white
noise ¥; is added to the system output to achieve a certain SBNR, which
is defined as

ol
SBNR = 10log,, {—g} . (31)
5

In addition to the standard FRLS algorithm, we include two more
schemes for comparing the performance with the proposed algorithm.

The robust FRLS algorithm is the one presented in [3]. The scale
factor s is initialized with the standard deviation of the input signal and
itis never allowed to go below the standard deviation of the background
noise.

The other scheme is based on [5]. It uses M -estimates with a Huber
function to end up in a new robust RLS filter. It has been shown that its
performance is similar to the one of the RLM algorithm [4], which uses
the (more complicated) Hampel’s three-part redescending M -estimate
function. In [5], the authors propose a fast version using a least-squares
lattice scheme. However, we chose here the FTF scheme so we modi-
fied their algorithm and arrive finally to the Huber fast transversal filter
(HFTF). It requires the estimation of the power of the impulse-free error
signal (62) which is done by averaging (with a memory factor of 0.99)
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TABLE I
THE FRRLS ALGORITHM

Parameters: &, ks, Ec, 3, V1, ¢, (Vp) or (Vp, C1, T)
Initialization: Wo=fo=bo=k{=0, A=1-1/(kM), do, lc =0
a=1-1/(ksM), po=X\, Eo=02, B o=MEy/E;
BEp,0 = EsgA™M, Eeo = 10MEp, Ae =1—1/M
Prediction: if [, =0
Th,i = X4,M
else

Tb,i =0,lc=1l.—-1
E; =AE;_1 + (1 — \)2?
er; =T — £ X1
Eei = XeFei—1 + €51

bi=¢i1+€},;/Eri1

gi 0 1
fl = eti/Et i1
m; —fi1

ki 4
fi=Ffi_1+Kk]_jeri/di1
Epi= (BEri—1+€f,;/¢i-1)A
ki =gi+b;_1m;
eb,i = B(Tbs — bi—1xi) + (1 — B)(Eb,i—1m4)
$i = bi —ev iy
Vi =M
b; =b;_1 +Kep /¢
Epi = (Bpim1 +€f /¢
if (Be,i <0)| (7 <0)| (v >1)
lc = M, re-initialize f, b, K/, ¢, Ef, Ey,, Ee
e; =d; — xiTv’ili_l
AWRLS = ¢;k!/¢;
. — AwRLS
s = s+ min (/BT ARES |} A
b =adi—1+ (1 — a)|[#; — Wi q]|?
if mod(z, V) =0
M = diag(1vp—vp, Ovpy )
c'=0(eil/Ixills - - -5 lei—vpral/lIxi—vp 1)
ctrinew = cTMc/(Vr — Vp)
A; = (ctrlnew — ctrlog)/di—1
if Ay > ¢

d; = &g, Re-initialization

+

Re-initialization:

Filtering:

Delta sequence:
NS control 1:
(system

identification)

elseif ctrinew > ctrliog
0; = 0i—1 + (ctrlnew — ctrloa)
else
Delta sequence
ctrlolg = ctripew
if (double-talk is not declared)
i = e /||xi]]

cancellation)  else

NS control 2:
(acoustic echo

r; =0
g; = median[r;, ..., 7i_v,41]
0; =710;_1+C1(1—1) qf
Then, same as control 1 but with:
ctrlnew = mean(b;,...,0; _vp41)
tO(-) is the ascending order operator

the median of the error sequence over a sliding window of length Ny, .
Then, it performs the FRLS update if and only if |e;| < 2.5766; oth-
erwise, the filter estimate is not updated.
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Fig. 1. Mismatch (in dB). AR1(0.95) input. SBNR = 40 dB. No impulsive

noise. KFRRLS = 9. Krobust FRLS = 25. KprLs = KurTr = 22. K5 =
ks =2.E.=10.8=0.5.Vp = 2M. Vp, = 0.75Vr. ¢ = 20. Ny, = 5.
M = 38107. R = 50768.

The memory factor for the delta and scale factor sequences is chosen
from (18), with ks and &, respectively.

We also want to test the nonstationary controls. As a measure of their
performance, we compute for each simulation

J

M= max A;, and R =

v:mod (¢, Vp)=0 ./‘V‘

(32)

where " is the second largest value of A;. In every simulation (except
the one in Fig. 2) a sudden change is introduced at a certain time-step
by multiplying the system coefficients by —1. In all the cases, M is
accomplished when the sudden change is introduced, while A is ac-
complished at any other time-step. The value of M is related to the
threshold ¢ while that of R gives an idea of the reliability of detection
of a sudden change.

A. System Identification Under Impulsive Noise

The input process is a highly correlated AR1 with pole at 0.95. The
nonstationary control 1 is used in this application. In addition to the
background noise ¥;, an impulsive noise #; as the one included in
Section III, could also be added to the output signal y;. In Figs. 1 and
2, the performance of the FRLS and HFTF algorithms is the same.

The tradeoff between good tracking and low steady-state mismatch
is well known. In Fig. 1, we modified the memory factors (associated
with the cost function) of the other algorithms so they can reach the
same steady-state performance as the one of the FRRLS. The initial
convergence of the other algorithms is slowed down but more impor-
tantly, their tracking performance is severely compromised.

In Fig. 2, we test the low SBNR case. The FRRLS shows the same
initial convergence as the other algorithms but with 7 or 8 dB less
steady-state mismatch. There is also an interesting effect that can be
observed. Due to numerical error accumulation, the FTF implementa-
tion can present unstable behavior. The use of a rescue variable allows
the re-initialization of the prediction part when an instability is taking
place [10]. However, some residuals from the instability can affect the
system update as shown in Fig. 2. But this is not the case for the pro-
posed algorithm. In fact, at that time step its rescue variable was also out
of range and the re-initialization took place. The reason for not seeing
the same effect in the mismatch is due to the restriction on the filter up-
date. As [|AWRES||? becomes larger than &; during the instability, the
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Fig. 2. Mismatch (in dB). SBNR = 10 dB. E. = 50. The other parameters
are the same as in Fig. 1. M = 0.84. R = 1.27.

15
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— robust FRLS|:

Mismatch
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Iteration number

Fig. 3. Mismatch (in dB). SBNR = 10 dB. pimp = 0.01. The other parame-
ters are the same as in Fig. 1. M = 42. R = 59.

normalized update is performed instead of the one of the FRLS, pre-
venting the increase of the mismatch. In this sense, the robust behavior
of the algorithm also covers (at least to some extent) the numerical er-
rors, leading to a more stable implementation.

In Fig. 3, impulsive noise is added. The FRLS cannot perform well
under this scenario while the other algorithms present a similar perfor-
mance to the case with no impulsive noise.

B. Acoustic Echo Cancellation With Double-Talk Situations

In echo cancellation applications, a double-talk detector (DTD) is
used to suppress adaptation during periods of simultaneous far- and
near-end signals. We use the simple Geigel DTD [12]. The Geigel DTD
declares double-talk if

max (|, S lTiopia])

<T (33)

|d]
where x; are the samples of the far-end signal and d; are the samples
of the far-end signal filtered by the acoustic impulse response and pos-
sibly contaminated by a background noise and a near-end signal. An
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— FRLS

— robust FRLS
1 : : — HFTF
AN . SO — FRRLS

Mismatch
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Fig. 4. Mismatch (in dB) for speech input. SBNR = 25 dB. STNR = 0 dB.
D=MT=125.k =8. ks =3.ks = 3. E. =10.3 = 0.5.( = 20.
Ci=5.Vpe =2M. Vo =TM.7 =095 N, =3. M =509.R = 202.

important detail is that except on the proposed FRRLS, the filter up-
date is not performed when double talk is detected. Then, the FRRLS
will not suffer from the undesirable effect of the false alarms but will be
more vulnerable (in principle) to the presence of double talk. However,
the double talk detections are considered in the nonstationary control
2 used under this application. In the robust FRLS, the scale factor is
not updated when double talk is detected. In the HFTF, the estimation
of &2 is done over the last N, samples of the error sequence where
double talk was not declared.

The far-end and near-end signals are speech sampled at 8 kHz, and
they were both used previously in [6]. The SBNR is 25 dB while the
signal to total noise ratio (STNR), i.e.,

7,
i)
2

is set to 0 dB, where o;, is the power of the near-end signal before
passing through the DTD. Under these conditions, the DTD detected
only 20% of the near-end signal which causes long bursts of impulsive
noise. Although this might seem a small percentage of detection, the re-
maining nondetected samples are small enough not to disturb the filter
estimate and the nonstationary control 2. The proportion of false alarms
when no double-talk was present was 1.5%. After passing through the
DTD, the power of the near-end signal was reduced about 2.6 times.

For the HFTF we set N,, = 3 because larger values slow down the
initial convergence (the number of RLS updates decreases) and do not
increase significantly the robust behavior of the algorithm.

In Fig. 4, all the algorithms have a similar initial convergence with a
lower steady-state mismatch for the FRRLS. When double talk appears,
with the exception of the proposed algorithm, the mismatch grows sig-
nificantly. The FRRLS can deal with the double talk through the restric-
tion on the filter update. After the sudden change, the FRRLS recovers
faster and better than the other algorithms.

STNR = 10log,,, [

VII. CONCLUSION

In this work, we derived a new robust version of the RLS algorithm
and proposed a fast implementation, leading to the FRRLS algorithm.
Itis based on the novel framework introduced in [6]. It follows from op-
timizing a certain cost function subject to a time-dependent constraint
({6:}) on the norm of the filter update. Although the exact solution to
the optimization problem does not have a closed-form, we proposed a
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practical approximation and it is found to be very close to the optimal
one and more important it is easy to implement. Then, we proposed cer-
tain dynamics for {§; }. These dynamics provide the algorithm with fast
initial convergence as the standard FRLS but also a robust performance
against noise (impulsive, numerical error accumulation and double-talk
situations). We also presented theoretical results for the convergence in
the mean-square of the misalignment vector, which are valid for a large
variety of input processes and noise distributions. The simulations pre-
sented provide evidence of the good performance behavior and robust-
ness of the proposed algorithm.

APPENDIX A
BEHAVIOR OF E[6;]

It is interesting to see from (17) that é; is a positive nonincreasing
sequence. This means that its limit exists for every realization. For the
same reason, the limit of E[§;] exists. Assuming the existence of the
limit of the distribution functions F;(z) and z = ¢?||k; ||, and using
the result in [6], we have

lim E[§] = 0. (34)
Using (24), we can write
E[6:;] = aE[6:-1]
E[8;—1]
H1 - Bl P> B+ [ ai)) 09

0

where we assumed the existence of the PDF of z, dF:(z) = pL(z)dz,
Vi. Using the results of [6] it is straightforward to put (35) as

£[8; 1]

E[8] = Els; 1] — (1 —a) Fi(z)dx.

(36)
0

Defining p' ,, (5, u) as the joint PDF of 5 = ¢; and u = ||k;||* at time

i and assuming without loss of generality that it is symmetric on s, i.e.,

Phw(s,u) = pi . (—s,u)Vi,u, we can obtain the PDF of » = ¢7||k; ||

P =27 g @ = [a e G

0
We will write p’, ,(\/z/u,u) as
p;,u(\/z/u.gu) = pi‘u(\/z/u,|u)pi(1l,).

Before continuing we will make some assumptions about the PDF of
the noise, p. (v), pi|u(‘/z/u|u) and p% (u):
A1) 3B > 0 in such a way that the PDF of the noise p,(v) < B,
Yu;
A2) 3~ > 0 in such a way that p’, () is continuous in [0, ~], Vi;
A3) Jsg,up, uy, m all strictly greater than zero, such that Vs €
[0, s0], Yu € [uﬁgug],pi‘u(sfu) > m > 0, Viand

(38)

'U//Ol
/’Lfl/zpf, (u)du > K' >0, Vi.

I
u
0

(39)

Assumptions Al), A2), A3) are not too strong. Al) is asking for a
bounded noise PDF. This is not very restrictive because this assumption
is fulfilled for several important noise distributions. Asking for A2) is a
very mild condition which assures that E[u™'/?] = K, < oo. This is
valid Vi and with expectation taken with respect to p’, (u). A3) asks ba-
sically for a lower bound strictly greater than zero for P,i|u (s]u), valid
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in given intervals of s and v and Vi. With these assumptions we could
obtain some insights into the asymptotic behavior of E[é;]. These as-
sumptions are very similar to the ones in [6]. In that paper we have that
z is the ratio of two positive random variables and here z is the product
of two positive random variables. The little differences between the as-
sumptions in this correspondence and the ones in [6] take that fact into
consideration. Assuming also that 3K = sup, I(; and that k' < oo,
we have the following theorem.

Theorem 1: Given (36) and using assumptions Al), A2), and A3),
we can bound E[4;]:

Elsi 1] - 5(1- ) B(E[si 1) < Blp]
< Elsia] — 21— a)C (Bl )Y @0)

for i > io, where 4o is such that E[6;,—1] < zo where zo is a positive
number to be defined. The constants B and C are positive numbers.

The proof of this theorem is very similar to the one of Theorem 1
in [6], and for that reason we do not include it in this correspondence.
From this point, and in the same way as in [6] we could prove that for
large ¢

E5) = aE[5i1] 1

11—« 7:27

which imply

=L E[6:] — aE[6i—1] — [E[6] — aE[8—1] _
; 11—« <%0 ; 11—« =

42)
APPENDIX B
PROOF OF limn;_. .. E[||W;||*] = 0
We have k, = <I>Z-_1x,' ,where ®; = \®,_, +xixiT . We will consider
A . a—1
P, = (1 — )\)®; instead of ®;. Using this we define k; = &, x;.
Obviously, we have

T o
wi_k; . wi_k; .
E = sign(e;)| = F { slgn({zi)} . 43)
[ Ikl } [
The rationale for doing this is that <i>i satisfies
lim E[®] =R, lim E [||<§i - R||i} < C% (44)

if the input regressors are independent and the fourth moment of the
input exists, i.e., E[z}] < oc.In (44), R = E[x;x7] is the correlation
matrix of the input regressors, || - || denotes the Frobenius norm of a
matrix and C' is positive constant. We see that after a sufficiently long
time and if X is close to one, the variance in estimating R. through ®;
will be very small. Then, we will make the following approximation:

~ A—1 _
k,j:@i X; ~R X;.

1 1
L [Hf(,”z] =E Lc'iTRﬂxl} ’

It could be very difficult to obtain a closed-form expression for (46).
However, it is possible to obtain an idea of the behavior of this quan-
tity with 3. In a great number of cases of practical interest it can be
shown that this quantity decreases at least as 1 /M, which implies that
the variance of the quantity 1/||k;|| decreases at least as 1 /M. So, if M
is large, as in many important applications of adaptive filters, the vari-
ance of that term will be small. In the class of processes that present
this behavior are the spherically invariant random process (SIRP) [13].

(45)

Now consider:

(46)
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SIRP are very important random processes that have been shown rel-
evant to wireless applications [14] and speech processes [15]. In [13]
it was shown that the M -dimensional PDF for that class of processes
could be written

px(Xi)= p<—%x? (sz)_lx,)dF,,,(w)

. —1/2 1
2w A| /wM ex
’ 47)

where A is a positive definite symmetric matrix and Fy, (w) is, in prin-
ciple, an arbitrary probability distribution function in [0, o). Then, we
have the following result, whose proof is not included for lack of space.

Theorem 2: Given a SIRP with M -dimensional correlation matrix
R and withf'wzde (w) = apg < 0o andf'wfzde('w) = by < o0,

we have
1
F|— <
{xf R—in] =

where A\ is the maximum eigenvalue of the correlation matrix R..

Assume that A, . remains bounded as M — oc. This is the case if
the input is stationary and its power spectral density (PSD) is bounded,
max,e[—r,qx Szz(w) < 0o, with the maximum eigenvalue of the cor-
relation matrix being bounded by the maximum of the PSD V M. So,
it is clear that the variance of 1/||k;|| decreases at least as 1/M and
will be very small for large M . In this way, if the filter is very long, we
could make the following approximation:

w/ ki
——S
[I%: ]

)\ﬁ/{a‘( 40} bO
M -2

(48)

ign(e;)

~rE [Wg;1l;;sign(ei)] ,r=F [ﬁ]

(49)

In [16], it was pointed out that if the length of the filter is long enough
and if certain mixing conditions on the input are satisfied, then by
using central limits arguments it can be considered that e., ; and efL =
w!_¥x; are zero-mean Gaussian variables, for every constant matrix
3. Defining 65;1 =wl k, = wr R 'x; and using Price’s the-
orem [17], we can write

E[easign(ea; + vi)]

E [W{,lkisign(ei)} =F [6§;1€a,z]

0
- (50)
where 02 . = Ele ;]. Itis easy to show that
2
E [ea,isign(ea,; + vi)] 1 T30
; : ; —=9E €a,i 51
2 me (5D

where the expectation is taken with respect to the noise distribution.
. -1 . .

It remains to compute the term E [eff,- €a,i]. Assuming that the input

regressors are independent

E [65;163,;} = E[|W:]] . (52)

Putting all these results together

2
~ Dy X7 2 ! 72”2;1_1'
~2rE[||wi1||*]E me : ]

(53)

T f
w,_ ki .

E| ———sign(e;)
[ [k |

It is important to note that for all the noise distributions of interest the

term in (51) is greater than zero for every value of 03“.. In fact, for
021 , = 0 that term reduces to the value of the PDF of the noise at the

origin, i.e., py(0), if it is continuous at that point. This means that the
term in the right vanishes as i — oo only if lim;— .. F[||W;[|*] = 0,
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which also implies lim; .~ o7, , = 0. We should mention that if the
independence assumption between the input regressors is not true, (52)
would be almost fulfilled when i — oo if the variance of the term
|I%:]|?, although not zero, is very small compared with the variance of
xT R~ x;. This is very reasonable for an adaptive filter where the norm
of the updates is very small. Remember that the norm of the updates
in this algorithm, for large 7, is basically equal to 1/8; which decreases
towards zero. This is some kind of a small “step-size” argument. It is
interesting to note that this result, which is valid under the considered
assumptions, does not depend on the existence of moments of any order
of the noise distribution. This means that this result would be valid for
the important case where the noise comes from an a-stable distribution.
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