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Sensorimotor synchronization (SMS) is the mainly specifically human ability to move in sync with a 
periodic external stimulus, as in keeping pace with music. The most common experimental paradigm to 
study its largely unknown underlying mechanism is the paced finger-tapping task, where a participant 
taps to a periodic sequence of brief stimuli. Contrary to reaction time, this task involves temporal 
prediction because the participant needs to trigger the motor action in advance for the tap and the 
stimulus to occur simultaneously, then an error-correction mechanism takes past performance as input 
to adjust the following prediction. In a different, simpler task, it has been shown that exposure to a 
distribution of individual temporal intervals creates a “temporal context” that can bias the estimation/
production of a single target interval. As temporal estimation and production are also involved in 
SMS, we asked whether a paced finger-tapping task with period perturbations would show any time-
related context effect. In this work we show that a perturbation context can indeed be generated 
by exposure to period perturbations during paced finger tapping, affecting the shape and size of the 
resynchronization curve. Response asymmetry is also affected, thus evidencing an interplay between 
context and intrinsic nonlinearities of the correction mechanism. We conclude that perturbation 
context calibrates the underlying error-correction mechanism in SMS.

In the study of time processing in the scale of hundreds of milliseconds, traditionally known as millisecond 
timing, the description of behavior and the understanding of its neural mechanisms have shown great advances 
in the last two decades1–4. The need for considering the processing of time in the multiple time scales involved 
in motor planning and control is being recognized as a fundamental step towards understanding the interaction 
between brain and body5.

Sensorimotor synchronization (SMS), the ability to move in sync with a periodic external stimulus, belongs 
to this time scale and underlies many human-specific activities like music and dance6,7. The simplest task to 
study SMS is paced finger tapping where a participant is instructed to tap in pace with an external metronome 
(usually a periodic sequence of brief tones). The stimulus sequence may be perturbed by an unexpected change 
of interstimulus period. This task allowed researchers to make the first steps towards identifying the neural 
correlates of SMS, like finding a perceptual and a sensorimotor component during resynchronization after a 
period perturbation8and an asymmetry in the processing of positive vs negative errors that reproduces a known 
behavioral asymmetry9. Advances in a related experimental paradigm with monkeys are to be noted, where 
single-neuron recordings showed clearly temporal profiles10and metronomical neural activity was found along 
the whole hierarchy of sensory, associative, and motor areas11. In a related paradigm where monkeys had to 
synchronize saccades to periodic visual stimuli12, activity of individual neurons in the cerebellar dentate gyrus 
showed correlation with either the current synchronization error or the timing of the next saccade.

Despite these recent important advances, many fundamental issues remain unsolved. In this work we focus 
on the underlying error-correction mechanism that allows a person to recover average synchrony after an 
unexpected period perturbation in a paced finger-tapping task. In SMS research it is universally accepted that 
both keeping average synchrony and recovering it after a perturbation are achieved thanks to an error-correction 
mechanism6,9,13,14. Despite a long history of using linear models to describe the resynchronization behavior7, 
mounting evidence from analyses of the resynchronization time series under different perturbation types and 
signs suggests that the error-correction mechanism is intrinsically nonlinear9,13–15. Other experimental findings 
also call for nonlinear models16–21. This knowledge could influence the way in which we design experiments and 
analyze the data.
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In temporal experimental paradigms other than paced finger tapping, it has been demonstrated that time 
estimation and production are biased by many factors22. We are interested in the effect of temporal context. In a 
traditional interval timing paradigm where participants are asked to estimate a single time interval demarcated 
by two flashed stimuli and reproduce it with a key press (a time reproduction task), it was shown that time 
estimates for a particular duration depended on the distribution of intervals presented to the participant23, with 
a bias towards the mean of the distribution. The processing of time in this range is thus “calibrated” by exposure 
to different time interval distributions that create a temporal context biasing estimations.

In recent years the effect of temporal context was found also in SMS-related experimental paradigms, 
as the following examples show. During the synchronization phase in a synchronization-continuation 
paradigm18,24 participants showed the “central tendency effect”, i.e. a bias towards the mean as in the temporal 
context effect discussed above. Participants biased their estimation of the interstimulus interval depending 
on the distribution it was drawn from (towards the mean of the distribution), and the magnitude of the bias 
decreased along the trial as more stimuli were presented. In a different work, participants in a synchronization-
continuation experiment25 showed a similar central tendency effect. The difference between the presented 
interstimulus interval and the produced interresponse intervals in a trial (i.e. the tempo-matching error) showed 
a negative slope as a function of the interstimulus interval. That is, participants tapped too slow when stimuli 
had a fast rate, and too fast when stimuli had a slow rate (although the researchers pooled synchronization and 
continuation data to compute the tempo-matching error, so the actual result for synchronization specifically 
may be obscured).

Although the evidence points to the existence of a time-related context in time processing both for single 
time intervals and for synchronization to a periodic sequence, up to our knowledge there is no direct evidence 
to date that the error-correction mechanism underlying SMS is influenced or calibrated by it. In this work we 
first analyze a compilation of quantitative evidence from different sources suggesting that the timing of the first 
tap after a perturbation depends on context, despite having the same timing of previous responses and the same 
timing of stimuli up to that point. This novel time-related context appears to be generated by exposure to either a 
single perturbation type during the whole experiment or two perturbation types randomly alternated. Motivated 
by this, we then show results from our specific experiment proving the existence of such a perturbation context 
in SMS and its effect during the resynchronization phase.

Results
Figure 1a shows a schematic of the task for the two perturbation types considered in this work. The period 
of the stimuli sequence is T, also referred to as the interstimulus interval (ISI). The asynchrony at step n is 
defined as en = Rn − Sn, that is the difference between the occurrence times of response Rn and stimulus Sn. In 

Fig. 1. (a) Schematic of a paced finger-tapping task with period perturbations. For simplicity the pre-
perturbation asynchrony values are zero. As the time of perturbation is unexpected, at n = 0 there is a forced 
error for both perturbation types and resynchronization ensues. At n = 1 the underlying error-correction 
mechanism is already at work based on past performance; if there were no effect of context, the occurrence 
time of the response (in absolute time) should be the same for both perturbation types as shown. (b) Prior 
evidence from the paced finger tapping literature. Asynchrony after perturbation estimated from published 
works for the two main types of perturbations (SC: step change; PS: phase shift) and the two perturbation 
signs (pos: ∆T > 0, period lengthens; neg: ∆T < 0, period shortens) (mean ±95% confidence interval). For 
SC perturbations the virtual asynchrony is used as defined in panel a. The PS perturbations show diverging 
values at n = 1 for pure versus combined contexts, suggesting a potential effect of context (asterisks indicate 
significant differences after Bonferroni correction; see Methods). Data digitized from published works as 
described in Methods, subsection Sample Size Justification.
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step-change (SC) perturbations the baseline period T0 of the sequence is unexpectedly changed at n = 0 by an 
amount ∆T ; the asynchrony at n = 0 thus shows a forced error equal to −∆T  (on average). In phase-shift (PS) 
perturbations the change at n = 0 is followed by an opposite shift at n = 1, thus making the sequence recover 
its original period. In both cases resynchronization follows as a convergence of asynchrony values to the post-
perturbation baseline14.

Prior evidence of perturbation context influencing the error-correction mechanism
In this subsection we compile prior evidence gathered from the paced finger tapping literature to show 
that exposure to either type of perturbation may generate a perturbation context effect that modifies the 
resynchronization response. The evidence is the following and it is based on comparing the response timing 
after SC and PS perturbations. We digitized data from published papers with paced finger tapping (Figure 1b; see 
Methods, subsection Sample Size Justification) where participants were exposed to either a single perturbation 
type (“pure”) or two different perturbation types at random during the same experiment (“combined”).

In experiments where the perturbations are unexpected (i.e., they occur at a random stimulus in a trial) the 
asynchrony at the perturbed beep n = 0 represents a forced error and, on average, it equals the time interval by 
which the corresponding stimulus was shifted, with opposite sign (Figure 1a). The response at the following beep 
(n = 1) is already affected by the correction mechanism attempting to decrease the forced error. Comparing 
asynchrony values from different perturbations, however, should be done carefully because the timing of 
the post-perturbation stimuli Sn  is not the same between SC and PS15—that is, the time references of each 
asynchrony at n ≥ 1 are different for different perturbations as shown in Figure 1a. In order to correctly compare 
and determine whether the post-perturbation response timing differs between different perturbation types, for 
the SC perturbations we show the “virtual” asynchrony between response and the extrapolated stimulus (as 
defined in panel a) thus fixing the time reference across perturbation types.

Let’s assume for a moment that there is no context effect; that is, assume that the correction mechanism 
after a specific perturbation type has the same calibration whether it is a “pure” or a “combined” experiment. 
In this case, the responses at n = 1 should coincide in absolute time (same virtual asynchrony) because both 
the past performance and the stimulus sequence were identical up to that point. What is observed in the PS 
perturbations, instead, is that they differ (Figure 1b).

Isolating the effect of perturbation context
The departure between pure and combined PS at n = 1 shown in Figure 1b suggests there is an effect of 
perturbation context produced by exposure to either one or the two types of perturbation. However, we gathered 
data from different papers where the experiments were not designed to specifically test this. In addition, the 
traditional way of comparing in the literature is one perturbation type against the other which involves a 
potential confounding because the two perturbation types have an effect by themselves, both at the perceptual 
level (different saliencies) and at the behavioral level (different shifting of stimuli from n = 1 on, thus of time 
references)6. In order to isolate the potential effect of perturbation context and make the correct comparison 
to determine a causal relationship, in this work we exposed 74 participants to different perturbation types 
according to the following four groups: Group 1 was exposed to SC perturbations only; Group 2 was exposed to 
PS perturbations only; Group 3 was exposed to SC and PS perturbations in random order (larger perturbation 
size); Group 4 was exposed to SC and PS perturbations in random order (smaller perturbation size). Groups 
1 and 2 belong to the “pure” context while Groups 3 and 4 belong to the “combined” context. In this way we 
can compare responses between different contexts in the same experiment while keeping the perturbation type 
constant.

The experiment is paced finger tapping with auditory stimuli and period perturbations to determine whether 
perturbation context has any effect during the resynchronization phase after a perturbation. The participant is 
instructed to keep average synchrony as well as possible and, in case a perturbation arises, to recover synchrony 
without stopping tapping. Perturbations can be of two different types: step-change perturbations (“SC”, where 
the stimuli period abruptly changes by an amount ∆T  at a random beep in the sequence) or phase-shift 
perturbations (“PS”, where the period changes at two consecutive beeps by opposite amounts ∆T  and −∆T  such 
that it goes back to its original value). These perturbation types are two of the most traditionally used in the paced 
finger tapping literature14. A perturbation can have two different signs: positive, where the period increases at the 
perturbed beep (∆T > 0, “pos”), or negative, where the period decreases at the perturbed beep (∆T < 0, “neg”); 
and two different sizes: |∆T | = 50 ms (larger perturbation size) and |∆T | = 20 ms (smaller perturbation size). 
Importantly, as described above in our experiment the participants are also exposed to either context: “pure” 
(Groups 1 and 2) or “combined” (Groups 3 and 4). The final experimental design is a fully factorial combination 
of conditions Context x Perturbation Type x Perturbation Sign x Perturbation Size; see Methods for a detailed 
description. The number of participants was determined by an a priori statistical power analysis using published 
data as shown in Figure 1b (see Methods, subsection Sample Size Justification). We first present results from the 
larger perturbation size (the one used for power analysis); we use the smaller perturbation size to show that the 
findings persist for different conditions.

Perturbation context affects the resynchronization response
Figure 2 shows the averaged time series of asynchrony for every condition, as a function of beep number 
along the trial (renumbered such that the perturbation occurs at n = 0) for the larger perturbation size. The 
resynchronization behavior is qualitatively similar across all conditions. As the perturbations are unexpected 
due to the actual perturbation occurring at a random beep in the trial, at n = 0 the asynchrony shows a forced 
error that on average is opposite to the perturbation size. Then the participant gradually recovers synchrony and 
reaches a new baseline.
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Quantitatively, however, the time series show systematic differences between pure and combined context 
conditions during the resynchronization phase. Expanding on the findings from prior literature, the differences 
in our experiment go well beyond n = 1 and consequently differences in SC perturbations also appear that were 
not evident in the data from the literature. An exploratory analysis reveals that some of the observed differences 
between contexts remain significant after adjusting for multiple comparisons (asterisks from permutation testing 
across participants and trials, with FDR correction across beeps; see Methods).

In order to properly test the effect of Context we fitted a Linear Mixed Model (LMM) with Asynchrony as 
dependent variable (restricted to the resynchronization phase, n = 1 through 6, pooled) and factors Context 
(levels pure/combined), Perturbation Type (levels PS/SC), and Perturbation Sign (levels pos/neg). As we are 
interested in the effect of Context—either as a main effect or any of its interactions—we included the two-way 
interactions of Context and the three-way interaction. Participant was included as a random effect; see detailed 
model specification in Methods. Results indicate that there is a significant three-way interaction effect, meaning 
that the effect of Context depends on the type and sign of the perturbation (significant three-way interaction: 
χ2(2) = 87.3, p = 2× 10−16; see full model results in Methods). This can be interpreted by observing Figure 
2 where the three-way interaction shows as a neat disordinal, nearly crossover interaction: in the negative PS 
perturbations, “combined” Context produces lower Asynchrony values than “pure” (difference estimate between 
combined and pure: 8.8 ms; 95% CI: [1.9; 15.7] ms, corrected p = 0.025), while in the positive PS perturbations 
it produces higher Asynchrony values (difference: −14.5 ms, 95% CI: [−22.1;−6.9] ms, corrected p = 0.001
); whereas the opposite is true for the SC perturbations (SCneg difference: −4.8 ms, 95% CI: [−11.9; 2.3] ms, 
corrected p = 0.19; SCpos difference: 7.8 ms, 95% CI: [0.6; 15.1] ms, corrected p = 0.048; see Methods for a 
summary of post-hoc comparisons). Effect sizes are shown in Supplementary Fig. S1 to graphically support the 
estimated marginal means comparisons.

An alternative model (the same three factors and all two-way interactions, but no three-way interaction) 
performs significantly worse, meaning the three-way interaction represents an important aspect of the data (see 
Methods).

It is important to note that all comparisons in Figure 2 are made between perturbations of the same type and 
sign but coming from different contexts. For example, in the upper left panel both time series are the response 
to a negative PS perturbation—the only difference being that one corresponds to Group 2 (pure context) and the 
other to Group 3 (combined context). That is, all comparisons involve the same stimuli sequence and thus any 
observed difference can be unequivocally attributed to different psychological states (context).

Fig. 2. Effect of Context on resynchronization after a perturbation. Asynchrony as a function of stimulus 
number along a trial (n = 0 is the perturbation beep). There are systematic differences between contexts 
(blue and orange curves): switching from combined to pure context shifts the asynchrony curve during 
resynchronization upwards or downwards depending on the condition, which is represented by a significant 
triple interaction Context x Perturbation Type x Perturbation Sign. Mean across participants ±95% confidence 
interval. Asterisks mark significant differences after permutation testing with FDR correction for multiple 
comparisons (see Methods).
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Response asymmetry during resynchronization depends on perturbation context
Response asymmetry, a hallmark of nonlinearity, quantifies the degree of mirror-image similarity between time 
series corresponding to perturbations of opposite signs13–15. Figure 3 shows the same data as before but arranged 
such that now the asymmetry between positive and negative perturbations can be more easily analyzed. In 
this figure we inverted the sign of the Asynchrony of the positive perturbations, so if the original responses to 
positive and negative perturbations are symmetric then the two plotted time series will be mostly coincident or 
overlapping, whereas if they are asymmetric they will show as non-overlapping. An exploratory analysis, again, 
reveals that some conditions are significantly asymmetric after adjusting for multiple comparisons (asterisks 
from permutation testing with FDR correction across beeps; see Methods).

In order to test whether there is significant asymmetry, we fitted an LMM to the data shown in Figure 3. 
Thanks to the sign inversion of the positive conditions, any asymmetry would be represented by a difference 
between negative and inverted-positive conditions, thus appropriate for linear regression and ANOVA. That is, 
we look for any effect of Perturbation Sign (either main effect or any of its interactions). The LMM is similar 
as before with Asynchrony as the dependent variable (beeps n = 1 through 6, pooled), factors Context (levels 
pure/combined), Perturbation Type (levels PS/SC), and Perturbation Sign (levels neg/inv-pos). Participant was 
included as a random effect; see detailed model specification in Methods.

Model results reflect what can be seen in Figure 3: there are varying degrees of asymmetry, i.e., not all conditions 
show the same difference between negative and inverted-positive series, and it depends on both Context and 
Perturbation Type levels (significant three-way interaction: χ2(2) = 14.5; p = 0.0007). An alternative model 
with all two-way interactions and no three-way interaction shows comparable performance (non significant 
difference in model comparison: χ2(1) = 1.3; p = 0.25), but see the three-way interaction is preferred because it 
offers a theoretical interpretation compatible with previous results as discussed in the next section.

Gradual increase of asymmetry
The previous result tells us that some conditions are more asymmetric than others. In this subsection we show 
that there is a specific ordering that can be interpreted in terms of our novel results regarding the effect of 
Context and previous literature. In Figure 4a we show the actual asymmetry, that is the difference between the 
corresponding time series from Figure 3. In the resynchronization phase (n = 1 through 6) the conditions have 
different asymmetry time evolutions, with some conditions closer to zero (less asymmetric) and some others 
farther away from zero (more asymmetric). The specific order is, from less to more asymmetric: PS pure < PS 
comb < SC comb <SC pure, and it can be seen more clearly in Figure 4b where we show the average asymmetry 
across the resynchronization phase.

Fig. 3. Asymmetry between responses to perturbations of opposite signs. Same data as above (asynchrony 
as a function of stimulus number along a trial), here after inverting the sign of the asynchrony from positive 
perturbations. In this way, any asymmetry will show as a difference between time series within each panel 
(negative response minus inverted-positive response). Mean across participants ±95% confidence interval. 
Asterisks mark significant differences after permutation testing with FDR correction for multiple comparisons 
(see Methods).
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Although the differences between consecutive conditions in Figure 4b are not significant after correcting for 
multiple comparisons (see Methods), their ordering has a very clear interpretation based on two facts. First, it 
is known that pure SC perturbations are more asymmetric than pure PS perturbations13,15, which in this work 
is additionally supported by a significant difference between them (asymmetry difference estimate between SC 
and PS: 10.8 ms, 95% CI: [2.3; 19.3] ms, t(718) = 2.49, p = 0.013). Second, note that the “combined” conditions 
have intermediate asymmetry values—the crossover interaction effect of Context we showed above makes the 
less asymmetric responses more asymmetric and vice versa. We will interpret this in a broader scope in the 
Discussion.

Context and asymmetry findings hold for different perturbation sizes
In order to determine whether our findings hold in different conditions, we designed our experiment to 
include a complete set of data with a smaller perturbation size (∆T = ±20 ms) which we analyze here. This 
perturbation size is particularly interesting because it is just above the detection threshold for step changes (2% 
of ISI) and right at it for phase shifts (4% of ISI)14,26,27. Figure 5 shows a very similar qualitative behavior to that 
observed for the larger perturbation size. Specifically, conditions SCpos, SCneg, and PSpos in Figure 5a shows 
the same pattern as in Figure 2 (PSneg, however, shows no clear difference). This is supported by an LMM with 
a significant three-way interaction as before, meaning that the effect of Context depends on both Perturbation 
Type and Sign (Supplementary Table S1); and differences between contexts keeping the same signs as before, 
meaning the direction of the effect is preserved (Supplementary Table S2; note that the difference for PSneg is 
not significantly different from zero).

Analogously, Figure 5b shows a very similar pattern of asymmetries as in Figure 3: mostly overlapping curves 
in PSpure, highest neg-pos difference in SCpure, and intermediate differences in PScomb and SCcomb. This is 
quantitatively confirmed by computing the differences in Figure 6b where the same effect of context is observed: 
“comb” context makes the PS perturbations more asymmetric and the SC perturbations less asymmetric as 
in Figure 4b. See Supplementary Table S3 for LMM-ANOVA results (significant three-way interaction) and 
Supplementary Table S4 for asymmetry differences.

Some other effects in the linear regression for the smaller perturbation size are not significant, however, 
probably due to lack of statistical power—since the statistical power analysis of our original experiment was 
performed based on the expected effect size for the larger perturbations, an even larger sample size would 
be needed for ∆T = ±20 as it shows a smaller effect size (see effect sizes for the smaller perturbation size in 
Supplementary Fig. S1). Despite this, both the context effect and the asymmetry results are replicated in the 
∆T = ±20 data.

Context is established during the first few trials
As a first approach to determine how rapidly perturbation context is established we analyzed the size of the 
context effect across the three experimental blocks for the larger perturbation size (presumably larger effect). 
We considered two different, non-mutually exclusive hypotheses: 1) If exposure to a context were gradually 
integrated along the experiment, then we would expect no difference between contexts at the beginning of the 
experiment and an increasing difference as the experiment proceeds; 2) As participants in the “pure” context face 

Fig. 4. Asymmetry increases in a specific way depending on both Context and Perturbation Type. (a) 
Asymmetry between responses from perturbations of opposite signs (negative minus inverted-positive). 
Difference between corresponding time series from previous figure ±95% confidence interval. (b) Mean 
asymmetry during the resynchronization phase (beeps n = 1 through 6) from panel a. Mean across beeps 
±95% confidence interval.
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Fig. 5. Generalizability of context and asymmetry findings across different perturbation sizes. (a) Effect of 
Context for the smaller perturbation size (∆T = ±20 ms; compare to Figure 2). Asynchrony as a function 
of stimulus number along a trial. The data shows the same effect of context as the larger perturbation size. 
Mean across participants ±95% confidence interval. Asterisks mark significant differences after permutation 
testing with FDR correction for multiple comparisons (see Methods). (b) Asymmetry between responses to 
perturbations of opposite signs for the smaller perturbation size (∆T = ±20 ms; compare to Figure 3). Same 
data as in panel (a), here after inverting the sign of the asynchrony from positive perturbations. Mean across 
participants ±95% confidence interval. Asterisks mark significant differences after permutation testing with 
FDR correction for multiple comparisons (see Methods).
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less uncertainty (single perturbation type) than participants in the “combined” context (two perturbation types), 
then we would observe a different rate of adaptation to either context.

Regarding the first hypothesis, Supplementary Fig. S2 shows the difference between contexts as a function 
of block number for all conditions. Averaged data in right panel shows no clear trend as a function of block 
number. We conclude that context might be established early on within the first block and thus we plotted data 
from the first block only in Supplementary Fig. S2. In this case there is a clear difference between the first and 
second halves of the first block, although there is no easily interpretable pattern—for some conditions the size 
of the context effect decreases along the first block (PSpos, SCneg) while for other it switches sign (SCpos) or is 
constant (PSneg).

Regarding the second hypothesis, Supplementary Fig. S3 shows the difference between blocks as a function 
of context. The averaged data in the right panel shows no clear differences between pure and combined context, 
so we conclude that any potential difference in adaptation rate between contexts should appear within the first 
block. In order to confirm this we plotted data from the first block only (difference between second and first 
halves) in Supplementary Fig. S3. Although there is a clear difference between contexts, as before the result is not 
easily interpretable—for some conditions context shows no evolution within the first block (PSpos comb, SCneg 
pure) while for others it increases (PSpos pure) or decreases (SCpos comb).

In summary, it seems to be the case that context takes a few trials to be established and participants in 
different contexts have potentially different adaptation rates. Notice that invalid trials in our experiment were 
discarded from analysis and repeated at the end of the block but nonetheless might contribute to the setting of 
context; this implies that context might be taking slightly more trials to be established. A specifically designed 
experiment would be needed focusing on the first trials only, where the statistical power would come from a 
large number of participants to counter the small number of trials analyzed per participant.

Discussion
The error-correction mechanism depends on perturbation context
In this work we showed that exposure to different types of period perturbations in a paced finger-tapping 
task creates a novel time-related context that modifies the resynchronization response. In other words, the 
response after a specific perturbation type is different depending on whether the participant was exposed to 
that perturbation type only during the experiment or to two perturbation types at random. We interpret this in 
terms of the underlying error-correction mechanism that produces the resynchronization response, suggesting 
that the mechanism is calibrated by the perturbation context. In terms of a potential mathematical model of the 
correction mechanism14,15, calibration by perturbation context may be implemented for instance as an adjustment 
of the values of correction coefficients depending on whether the participant was exposed to a single or multiple 
perturbation types during an experiment. Once a context is set, the calibrated mechanism produces responses to 
all perturbation types and signs13,15. The fact that we replicated our results at the smaller perturbation size (near 
the detection threshold for both SC and PS perturbations) gives us a hint that perturbation context might be 
set independently of conscious detection of the perturbation, or at least that a few detected perturbations would 

Fig. 6. Asymmetry for the smaller perturbation size. PS perturbations increase their asymmetry when 
in “comb” context, while SC perturbation decrease it, as for the larger perturbation size. (a) Asymmetry 
between responses from perturbations of opposite signs (negative minus inverted-positive). Difference 
between corresponding time series from Figure 5b ±95% confidence interval. (b) Mean asymmetry during 
the resynchronization phase (beeps n = 1 through 6) from panel a; compare to Figure 4b. Mean across beeps 
±95% confidence interval.
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suffice for setting context. Additional experiments with clearly subliminal perturbation sizes would be needed 
with an even larger sample size due to its likely even smaller effect size.

Our results challenge the idea of several different mechanisms, namely the two proposed independent 
processes of “phase correction” and “period correction”7(see discussion in Bavassi et al., 201314), where the first 
one only is active in PS perturbations but both are active in SC perturbations. If the participant doesn’t know in 
advance which perturbation type comes next (combined context), then it is difficult to accommodate the idea of 
setting the appropriate mechanism beforehand, particularly after considering that PS and SC perturbations are 
identical up to and including n = 0.

The error-correction mechanism is intrinsically nonlinear
Our results regarding the symmetry of pure PS and pure SC perturbations are in agreement with previous 
literature, and also allow us to interpret the behavior after different perturbation types in a broader scope. On 
one hand, responses to pure PS perturbations of 10% of the period or less like the ones used in this work are 
mostly symmetric6,28 (Figure 4b), leading to mathematical models of behavior that were traditionally linear29–31. 
On the other hand, responses to pure SC perturbations are asymmetric13,14 (Figure 4b), which lead to nonlinear 
mathematical models13–15. When set in a combined context, however, responses to PS perturbations are more 
asymmetric than traditionally reported with a degree of asymmetry closer to that of SC perturbations. Thus 
traditional usage of linear models to represent responses to PS perturbations might not be the best choice.

We interpret this again in terms of the underlying correction mechanism, adding support to the parsimonious 
hypothesis of a single, nonlinear correction mechanism across perturbation types and signs. Our results add 
to mounting evidence supporting an intrinsically nonlinear correction mechanism even for perturbation 
magnitudes as small as 10% of the period9,13–15—that nonetheless might be calibrated according to context. 
The combined context is particularly important for this conclusion because participants don’t know in advance 
which perturbation type comes next since at every trial the stimuli sequences up to n = 0 are identical for both 
perturbation types. We conceptually model the context-dependent calibration of the correction mechanism 
as an adjustment of the values of the mechanism coefficients15 such that in pure contexts the coefficients are 
adjusted to the specific perturbation type, but in a combined context a compromise is reached between the two 
perturbation types because the participant doesn’t know which one comes next.

Methodological implications
We would like to emphasize the importance of measuring and analyzing the full resynchronization phase (n = 1 
through 6) instead of either just the first response after perturbation (n = 1, traditionally reported as the phase 
correction response or PCR in the tapping literature) or just the post-perturbation baseline (average of n = 7 
through end of trial). Had we analyzed either n = 1 only or n ≥ 7 only, where the SC perturbations show no 
effect of context at all (Figures 1b and 2), we would have missed their critical role in both the determination of 
the context effect and the interpretation of asymmetry.

The existence of a time-related, perturbation-generated context effect in paced finger tapping forces us to 
make more careful comparisons when the data come from experiments with different perturbation types. The 
response size and its time evolution during resynchronization will depend on the whole set of perturbation types 
the participants were exposed to, even when the comparison is made between data of a single perturbation type.

Potential connection between context, neural correlates, and computational models of SMS
As perturbation context is a novel finding, there is no established neural correlate. However, research on neural 
correlates of time processing in general and of sensorimotor synchronization in particular has seen a surge 
in the last decade32 and can help us speculate what a correlate of context might look like. It has been shown 
that motor timing of individual intervals is related to the speed of a trajectory in the neural space spanned by 
the activity of every neuron in a population, with longer(shorter) intervals being represented by slower(faster) 
trajectories in the monkey medial frontal cortex1,4,33. Synchronization to a periodic sequence, however, seems to 
have a different neural representation in that responses to different stimulus periods are represented by neural 
trajectories of different amplitudes, at least in monkeys34. A change in stimulus period might be seen as a switch 
between trajectories of different amplitudes, and context might thus be related to the speed of the switching—
in this way a pure SC would switch more quickly than a combined SC leading to a slightly faster approach 
to baseline as seen in Fig. 2. It is worth noting, on the other hand, that changes in the speed of the neural 
trajectory—rather than its amplitude—were observed in a related task that didn’t involve synchronization but 
used periodic stimuli35 (see in addition18,36).

Regarding biologically-plausible computational models of motor timing, similar interpretations and caveats 
might be valid. Recurrent neural network models propose that the brain encodes time in the varying activity 
patterns of neuronal populations37,38. Advances with such models show how temporal scaling of a motor pattern 
is achieved by a “speed knob” represented by a constant, low amplitude input to the neurons in the network39,40. 
That is, a global switch can affect the activity of a recurrent neural network in a dynamic way without resorting 
to a change in connectivity parameter values. Since the effect of context on our time series can be interpreted as 
a faster or slower convergence to the post-perturbation baseline, we propose that context might be represented 
by such a global parameter. A word of caution is in order, however, as it must also be taken into account that not 
only the correction of asynchronies seems to be faster or slower but firstly positive and negative perturbations 
imply that the whole motor pattern is temporally stretched or compressed.

In terms of a coarser-grain computational model of neural activity, context might also be best represented 
by different values of a parameter instead of a dedicated module. Take for instance a model of motor planning 
and sensory anticipation18. The model has a nonlinear motor planning module (MPM) for periodic interval 
production, consisting of three units representing the average activity of three subpopulations of neurons, and a 
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sensory anticipation module (SAM) that updates the input to the MPM depending on the error signal between 
its activity and the expected sensory feedback. The model neatly accommodates prior information about the 
distribution of intervals. Context in this model could be represented, for instance, by constants K (which 
quantifies the updating of input information) and α (which controls correction of phase difference between 
sensory and motor signals). It remains to be seen whether the model would perform well when exposed to 
different context-defining perturbation types in random order.

The computational modeling of context is perhaps more easily envisaged at the behavioural level. 
Computational models of behaviour can be classified into three main approaches: algorithmic, phase oscillator, 
and neuro-mechanistic19. For the sake of discussion here we the consider the algorithmic class of models where 
the error-correction mechanism for the asynchrony en is represented as an iteration over previous values—
i.e., a particular form of the correction function f in the difference equation or map en+1 = f (en; xn, Tn). The 
correction function fis usually polynomial, and linear and nonlinear terms are chosen to best reproduce features 
of the asynchrony time series14,15. These models can provide a unified description of many different conditions: 
they fit and predict time series from different perturbation types and sizes with a single set of parameter values, 
a surprisingly rare feat in the experimental psychology literature15. The error-correction mechanism in these 
models is represented by the particular set of coefficient values for the chosen linear and nonlinear terms. We 
propose that context, being a global characteristic of the task, is assimilated to the set of coefficient values and 
changing context would mean that a different tuning of the coefficients would be needed. Modelling work will 
be needed to determine whether a change of context would be represented by a new value of every parameter 
or only some of them, potentially leading to hints about neural correlates and behavioral interpretation of the 
involved parameters.

A broader scope: perturbation context, transients, and dynamical systems
The effect of perturbation context is evident in the resynchronization region only; that is, in the transient, as 
opposed to stationary or equilibrium measures like the pre- or post-perturbation baselines and single data like 
the PCR which are some of the most common behavioral measures in SMS6. This is probably why this effect was 
hidden in plain sight in the decades-long tapping literature, and it took the specific plot shown in Figure 1b with 
data from various sources to begin to unveil it.

The transient vs. stationary argument should be seen instead as mutually complementing pieces of evidence 
within a broader perspective that is rapidly gaining ground: the dynamical systems perspective on flexible 
timing41. According to this framework, the behavioral dynamics results from the interplay among initial 
conditions, external inputs and internal parameters of the underlying error-correction mechanism. This level of 
abstraction aims at inferring computational principles with a certain degree of invariance across conditions, that 
is understanding for example the apparent variety of responses to different perturbation types as particular cases 
resulting from the rich dynamics of a single mechanism9,13–15. Under this light, perturbation context affects the 
internal parameters of the correction mechanism, usually represented by the coefficient values of a mathematical 
model15, where the difference between time series during the transient allows us to access solutions and 
parameter values that are commonly hidden from analysis.

Methods
Experiment
Ethical considerations
Experimental protocols were designed according to national and international guidelines and were approved by 
the Ethics Committee of Universidad Nacional de Quilmes. All participants signed a written informed consent.

Participants
Recruited participants were 80 volunteers; six of them could not complete the experiment due to difficulties 
in synchronizing and three were excluded according to the outlier criteria (see below). The final number of 
participants was N = 71 (ages 18-63 yr, mean 28.6 yr; 33 women; 74 right-handed).

Task and perturbations
The task was auditorily-paced finger tapping with unexpected period perturbations. Participants were instructed 
to maintain average synchrony as well as possible, using the index finger of the dominant hand. In the event of 
a perturbation, the participant had to get back to average synchrony without stopping tapping. A single trial 
consisted of synchronization to a sequence of 35 brief tones with a baseline interstimulus period T0 = 500 ms 
and a single perturbation. The perturbations occurred at a beep in the sequence randomly chosen in the range 
17-22 (beeps were renumbered afterwards such that n = 0 corresponds to the perturbation). The perturbations 
could be either a step-change (SC) perturbation where the sequence period T changes once by an amount ∆T , 
or a phase-shift (PS) perturbation where the period changes twice at consecutive beeps (first by an amount ∆T  
and then −∆T  at the following beep). Each perturbation type could be either positive (∆T = 50 ms or 20 ms, 
pos) or negative (∆T = −50 ms or −20 ms, neg) or neutral (∆T = 0, isochronous sequence, used as a control, 
data not included in analysis). A participant exposed to either SC only or PS only perturbations belonged to the 
“pure” context (Groups 1 and 2, respectively), while a participant exposed to both perturbation types (randomly 
interspersed) belonged to the “combined” context (Group 3 larger perturbation size, and Group 4 smaller 
perturbation size). See Table 1 for a summary of experimental conditions.

Experimental setup
The device consisted of an Arduino Mega development board operating as a slave to a master controller program 
in Python. Board-controller communication was performed via the serial port. At each trial the board received 

Scientific Reports |        (2024) 14:27473 10| https://doi.org/10.1038/s41598-024-78786-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


parameters from the controller (interstimulus period, number of stimuli in the trial, whether there should be a 
perturbation, beep number and size of perturbation, etc) and generated the auditory stimuli, registered tapping, 
and sent the recorded data back to the controller. The board was complemented with a custom-made shield for 
interfacing with the user42 (force sensor to detect taps, audio signals, etc.). Each time the board detected a tap 
on the force sensor, auditory feedback was sent to the participant as a means to reduce timing variability14 and 
to more directly compare to the literature. Both stimulus and feedback tones were 50 ms-long sinusoidal sounds 
of 440 Hz (A4) and 660 Hz (around E5), respectively. To prevent the participant from having visual feedback, a 
screen was placed to hide the hand. The sound was played diotically through Sennheiser HD419 headphones. 
Participants were able to set the sound volume to a comfortable level. A detailed description of the experimental 
device with open software and hardware is available42.

Experimental design
We randomly assigned participants to either of the following four groups: Group 1 was exposed to SC 
perturbations only (18 participants); Group 2 was exposed to PS perturbations only (18 participants); Groups 
3 and 4 were exposed to randomly interspersed SC trials and PS trials (18 participants and 20 participants 
respectively; total 74 participants before outlier removal). Groups 1 and 2 belong to the “pure” context while 
Groups 3 and 4 belong to the “combined” context. Every perturbation type was presented in two possible sizes 
and signs: ∆T = ±50 ms and ∆T = ±20 ms (∆T = 0 “isochronous” was used as control; data not included 
in analysis but available in the repository). The final dataset (excluding the isochronous trials) is represented 
by a fully factorial combination of conditions Context (levels pure/comb) x Perturbation Type (levels PS/SC) 
x Perturbation Sign (levels pos/neg) x Perturbation Size (levels 50/20 ms). A summary of the experimental 
conditions is displayed in Table 1.

Every participant performed the experiment in a single session with two stages: Demo and Test. The Demo 
allowed the participant to become familiar with the task (one trial for every condition). The Test consisted of 12 
trials for every experimental condition (including isochronous trials, experiment length was 2x2x12 + 1x12 = 
60 trials for Groups 1 and 2, and 2x2x12 + 2x12 = 72 trials for Groups 3 and 4). Trials were equally distributed 
in three blocks and presented in random order (within-block randomization), with a random intertrial interval 
between 0.5 and 1 s. Participants moved to the next trial with a key press. Participants were asked to take a short 
rest between blocks to prevent fatigue.

Each stage ended when all trials were successfully completed. A trial was considered valid if the participant 
started tapping before the sixth stimulus, did not miss any response thereafter, and did not produce excess 
responses (more than one per stimulus). Each invalid trial was repeated at the end of the block, until the 
participant was able to complete all trials successfully.

Outlier criteria
We used a robust definition of outliers (Tukey’s fences) and applied uniform criteria at the trial, participant, and 
condition levels.

• Trial level

 – Trial mean asynchrony. For every participant and condition, we computed the mean asynchrony of every 
trial, and found the lower (Q1) and upper (Q3) quartiles of the distribution. Any trial with a mean asyn-
chrony outside the interval [Q1-1.5 IQR; Q3+1.5 IQR] (Tukey’s fences, where IQR=Q3-Q1 is the inter-
quartile range) was flagged as outlier and removed from the dataset.

 – Trial standard deviation of asynchronies. For every participant and condition, we computed the standard 
deviation of the asynchronies of every trial, and lower and upper quartiles of the distribution. Any trial 
with a standard deviation outside Tukey’s fences was flagged as outlier and removed from the dataset.

• Participant level

 – Participant in a condition. If more than 50% of trials from the same participant were removed as outliers 
in a given condition, then the whole participant was removed from the condition.

 – Participant mean asynchrony. We computed the mean asynchrony of every participant in a condition, and 
the lower and upper quartiles of the distribution. Any participant with a mean outside Tukey’s fences was 
flagged as outlier and removed from the condition.

 – Participant standard deviation of asynchronies. We computed the standard deviation of asynchronies of 
every participant in a condition. Any participant with a standard deviation outside Tukey’s fences was 
flagged as outlier and removed from the condition.

Group Context Type Sign Size (ms) Exp. length (trials) N particip

1 pure SC pos, neg 50, 20 60 17

2 pure PS pos, neg 50, 20 60 16

3 combined SC, PS pos, neg 50 72 18

4 combined SC, PS pos, neg 20 72 20

Table 1. Summary of experimental conditions. Number of participants per group is after outlier removal.
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• Condition level

 – Condition in the experiment. If a participant was removed as an outlier in more than 50% of the condi-
tions, then he/she was removed from the whole experiment. One participant was removed from Group 1, 
and two were removed from Group 2.The highest number of outlier trials per participant was 11, repre-
senting 15% of his/her total trials (at least 1 outlier trial was detected for every participant). The percentage 
of outlier trials was 8.5% in Group 1, 9.3% in Group 2, 8.1% in Group 3, and 7.9% in Group 4, suggesting 
that the different experiment durations had a negligible effect on performance.

Data preprocessing
All trials were time-shifted so that they were aligned at the perturbation beep. This beep was renamed n = 0 
and an analysis range was defined from n = −6 through n = 11 (range where all participants responded 
to all stimuli). For every trial we defined three time regions: pre-perturbation (beeps n = −6 through −1); 
resynchronization (beeps n = 1 through 6 for SC, beeps n = 2 through 6 for PS); and post-perturbation (beeps 
n = 7 through 11); see the regions defined for an exemplary time series in Versaci and Laje, 2021, Figure 1c43. 
For every participant and condition, we defined the pre-perturbation baseline as the average of asynchronies 
across trials during the pre-perturbation region and then subtracted it from every trial.

Sample size justification
Based on previous literature, we estimated the number of participants needed to observe a significant difference 
between pure and combined contexts at the first beep after perturbation (n = 1) for the larger (50 ms) PS 
perturbations by power analysis44. Code for reproducing the estimation and plotting Figure 1b can be found 
in the following GitHub repository: https://github.com/SMDynamicsLab/Context2024, file “/analysis/power_
analysis.py”

Search of published data
As the specific experimental manipulation of context had not been done before, we searched the paced finger 
tapping literature for data from published experiments with a single perturbation type (“pure” condition) and 
with two perturbation types in random order (“combined” condition). The inclusion criteria were the following:

• Paced finger tapping with auditory stimuli;
• PS and/or SC perturbation types;
• Perturbation size of ±50 ms, baseline period of 500 ms;
• Enough statistical information (sample size, standard error / standard deviation, etc);
• Comparable experimental conditions, e.g. unexpected perturbation.The data, shown in Table 2 and plotted in 

Figure 1b, was digitized from the published figures using g3data in Ubuntu. Examples of potentially relevant 
publications that were excluded for specific reasons:

• 
• (Repp, 2010)45 Unusual results from musically trained participants, acknowledged by the author (“...a pattern 

that has not been observed previously in numerous studies with musically trained participants”).
• (López & Laje, 2019)13 Data available for SC perturbations but ∆T  is smaller than 50 ms and not enough data 

to interpolate.

Condition in Figure 1b Reference Original figure Original condition

Pure SC (pos and neg)

(Thaut et al., 1998)
Fig. 2A Step change:

Fig. 2B ISI = 500 ms, ∆T = ±50 ms

(Bavassi et al., 2013) Fig. 5B
Step change:

ISI = 500 ms, ∆T = ±50 ms

Pure PS (pos and neg)

(Repp, 2002a) Fig. 9
Phase Correction Response (PCR):

ISI = 500 ms, ∆T = ±50 ms

(Repp, 2002b) Fig. 2A
Phase Correction Response (PCR):

ISI = 500 ms, ∆T = ±50 ms

(Repp, 2010) Fig. 1A
Phase Correction Response (PCR):

ISI = 500 ms, ∆T = ±50 ms

Combined SC (pos and neg) (Large et al., 2002) Fig. 2A

Tempo perturbation:
Linear interpolation between
ISI = 400 ms, ∆T = ±32 ms
and
ISI = 600 ms, ∆T = ±48 ms

Combined PS (pos and neg) (Large et al., 2002) Fig. 2A

Tempo perturbation:
Linear interpolation between
ISI = 400 ms, ∆T = ±32 ms
and
ISI = 600 ms, ∆T = ±48 ms

Table 2. Literature sources for every condition.
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• (Repp et al., 2012; Fig. 1)46 Data must be interpolated; discarded because the Pure PS condition is well repre-
sented by three other papers without interpolation.

Power analysis
We want to estimate the minimum number of participants Nestim such that the probability of rejecting the null 
hypothesis given that the alternative hypothesis is true is greater than or equal to the desired power (1− β) for 
an effect size as shown in Figure 1b at n = 1 (see for instance Suresh & Chandrashekara 201247, section “Sample 
size estimation with two means”):

 1− Φ(t1−α − t) ≥ 1− β

that is

 Φ(t1−α − t) ≥ β (1)

where Φ is the cumulative distribution function (CDF) of the normal distribution, t1−α = 1.64 is the critical 
value of Student’s t (upper one-tailed, corresponding to α = 0.05 under the approximation of infinite degrees of 
freedom), and t is the value of Student’s t corresponding to the observed difference:

 
t =

SES√
2/Nestim

where SES is the observed standardized effect size, that is the standardized difference between conditions from 
previous literature:

 
SES =

(
e
(n=1)
pure − e

(n=1)
comb

)

SDpooled

where e(n=1)
pure,comb is the estimated asynchrony of the response at n = 1 (averaged across experiments with context 

pure, comb) and SDpooled is the pooled standard deviation of the asynchrony estimates:

 
SDpooled =

√
(SD2

pure + SD2
comb)

2

where the standard deviation of each condition is the square root of the average variance across experiments, 
weighted by the corresponding degrees of freedom df :

 

SD(pure,comb) =

√
df(pure,comb)exp1SD

2
(pure,comb)exp1 + df(pure,comb)exp2SD

2
(pure,comb)exp2 + ...

df(pure,comb)exp1 + df(pure,comb)exp2 + ...

df(pure,comb)expn =N(pure,comb)expn − 1

Putting all this together, Eq. 1 can be expressed as

 
Nestim ≥ 2

(
t1−α − zβ
SES

)2

 (2)

where zβ = −1.28 (corresponding to β = 0.1 or a power of 0.9 under the approximation of normal distribution). 
By applying this to the PSneg and PSpos data, we obtained Nestim ≥ 12. We obtained a similar estimation by 
using the function solve_power from statsmodel/TTestIndPower48 in Python.

We obtained a slightly higher estimation by dropping the usual approximations for t1−α and zβ, that is by using 
instead:

 

t1−α =iCDF(1− α; 2Nestim − 2)

zβ =iCDF(β; 2Nestim − 2)

(where iCDF is Student’s inverse CDF or quantile function with 2Nestim − 2 degrees of freedom) and then 
finding the value of Nestim that fulfills the condition in a consistent way. Without the approximations we obtained 
Nestim ≥ 13, so we kept this larger estimate instead.

Testing of published data
In order to test for the statistical significance of the differences observed in Figure 1b at n = 1, we computed 
a t-test for every comparison between contexts (PSpos, PSneg, SCpos, SCneg, all at n = 1) and adjusted the 

Scientific Reports |        (2024) 14:27473 13| https://doi.org/10.1038/s41598-024-78786-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


p-values via Bonferroni for four comparisons. The adjusted p-values are 0.00023, 1.7× 10−6, 0.059, and 0.59, 
respectively.

Exploratory analysis: permutation testing
Even an exploratory analysis (less statistical power) prior to fitting any statistical model leads to partially 
significant results. We tested the differences seen in each panel of Figures 2 and 3 via permutation testing and 
correcting for multiple comparisons. We first defined the variables DIFF and ASYM. For Figure 2, variable 
DIFF is the difference between contexts for every combination of Perturbation Type and Perturbation Sign 
(larger DIFF values represent larger effect of context). For Figure 3, variable ASYM is the difference between 
signs for every combination of Context and Perturbation Type (larger ASYM values represent larger degree of 
asymmetry; responses for positive perturbations have their signs inverted; see main text). Then for DIFF and 
ASYM separately we computed p-values for every beep n in the resynchronization region (see next) and fed 
them to the FDR Benjamini/Hochberg (positively correlated) algorithm with α = 0.05. Beeps with significant 
differences after correction are indicated by asterisks in Figures 2 and 3.

The p-values to be fed to FDR were estimated via permutation testing as follows. We illustrate the procedure 
with the PSneg condition in the upper left panel of Figure 2 where the variable DIFF is the difference between the 
two curves (analogously for ASYM in Figure 3). To generate the distribution of DIFF under the null hypothesis 
we first pooled the time series from all trials from all participants from the PSneg condition (analogously for 
the other conditions), then randomly assigned trials to surrogate participants in surrogate contexts “pure” and 
“combined” according to the number of data in the original dataset, and then performed the same computation 
that was applied to obtain the actual result, that is average across surrogate trials then across surrogate participants 
and then take the difference between surrogate contexts, to get a surrogate DIFF time series. This procedure was 
repeated 5000 times to get a null distribution of 5000 surrogate DIFF time series. We finally compared the true 
DIFF value at each beep n = 0 through 6 to the null distribution at the corresponding beep and computed a 
p-value as the proportion of null DIFF values above the true DIFF value or below its opposite value (i.e. two-
tailed).

Hypothesis testing: effect of context
Code for reproducing all statistical hypothesis testing is available in the following GitHub repository:  h t t p s : / / g i t 
h u b . c o m / S M D y n a m i c s L a b / C o n t e x t 2 0 2 4     , file “/analysis/hypothesis_testing.Rmd”

Linear regression
Main model: Linear Mixed Model with Asynchrony as dependent variable (pooled beeps n = 1 through 6 for 
SC, n = 2 through 6 for PS), fixed-effect factor Context (levels pure/combined), fixed-effect factor Perturbation 
Type (levels PS/SC), fixed-effect factor Perturbation Sign (levels pos/neg), two-way interactions Context x 
Perturbation Type and Context x Perturbation Sign, three-way interaction, and random-effect factor Subject. 
Functions lmer (from library lme449) and Anova (from library car50) in R.

Analysis of Deviance Table: Anova table of model parameters; testing the effect of Context in Figure 2; see 
Table 3 (Type III Wald χ2 tests)

Post-hoc comparisons: Context differences for every condition in Figure S1a; see Table 4 (FDR-corrected 
p-values and confidence intervals; functions emmeans, pairs and test from library emmeans51 in R)

Alternative model: Same as above but no three-way interaction and all two-way interactions. Linear Mixed 
Model with Asynchrony as dependent variable (pooled beeps n = 1 through 6 for SC, n = 2 through 6 for PS), 

Condition pure-comb diff estimate (ms) SE (ms) 95% CI (ms) df t p

PS neg 8.84 3.50 [1.98; 15.68] 125.9 2.53 0.025

PS pos −14.49 3.87 [-22.08; -6.89] 155.1 −3.74 0.001

SC neg −4.79 3.63 [-11.92; 2.32] 140.9 −1.32 0.189

SC pos 7.81 3.70 [0.56; 15.06] 143.5 2.11 0.048

Table 4. Estimated marginal means and contrasts for every condition in Figure S1a (FDR-corrected p-values 
and confidence intervals).

 

Factor χ2 df p

Context 6.38 1 0.011

Perturb_type 4.01 1 0.045

Perturb_sign 12.66 1 3.7× 10−4 

Context:Perturb_type 8.47 1 0.0036

Context:Perturb_sign 27.41 1 1.6× 10−7 

Context:Perturb_type:Perturb_sign 85.28 2 2.2× 10−16 

Table 3. Anova results, Context testing.
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fixed-effect factor Context (levels pure/combined), fixed-effect factor Perturbation Type (levels PS/SC), fixed-
effect factor Perturbation Sign (levels pos/neg), all two-way interactions Context x Perturbation Type, Context 
x Perturbation Sign, and Perturbation Type x Perturbation Sign, no three-way interaction, and random-effect 
factor Subject. Model comparison is shown in Table 5 (function anova from stats52 library in R).

Hypothesis testing: effect of perturbation sign (asymmetry)
Code for reproducing all statistical hypothesis testing is available in the following GitHub repository:  h t t p s : / / g i t 
h u b . c o m / S M D y n a m i c s L a b / C o n t e x t 2 0 2 4     , file “/analysis/hypothesis_testing.Rmd”

We quantify the degree of response asymmetry in a Context x PerturbationType combination as the mirror-
image difference between responses to perturbations of opposite signs (Figure 3). In order to use linear regression 
and ANOVA we implemented this by inverting the sign of the asynchrony of the positive perturbations, so that 
asymmetry can be interpreted as the difference between levels of the factor Perturbation Sign (negative minus 
inverted-positive).

Linear regression
Main model: Linear Mixed Model with Asynchrony as dependent variable (pooled beeps n = 1 through 6 for 
SC, n = 2 through 6 for PS) after inverting sign of the asynchronies from positive perturbations as described 
above. Fixed-effect factor Context (levels pure/combined), fixed-effect factor Perturbation Type (levels PS/SC), 
fixed-effect factor Perturbation Sign (levels neg/inv-pos), two-way interactions Perturbation Sign x Context and 
Perturbation Sign x Perturbation Type, three-way interaction, and random-effect factor Subject. Functions lmer 
(from library lme4) and Anova (from library car) in R.

Analysis of Deviance Table: Anova table of model parameters; testing the effect of Perturbation Sign 
(asymmetry) in Figure 3; see Table 6 (Type III Wald χ2 tests).

Post-hoc comparisons: Asymmetry differences between consecutive conditions in Figure 4b; see Table 7 
(Sidak-corrected p-values and confidence intervals; functions emmeans, pairs and test from library emmeans 
in R).

Alternative model: Same as above but no three-way interaction and all two-way interactions. Linear Mixed 
Model with Asynchrony as dependent variable (pooled beeps n = 1 through 6 for SC, n = 2 through 6 for PS) 
after inverting sign of the positive perturbations. Fixed-effect factor Context (levels pure/combined), fixed-effect 
factor Perturbation Type (levels PS/SC), fixed-effect factor Perturbation Sign (levels neg/inv-pos), all two-way 
interactions Context x Perturbation Type, Context x Perturbation Sign, and Perturbation Type x Perturbation 
Sign, no three-way interaction, and random-effect factor Subject. Model comparison is shown in Table 8 
(function anova from stats52 library in R).

Asymmetry difference Estimate (ms) SE (ms) 95% CI (ms) df t p

PS comb - PS pure 2.57 4.16 [-5.59; 10.73] 700.7 0.62 0.901

SC comb - PS comb 4.13 3.97 [-3.65; 11.91] 680.5 1.04 0.655

SC pure - SC comb 4.11 4.19 [-4.12; 12.33] 714.4 0.98 0.697

Table 7. Estimated marginal means and contrasts for asymmetry differences between consecutive conditions 
in Figure 4b (Sidak-corrected p-values and confidence intervals).

 

Factor χ2 df p

Context 4.07 1 0.044

Perturb_type 3.44 1 0.063

Perturb_sign 0.095 1 0.758

Perturb_sign:Context 0.38 1 0.537

Perturb_sign:Perturb_type 6.25 1 0.012

Perturb_sign:Context:Perturb_type 14.54 2 6.9× 10−4 

Table 6. Anova results, asymmetry testing.

 

npar AIC BIC logLik deviance χ2 Df p-value

Alt. model (context) 9 6600.5 6641.9 -3291.3 6582.5

Main model (context) 10 6570.4 6616.4 -3275.2 6550.4 32.08 1 1.5× 10−8 

Table 5. Model comparison, Context testing. Main model is preferred.
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Color-blind and grayscale friendly plots
We used the plasma colormap.

Data and code availability
All data and code to reproduce our results (experiment, analysis, figures) are available at the Sensorimotor Dy-
namics Lab’s website http://www.ldsm.web.unq.edu.ar/context2024 and Github repository:  h t t p s : / / g i t h u b . c o m / S 
M D y n a m i c s L a b / C o n t e x t 2 0 2 4     . Reproduction of Figure 1b: /analysis/power_analysis.py. Reproduction of Figures 
2- 6 and S1-S3: /analysis/analysis.py. Hypothesis testing: /analysis/hypothesis_testing.Rmd.
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