

XXVI Biennial Meeting of the International Society for Eye Research 20 - 24 October 2024 / Buenos Aires, Argentina

<image>

ISER 2024 PROGRAM ABSTRACTS

XXVI Biennial Meeting of the International Society for Eye Research October 20 - 24, 2024 | Buenos Aires, Argentina

ORAL PRESENTATIONS	10
AI in Ophthalmology	10
Advances in optical coherence tomography	10
Artificial intelligence in ophthalmology	14
Artificial intelligence in the optic nerve	
ChatGPT, generative AI & large language models in ophthalmology & healthcare	

Cornea and Ocular Surface	23
Corneal endothelium	
Corneal epithelial wound healing	
Corneal nerves: the guardians of ocular surface health	
Cutting-edge approaches to the study of the molecular mechanisms underlying ocular pain	
Emerging methodologies and treatments for ocular surface pathologies	
Molecular targets for cornea pathologies	43
New therapeutics and models in ocular surface research	
Novel strategies for corneal repair- 3 is the magic number	
Ocular chemical injury and medical countermeasures.	
Ocular surface inflammation and immunity	
Proteostasis and ER stress in corneal pathologies	
Role of extracellular matrix in ocular healing and clinical applications	

71

iPS Cells in Ophthalmology	117
iPSC-derived RPE to develop treatments for degenerative eye diseases	117
iPSC-derived RPE to develop treatments for degenerative eye diseases-1	
New perspectives in the application of pluripotent stem cell technologies for studying retinal development and disease	125
Recent advances in stem cell based treatment paradigms for optic nerve degeneration	
Retinal organoids: emergent technologies and applications.	
Using iPSCs to unravel the network of neurodegeneration.	138
Using patient induced pluripotent stem cells to evaluate disease pathology and test novel therapeutics	142

Lens	146
Animal models of cataract	
Biology and biochemistry of lens aging and cataractogenesis	
Creating the lens-formation and function	
Lens optics/biomechamics	
Lens physiology and channel proteins.	
Lens signal transduction pathways	
Omic changes in the lens	
Posterior capsule opacification	
The genetics of cataracts	

Муоріа	185
Genomics, ionic and neurovascular implications for myopia development.	185
Retinal signals driving eye growth regulation	.189
Scleral and choroidal mechanisms underlying myopia, new biomarkers and ideas for intervention	.194
The International Myopia Institute: Global epidemiological trends in myopia and exploration of regional differences	.198

Ocular Imaging	202
Advanced imaging and clinical applications.	
Advances in vascular imaging	
Clinical applications of adaptive optics retinal imaging	
Developments in fluorescence-based imaging techniques.	
Imaging for vision restoration.	
Light meets tissue – new aspects for quantitative biomechanical imaging in ophthalmology	
Molecular imaging of the retina	
Optoretinography	
Progress in small animal ocular imaging	
Retinal imaging in diabetic retinopathy - what is the latest?	
Retinal pathological and imaging features in Alzheimer's disease	
Understanding the functional impacts of fixation on the eye-brain connection	

Ocular Immunology	249
Host and microbe interactions in corneal infection	
Impact of hypoxia, oxygenation, and oxidative stress on ocular inflammation and wound healing	
Infection versus autoimmunity in uveitis	
Microbial effects on host response to ocular infections	
Ocular immune mechanisms and infection.	
Ocular infection and inflammation: innovations from bench to bedside	
Retinal inflammation: beyond macrophages and microglia	
Tackling corneal infection and inflammation during microbial keratitis	

CONTENT

Ocular Physiology, Pharmacology and Therapeutics	281
Advancements in precision medicine: unveiling the future of personalized healthcare	
Ion channels in the eye: new roles, pathologies and therapeutic approaches	
ISER-AOPT joint session on ocular pharmacology and therapeutics	
Mechanistic insight and treatment strategies for incomplete responses to anti-VEGF therapy in neovascular AMD	
Novel medical technologies for eye diseases	
Ocular drug delivery – from bench to bedside	
Ocular fibrosis mechanism and therapeutic development	
Optic neuropathies and optic neuritis - new concepts of pathology and therapeutics approaches	
Retinal function, diagnosis, and potential therapeutics in ocular and non-ocular diseases	
Small heat shock proteins as therapeutics for eye diseases	
Therapeutic strategies for ocular diseases	
Topical ocular drug delivery to protect retinal neurons	

Ophthalmic Genetics/Genomics	333
Epigenomics and non-coding variation	333
Genetic therapies for inherited retinal diseases	337
Global eye genetics consortium - genetic studies in pan-America	340
New technologies for discovery and diagnosis	
OMICS approaches to understand complex disease	
Retinal degenerations: genes, genomes, and treatments	
RNAs and inherited ocular diseases	355

Retinal Cell Biology	360
Animal models in vision research	
Cell biology of photoreceptors	
Cellular and molecular aging in the retina.	
Cellular mechanisms of visual system development and their impact on disease	
Cellular plasticity and regeneration.	
Comparative analysis of Muller glia-dependent retinal regeneration	
Development of regionalization and connectivity in the visual system. Therapeutic implications.	
Insights into retinal development and disease	
Iron and retinopathy of prematurity	
Lipids and lipid-soluble molecules in retinal health and disease.	
Retinal connectomics / volumeEM	401
The retinal powerhouse: unravelling the metabolic mysteries of the retina	

Ocular Physiology, Pharmacology and Therapeutics

Abstract ID: 157

Intranasal biologic therapy for Optic Neuritis: Peclinical studies and implications for clinical translation

Section: Ocular Physiology, Pharmacology and Therapeutics

Kenneth Shindler¹

¹University of Pennsylvania, Ophthalmology and Neurology, Philadelphia, United States

Introduction

Retinal ganglion cell (RGC) loss occurs following acute inflammatory demyelinating optic neuritis and corresponds with permanent visual dysfunction that develops in 60% of patients. While steroids hasten visual recover, no treatment improves the final visual outcome after optic neuritis.

Objectives

Evaluate potential therapies to reduce RGC loss induced by optic neuritis.

Methods

Experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis with high incidence of optic neuritis, is induced in C57BL6/J mice by immunization with myelin peptide. Visual function is assessed weekly by optokinetic responses, and RGC survival is assessed by Brn3a immunostaining 6-8 weeks after immunization.

Results

Daily intranasal treatment with a secretome therapy derived from amniotic progenitor cells, or with small molecule activators of the SIRT1 deacetylase, attenuate RGC loss in EAE mice. Treatments are effective when initiated before or at varying time points after disease onset.

Conclusion

Biologic and pharmacologic therapies can reduce RGC loss in EAE optic neuritis. The ability to assess new therapies delivered by novel routes of administration in an acute disease model that includes a measurable window of time to successfully initiate treatment holds important implications for future clinical translation.

Retinal function, diagnosis, and potential therapeutics in ocular and non-ocular diseases

Abstract ID: 316

The Phospholipase D2 (PLD2) as a potential therapeutic target for the treatment of uveitis

Section: Ocular Physiology, Pharmacology and Therapeutics

<u>Paula Estefania Tenconi</u>¹², Bo Man Ho³, Lin Du³, Vicente Bermudez¹², Wai Kit Chu³, Melina Valeria Mateos¹² ¹Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahia Blanca, Argentina, ²UNIVERSIDAD NACIONAL DEL SUR (UNS), BIOLOGIA, BIOQUIMICA Y FARMACIA (BByF), Bahia Blanca, Argentina, ³The Chinese University of Hong Kong, Department of Ophthalmology and Visual Sciences, Hong Kong, China

Introduction

Uveitis is a common, sight-threatening inflammatory ocular disease. If left untreated, uveitis can cause irreversible ocular tissue damage and eventually impaired vision and is estimated to account for ~25 % of blindness in developed countries. We previously demonstrated that the phospholipase D (PLD) pathway mediates the inflammatory response of retinal pigment epithelium (RPE)

Ocular Physiology, Pharmacology and Therapeutics

cells induced by lipopolysaccharide (LPS).

Objectives

This work aims to study the effects of PLD2 inhibition in ocular inflammation using an endotoxin-induced uveitis (EIU) animal model.

Methods

Female Sprague Dawley rats (~250 g, 6–8 weeks old) were used and EIU was induced by the injection of 0.1 mL of 1 mg/kg LPS of Salmonella typhimurium solution into one footpad. After 2 or 4 h of LPS injection, (1, 4 or 8 mg/kg) of PLD2i (VU0285655-1) were injected intraperitoneally (IP) in 200 µl solution. 6 % DMSO was used as a PLD2i vehicle. PBS was injected instead of LPS in the negative control group of animals and dexamethasone was used as an anti-inflammatory positive control. Ethics approval for this study was obtained from the Animal Experimentation Ethics Committee of the CUHK. To evaluate clinical manifestations of EIU and the effects of PLD2i, rats were quantified using a score from 0 to 4 based in the presence of hyperemia, edema and synachesia, at baseline and 24 h after LPS injection. EIU were considered positive when clinical score >1 in at least one eye. To characterize the influxes of proteins into the aqueous humor (AH) in the different experimental conditions, protein concentrations were measured by the BCA Protein assay.

Results

After 24 h LPS injection, we observed ocular inflammation indicated by the presence of hyperemia and edema in the iris. The quantitative evaluation of clinical scoring showed a significant reduction by 30 % (p < 0.0001) in animals treated with 8 mg/kg PLD2i at after 2 h of LPS injection. The protein concentration in AH from LPS-treated rats was increased by 116 % (p < 0.001) compared to the negative control animals. Additionally, the elevated AH protein levels were significantly reduced by 33 % (p < 0.01) and by 49 % (p < 0.0001) in rats treated with 4 mg/kg or 8 mg/kg PLD2i, respectively. No statistically significance was observed between the 2 PLD2i treated groups and the negative control group.

Conclusion

Our study reports for first time the promising role of PLD2 inhibition as a potential early treatment for inflammatory ocular diseases.

Abstract ID: 472

Sphingosine-1-phosphate: Potential mediator in retinal proliferative disorders?

Section: Retinal Degeneration

MARIA VICTORIA SIMON¹²³, Camila Torlaschi¹³, Gabriela Gutiérrez Jofré¹²³, Nora Rotstein¹²

¹Instituto de Investigaciones Bioquímicas de Bahía Blanca, Lipids in retinal development, Bahía Blanca, Argentina, ²Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, ³Universidad Nacional del Sur (UNS), Argentina

Introduction

Fibrosis is a common feature of retina proliferative diseases, as diabetic retinopathy and proliferative vitreoretinopathy, which lead to vision loss. Dysregulation of cell attachment, migration and de-differentiation of Müller glial cells (MGC) and retinal pigment epithelium (RPE) cells, which provide structural and metabolic support in the retina contribute to the fibrotic process. Modulation of this process might hold the key to prevent the development of proliferative retinopaties. Sphingolipids such as sphingosine-1- phosphate (S1P), which regulates critical cellular functions, like proliferation, inflammation, migration, survival and differentiation, advance fibrosis in different tissues, but their role in the retina is still unclear.

Objectives

To study the role of S1P in the regulation of processes leading to fibrosis in the retina.

Methods

Primary MGC cultures and RPE cell line cultures (ARPE-19 and D407) were exposed to 5 uM S1P for 24 h. We incubated cell cultures with sphingosine kinase inhibitors SphKI2 and PF-543, to study the role of endogenous S1P, with W146, JTE-013 and BML241, specific S1P1, S1P2 and S1P3 antagonists, respectively, to analyze the involvement of S1P receptors . The ERK/MAPK

