

XXVI Biennial Meeting of the International Society for Eye Research 20 - 24 October 2024 / Buenos Aires, Argentina

<image>

ISER 2024 PROGRAM ABSTRACTS

XXVI Biennial Meeting of the International Society for Eye Research October 20 - 24, 2024 | Buenos Aires, Argentina

ORAL PRESENTATIONS	10
AI in Ophthalmology	10
Advances in optical coherence tomography	10
Artificial intelligence in ophthalmology	14
Artificial intelligence in the optic nerve	18
ChatGPT, generative AI & large language models in ophthalmology & healthcare	

Cornea and Ocular Surface	23
Corneal endothelium	
Corneal epithelial wound healing	
Corneal nerves: the guardians of ocular surface health	
Cutting-edge approaches to the study of the molecular mechanisms underlying ocular pain	
Emerging methodologies and treatments for ocular surface pathologies	
Molecular targets for cornea pathologies	43
New therapeutics and models in ocular surface research	
Novel strategies for corneal repair- 3 is the magic number	
Ocular chemical injury and medical countermeasures.	
Ocular surface inflammation and immunity	
Proteostasis and ER stress in corneal pathologies	
Role of extracellular matrix in ocular healing and clinical applications	

71

iPS Cells in Ophthalmology	117
iPSC-derived RPE to develop treatments for degenerative eye diseases	
iPSC-derived RPE to develop treatments for degenerative eye diseases-1	
New perspectives in the application of pluripotent stem cell technologies for studying retinal development and disease	125
Recent advances in stem cell based treatment paradigms for optic nerve degeneration	
Retinal organoids: emergent technologies and applications	134
Using iPSCs to unravel the network of neurodegeneration.	
Using patient induced pluripotent stem cells to evaluate disease pathology and test novel therapeutics	142

Lens	146
Animal models of cataract	
Biology and biochemistry of lens aging and cataractogenesis	
Creating the lens-formation and function	
Lens optics/biomechamics	
Lens physiology and channel proteins.	
Lens signal transduction pathways	
Omic changes in the lens.	
Posterior capsule opacification	
The genetics of cataracts.	180

Муоріа	185
Genomics, ionic and neurovascular implications for myopia development	
Retinal signals driving eye growth regulation	
Scleral and choroidal mechanisms underlying myopia, new biomarkers and ideas for intervention	
The International Myopia Institute: Global epidemiological trends in myopia and exploration of regional differences	198

Ocular Imaging	202
Advanced imaging and clinical applications.	
Advances in vascular imaging	
Clinical applications of adaptive optics retinal imaging.	
Developments in fluorescence-based imaging techniques.	
Imaging for vision restoration	
Light meets tissue – new aspects for quantitative biomechanical imaging in ophthalmology	
Molecular imaging of the retina.	
Optoretinography	
Progress in small animal ocular imaging	
Retinal imaging in diabetic retinopathy - what is the latest?	
Retinal pathological and imaging features in Alzheimer's disease.	
Understanding the functional impacts of fixation on the eye-brain connection	

Ocular Immunology	249
Host and microbe interactions in corneal infection	
mpact of hypoxia, oxygenation, and oxidative stress on ocular inflammation and wound healing	
nfection versus autoimmunity in uveitis	257
Microbial effects on host response to ocular infections	
Ocular immune mechanisms and infection	
Ocular infection and inflammation: innovations from bench to bedside	
Retinal inflammation: beyond macrophages and microglia	
Tackling corneal infection and inflammation during microbial keratitis	

CONTENT

Ocular Physiology, Pharmacology and Therapeutics	281
Advancements in precision medicine: unveiling the future of personalized healthcare	
on channels in the eye: new roles, pathologies and therapeutic approaches.	
SER-AOPT joint session on ocular pharmacology and therapeutics.	
Mechanistic insight and treatment strategies for incomplete responses to anti-VEGF therapy in neovascular AMD	293
Novel medical technologies for eye diseases	
Ocular drug delivery – from bench to bedside	
Ocular fibrosis mechanism and therapeutic development	
Optic neuropathies and optic neuritis - new concepts of pathology and therapeutics approaches	
Retinal function, diagnosis, and potential therapeutics in ocular and non-ocular diseases	
Small heat shock proteins as therapeutics for eye diseases	320
Therapeutic strategies for ocular diseases	325
Topical ocular drug delivery to protect retinal neurons	

Ophthalmic Genetics/Genomics	333
Epigenomics and non-coding variation	333
Genetic therapies for inherited retinal diseases	337
Global eye genetics consortium - genetic studies in pan-America	340
New technologies for discovery and diagnosis	
OMICS approaches to understand complex disease	
Retinal degenerations: genes, genomes, and treatments	
RNAs and inherited ocular diseases	

Retinal Cell Biology	360
Animal models in vision research	
Cell biology of photoreceptors	
Cellular and molecular aging in the retina	
Cellular mechanisms of visual system development and their impact on disease	
Cellular plasticity and regeneration	
Comparative analysis of Muller glia-dependent retinal regeneration	
Development of regionalization and connectivity in the visual system. Therapeutic implications	
Insights into retinal development and disease	
Iron and retinopathy of prematurity	
Lipids and lipid-soluble molecules in retinal health and disease	
Retinal connectomics / volumeEM	
The retinal powerhouse: unravelling the metabolic mysteries of the retina	

Retinal Degeneration

Conclusion

RXR-based therapy shows promise for the treatment of diabetes. Not only could it lower hyperglycemia effectively for diabetic patients, but it could also balance retinal lipid metabolism and reduce anti-inflammatory cytokine expression resulting in the slowing of the progression of DR.

Abstract ID: 408

Retinoid X receptors (RXR): Potential therapeutic targets in retina neurodegenerative diseases

Section: Retinal Degeneration

Olga Lorena German¹

¹Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB); Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina

Retinal neurodegenerative diseases share the death of photoreceptors (PR) as a common final step and still now lack effective treatments. Oxidative stress, degeneration or altered functionality of the retinal pigment epithelium (RPE) cells and inflammatory processes involving immunomodulatory cell types such as these RPE cells or Müller glial cells (MGCs) also play pivotal roles. Current therapeutic strategies aim to identify factors and signaling pathways to prevent neuronal death, modulate inflammation, and promote neuronal regeneration. Retinoid X receptors (RXRs), nuclear receptors governing multiple cellular functions, have attracted attention for their potential therapeutic efficacy. Since their roles in the retina are scarcely known, we investigated whether RXRs might prevent retina cell death and control inflammation.

In *in vitro* models of retinal degeneration induced by oxidative damage or BMAA, a cyanotoxin linked to retinal neurotoxicity, we demonstrated that RXR activation promoted neuronal survival and protected RPE cells from cell death, preventing reactive oxygen species (ROS) formation and loss of mitochondrial function. In neuro-glial cultures from retinas of *rd1* mouse, a model of Retinitis Pigmentosa, we evidenced that RXR activation enhanced the survival of *rd1* PR, preserving mitochondrial function, simultaneously decreasing MGC reactivity and promoting an anti-inflammatory environment, supporting a novel protective effect of RXR activation on *rd1* PR. To expand comprehension of the impact of RXR activation in immune response modulation in retina neurodegeneration, we studied whether this activation affected the immune and antiviral drug-response. We demonstrated that RXR agonists reduced the expression of proinflammatory cytokines induced by H2O2 (IL-6 and TNF α) and BMAA (COX-2), while promoting anti-inflammatory cytokine expression (IL-10 and TGF β). Moreover, RXR activation may modulate the response to HSV-1 viral infection in retinal cells.

Overall, our results suggest that activation of RXRs protects retina cell types from multiple injuries by acting, at least on a shared point in death pathways, such as ROS generation and mitochondrial dysfunction, while also promoting an anti-inflammatory response and modulating viral infection dynamics, offering novel insights for ocular therapeutic drug development.

Funding Sources: ANPCYT, CONICET, UNS, Fiorini and Roemmers Foundations (Argentina).

