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We present a signed measure analysis of compressible Hall-magnetohydrodynamic turbulence with
an external guide field. Signed measure analysis allows to characterize the scaling behavior of the
sign-oscillating flow structures and their geometrical properties (fractal dimensions of structures).
A reduced numerical model, valid when a strong guide magnetic field is present, is used here. In
order to discuss the effect of the Hall term, different values for the ion skin depth are considered in
the simulations. Results show that as the Hall term is increased the fractal dimension of the current
and vorticity sheets decreases. This observation, together with previous analysis of the same fields,
provides a comprehensive description of the effect of the Hall force on the formation of structures.
Two main processes are identified, namely the widening and unraveling of the sheets.

I. INTRODUCTION

Magnetohydrodynamics (MHD) is a reasonable theo-
retical framework to describe the large scale dynamics
of a plasma. However, when a more detailed descrip-
tion is needed (for instance, when the physical context
favors the development of small scales) it is most appro-
priate to consider two fluid models. Two fluid effects can
be considered through a generalized Ohms law which in-
clude the Hall current, which is required for phenomena
with characteristic length scales comparable or smaller
than the ion skin depth c/ωpi (c is the speed of light,
and ωpi is the ion plasma frequency). Among its mani-
festations, the Hall current causes the magnetic field to
freeze in the electron flow instead of being carried along
with the bulk velocity field (in an ideal plasma). Another
important feature of the ideal Hall-MHD description is
the self-consistent presence of electric fields parallel to
the mean magnetic field. Hall-MHD has recently been
invoked in advancing our understanding of phenomena
ranging from dynamo mechanisms [1], magnetic recon-
nection [2–4], and accretion disks [5, 6] to the physics of
turbulent regimes [7–10].

In many cases of interest, such as in fusion devices or
geophysical and astrophysical plasmas, a strong exter-
nally supported magnetic field is present. In such cases,
a new reduced model has been proposed, the RHMHD
model [11–13]. In this approximation, the fast compres-
sional Alfvén mode is eliminated, while the shear Alfvén
and the slow magnetosonic modes are retained [14]. This
new model (RHMHD) is an extension of the previously
known reduced MHD (RMHD) model to include the Hall
effect. The RMHD equations have been used to investi-
gate a variety of problems such as current sheet forma-
tion [15, 16], non-stationary reconnection [17, 18], the
dynamics of coronal loops [19–22], and the development
of turbulence [23]. The self-consistency of the RMHD
approximation has been analyzed in ref. [24]. Moreover,
numerical simulations have been used to assess the va-

lidity of the RMHD equations by directly comparing its
predictions with compressible MHD equations in a tur-
bulent regime [25]. The validity of the RHMHD model
has also been studied in the same way [12].

The properties of small scale structures in magneto-
hydrodynamic (MHD) and Hall-magnetohydrodynamic
(HMHD) turbulence have been recently extensively stud-
ied. In particular, attention has been paid to the geo-
metrical properties of current sheets in HMHD, as these
structures are associated with magnetic flux reconnection
and magnetic energy dissipation, processes of uttermost
importance in astrophysics and space physics [26–29].

However, studies have provided conflicting results so
far, so that the debate on the effect of the Hall term on
the generation of turbulent structures is still open. For
example, some recent numerical simulations have indi-
cated that current sheets in presence of Hall effect be-
come wider than in MHD (see, e.g., [30]), while, on the
contrary, other studies have shown the presence of thin-
ner structures [31].

Previous studies of turbulent HMHD have shown that
the peak of the spectrum of the current density is located
at wavenumber corresponding to the inverse of the ion
skin depth [32–35]. Since this peak can be associated
with the average thickness of the current sheets, the shift
of the peak was interpreted as a thickening of the current
sheets with increasing Hall effect [36]. This result is in
good agreement with experimental observations, which
confirm that the current sheets thickness in presence of
the Hall effect is indeed given by the ion skin depth [37].

On the other hand, other studies have observed for-
mation of thinner structures when Hall effect increases,
suggesting that HMHD is more intermittent than MHD
[31]. This was also observed in solar wind turbulence,
e.g. using the Cluster spacecraft magnetic data [38, 39].
Incidentally, other instances of solar wind observations
of high-frequency magnetic field fluctuations from the
same spacecraft indicated that while large scales are com-
patible with multifractal intermittent turbulence, small
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scales show non-Gaussian self-similarity [40].

Using the set of simulations that will be studied here,
in a previous paper the effect of the Hall term has been
analyzed in terms of global magnitudes (e.g., the mean
square current density 〈j2〉 and vorticity 〈ω2〉), charac-
teristic times of the flow,energy cascade and qualitative
features of the flow structures (current sheets) [30]. The
Hall term turned out to affect mostly the scales between
the Hall scale and the dissipation scale. This produces an
enhancement of the energy transfer in such scale range,
and therefore the accumulation of energy decreases. This
corresponds to an effective shift of the dissipation scale
toward smaller scales. This was estimated by observing
an increasingly sharp steepening of the energy spectrum
in the Hall range, when the separation between the Hall
scale and the dissipation scale is larger. This suggests
the possible generation of smaller scales when the Hall
effect increases. Qualitative observation of current sheets
showed that such smaller scale structures become wider
as the Hall effect increases.

In another paper [41], a detailed and rigorous study of
intermittency has been performed. In presence of Hall ef-
fect, field fluctuations at scales smaller than the ion skin
depth become substantially less intermittent, with scal-
ing properties close to self similarity. Numerical simula-
tions quality was also tested, according to the stringent
criteria of Wan et al.[42].

The quantitative measure of the intermittency is cru-
cial to understand the topological distribution of dissi-
pation in magneto-fluids and plasmas, and it can also
provide constraints for theoretical study of phenomena
such as magnetic energy dissipation and reconnection.
Following recent results as briefly summarized above, it
is thus not clear whether HMHD small scale structures
are thinner than in MHD, making HMHD more inter-
mittent than MHD, or, on the contrary, they are more
space filling, causing intermittency to decrease because
of the Hall effect. The main purpose of the present pa-
per is to quantitatively evaluate the characteristics of the
small scale structures and their features with respect to
the magnitude of the Hall effect.

In order to gain more insight on the actual effect of the
Hall term on flow structures, here we study the geometri-
cal properties of the vorticity and current field, using an
explicit and quantitative approach. Our study focuses
on the estimation of the cancellation exponents, as in-
troduced by Ott et al. [43]. Such exponents provide a
simple characterization of the flows, and are phenomeno-
logically related with the fractal dimension of the typ-
ical structure [44]. Finally, corroborated by the afore-
mentioned studies, we show that the Hall effect affects
current sheets mainly in two ways. On one hand, the
current (and vorticity) sheets widen, while on the other
hand they unravel, reaching a more complex topology.
This fragmentation, which could be seen as formation of
“micro-sheets”, turns out to be more and more evident
as the Hall effect increases.

The present paper is organized as follows. In Section

II, the set of equations describing reduced Hall MHD is
described. The details of the numerical simulations are
given in Section III. In Section IV the main idea of the
cancellation analysis technique is introduced. Finally, re-
sults are presented in Section V and discussed in Section
VI.

II. REDUCED MHD AND HMHD MODELS

For a compressible flow, the HMHD equations can be
written (in dimensionless form) as
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∂ρ

∂t
+∇ · (ρu) = 0, (3)

∇ ·A = 0. (4)

In these equations, u is the velocity field, ω is the vor-
ticity field, J is the current, b is the magnetic field, ρ is
the density of the plasma, and A and φ are respectively
the magnetic and electric potentials. A barotropic law
is assumed for the plasma, with the pressure given by
p = Cργ , where C is a constant and γ = 5/3. Equation
(4) is the Coulomb gauge, which acts as a constraint that
fixes the electric potential in Eq. (2). Control parame-
ters of the system are the sonic Mach number MS , the
Alfvén Mach number MA, the viscosities ν and δ (here
we consider ν = δ), and the resistivity η. In our study,
the most important control parameter is the Hall coeffi-
cient ǫ = ρii/L, where ρii is the ion skin depth and L is
the characteristic scale of turbulence. When ǫ = 0, the
equations above result in the well known compressible
MHD equations.
In the presence of a strong guide field, the equations

above can be written using the reduced approximation
often used in magnetohydrodynamics (see, e.g., [45, 46]).
The approximation assumes that the magnetic field can
be written as

b = B0ẑ+ b′, (5)

where B0 is the intensity of the guide magnetic field
aligned with the ẑ direction, and b′ is such that
|b′|/B0 ≪ 1.
For convenience, when writing the dimensionless equa-

tions we assume, without loss of generality, that B0 = 1.
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We then decompose the velocity and magnetic field fluc-
tuations in terms of scalar potentials as

u = ∇× (ϕẑ+ f x̂) +∇ψ, (6)

and

b′ = ∇× (aẑ+ gx̂) . (7)

Equation (7) ensures that the magnetic fields remains
divergence free, while Eq. (6) gives us a compressible flow.
The potentials f and g allow for dynamical components
of the fields parallel to the guide field, and ψ describes
an irrotational component of the velocity field.
Then, Eqs. (1-4) can be written as (for the details see

[47] and [13, 30, 48])

∂u

∂t
=
∂b

∂z
+ [ϕ, u]− [a, b] + ν∇2u, (8)

∂ω

∂t
=
∂j

∂z
+ [j, a]− [ω, ϕ] + ν∇2ω, (9)

∂a

∂t
=
∂(ϕ− ǫb)

∂z
+ [ϕ, a]− ǫ[b, a] + η∇2a, (10)

∂b

∂t
= βp

∂(u− ǫj)

∂z
+ [ϕ, b] + βp[u, a] +

−ǫβp[j, a] + ηβp∇
2b, (11)

where

u = −∂yf, (12)

ω = −∇2
⊥ϕ, (13)

b = −∂yg, (14)

j = −∇2
⊥a, (15)

and the notation [A,B] = ∂xA∂yB−∂xB∂yA is employed
for the Poisson bracket. The potential ψ was eliminated
from these equations using the equation for the pressure.
Finally, βp = βγ/(1 + βγ) is a function of the plasma
“beta”. As in the previous set of equations, these equa-
tions become the compressible RMHD equations when
ǫ = 0.

III. NUMERICAL SIMULATIONS

Simulations analyzed in this work are similar to those
described in Ref. [30]. We use a standard parallel pseudo-
spectral code to evaluate the nonlinear terms and solve
numerically the equations [49]. A second-order Runge-
Kutta time integration scheme is used. The magnetic
field fluctuations in all simulations are less than ten per-
cent of the external magnetic field value, so we are in
the range of validity of the RHMHD model. Periodic
boundary conditions are assumed in all directions of a

cube of side 2πL (where L ∼ 1 is the initial correlation
length of the fluctuations, defined as the length unit).
The runs performed throughout this paper do not con-
tain any magnetic or velocity external stirring terms,
so the RHMHD system is let to evolve freely. To gen-
erate the initial conditions, we excite initially Fourier
modes (for both magnetic and velocity field fluctuations)
in a shell in k-space with wave numbers 1 ≤ k ≤ 2,
with the same amplitude for all modes and with ran-
dom phases. Only plane-polarized fluctuations (trans-
verse to the mean magnetic field) are excited, so the
initial conditions are Alfvén mode fluctuations with no
magnetosonic modes. In the set of simulations, spatial
resolution is 5122 grid points in the plane perpendicu-
lar to the external magnetic field and 32 grid points in
the parallel direction. In fact, higher resolution is re-
quired in the planes perpendicular to B0, with respect
to the parallel direction. This is due to the fact that
the dynamics of the system generates structures mostly
along the direction perpendicular to B0. The kinetic and
magnetic Reynolds numbers are defined respectively as
R = 1/ν, Rm = 1/η, based on unit initial r.m.s. veloc-
ity fluctuation, unit length, and dimensionless values for
the viscosity and diffusivity. For all the runs, we used
R = Rm = 1600 (i.e., ν = 1/1600, η = 1/1600). We also
considered a Mach number MS = 1/4, and an Alfvén
Mach number MA = 1.

Four values of the Hall parameter were considered,
namely ε = 0 (MHD case), 1/32, 1/16, and 1/8. Data
from simulations with such values of ε will be labeled
as Run 1, 2, 3 and 4, respectively. As the numerical
domain used has size 2π (see above), these values cor-
respond respectively to ion skin depths with associated
wave numbers kε = ∞, 32, 16, and 8, and to scales of
ρii =0, 0.03, 0.06 and 0.4.

[ LUIS, IF YOU WANT TO PUT THE TABLE,
PLEASE DO IT HERE, OTHERWISE PLEASE
REMOVE ALL REFERENCES TO THE TABLE
(THERE SHOULD BE 2)] Figures 1 and 2 show some
example of current components. Left hand panels show,
for each Run, two dimensional cuts in the perpendicular
plane of one perpendicular component jx (Figure 1) and
of the parallel component jz (Figure 2), for one snapshot
of the simulation in the statistically steady state (when
t = 4.5). On the right panels, the same field is plotted
with an arbitrary tilt angle, in order to highlight the
chaotic alternation of positive and negative fluctuations
of the fields. From visual inspection, it appears evident
that structures become more fragmented as ε increases.
Figure 3 shows the total energy spectra E(k), integrated
on spheres of radius k, for the four runs. The ion skin
depth scale is also indicated. The large scale part of
the spectra is compatible with the typical Kolmogorov
scaling α = 5/3. For the largest ε (Run 4), a secondary
power-law region emerges at scales smaller than the ion
skin depth, compatible with the typical spectral index for
reduced Hall MHD, α = 7/3.

It was recently stressed that well resolved numerical
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FIG. 1: Left panels: slices of the perpendicular current component jx in the perpendicular plane, for the snapshots and the
four different values of ε used in this work (ε increasing from top to bottom). Right panels: the same fields, seen at an arbitrary
tilt angle, highlighting the presence of alternate sign structures at all scales. The scale of grays is arbitrary.
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FIG. 2: Left panels: slices of the parallel current component jz in the perpendicular plane, as in previous figure. Right panels:
the same fields, seen at an arbitrary tilt angle.
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FIG. 3: The total energy spectra for the four Runs (see legend). Phenomenological predictions for the MHD range and for the
Hall range are also indicated

simulations are necessary in order to accurately quan-
tify high order statistics and intermittency in MHD [42].
In particular, it has been claimed that if the flow is not
properly resolved, a partial thermalization of the small
scales may result in artificial Gaussian statistics and an
artificial decrease of the intermittency. Wan et al. [42]
also argued that an MHD simulation can be considered
well resolved, if the kurtosis of the current is indepen-
dent on the spatial resolution. In order to evaluate the
sensitivity to the grid resolution of our system, two differ-
ent realizations have been performed with higher spatial
resolution of 7682 × 32 and 5122 × 64 grid points, re-
spectively. Using the same set of parameters, diagnostics
such as structure functions, scaling exponents, and PDFs
of field fluctuations have been used to show that scaling
and intermittency properties are not affected by resolu-
tion. In the MHD and HMHD runs analysed here, the
requirement of kurtosis convergence is fulfilled, at least
up to the level of expected statistical fluctuations. It is
thus possible to conclude that the simulations are well
resolved, and satisfies the stringent criteria of Wan et al.
[42]. The resolution analysis is shown in detail in the Ref.
[41].

IV. THE SIGNED MEASURE AND THE

CANCELLATION EXPONENT

As discussed in the introduction, turbulent plasmas
are often characterized by scale dependent formation of
energetic and localized structures. These represents re-
gions where dissipation of energy is enhanced, and are
believed to be responsible for the anomalous scaling of
the structure functions. Intermittency and multifractal-

ity are strictly related to their presence [50]. Structures
such as current sheets and vorticity filaments are con-
tinuously observed in numerical simulations [31, 51–55].
Solar wind measurements have also revealed the presence
of structures of different type (current sheets, rotational
discontinuities, vortices) [56–59]. Since structures can be
seen as smooth regions embedded in a highly fluctuating
field, they can be associated to scale dependent changes
of the sign of the fields gradients. The introduction of a
sign-singular measure (as opposed to a positive defined
probability measure) allows the characterization of the
scaling properties of sign oscillations of the fields [43].
The signed measure of a mean-less scalar field f(r), de-
fined on a d-dimensional set Q(L) of size L, can be in-
troduced as follow. Let {Qi(l)} ⊂ Q(L) be a partition of
Q(L) in disjoint subsets of size l. Then, for each scale l
and for each set of boxes Qi(l), the signed measure is
defined as

µi(l) =

∫

Qi(l)
dr f(r)

∫

Q(L)
dr |f(r)|

. (16)

As the scale of the subset Qi(l) increases, cancellations
between small size structures of opposite sign become
more probable within each box. The way this happens
can be statistically characterized through the partition
function

χ(l) =
∑

Qi(l)

|µi(l)| (17)

where the sum is extended to all disjoint subset Qi(l).
When the partition function shows power law scaling
χ(l) ∼ l−κ, the measure is said sign singular, and
κ is called cancellation exponent, representing a quan-
titative measure of the cancellation efficiency. For
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example, a smooth field has constant partition func-
tion (κ = 0), whereas for a stochastic process κ =
d/2 ([60]). More generally, if a field g(r) is homo-
geneous with a Hölder scaling exponent h, that is if
〈‖∆g(l)‖〉 = 〈‖g(r+ l)− g(r)‖〉 ∼ lh, then the cancel-
lation exponent of its derivative f ≡ dg/dr is κ = 1 − h
[60, 61]. Thus, cancellation exponents characterize the
topology of structures. A simple geometrical argument,
based on the separation of the field in correlated (the
structures) and uncorrelated (the background field) sub-
sets, allows to establish a phenomenological relationship
between the cancellation exponent and the fractal dimen-
sion D of the typical dissipative structures of the flow

κ = (d−D)/2 (18)

(see e.g. [44] for details). It should be kept in mind that,
because multifractality is ubiquitous in MHD turbulence,
the use of one single fractal dimension cannot capture all
the features of the scaling. Nonetheless, D still represents
a useful indicator for the topological characteristics of the
“mean” intermittent structures of the flow. Cancellation
analysis has been performed in the past to describe the
formation of structures in two dimensional MHD plasmas
[44, 62], and successfully applied to solar active regions,
where the time evolution of the topological properties of
the surface current has allowed to predict the occurrence
of large flares [63–65].
In this paper, we show results of the cancellation anal-

ysis of the fields with the aim of pointing out the effect of
the Hall term on the topology of the small scales struc-
tures.

V. RESULTS

For our analysis, we have considered four snapshots of
RHMHD simulations, realized using four different values
of the Hall parameter ε, as indicated in Section III. All
the snapshots are taken in a statistically steady state of
the system, realized when t = 4.5. The fields anlyzed
here are the three components of the current j and of
the vorticity ω, already shown in Figures 1 and 2. To
estimate the partition functions, we divided the simula-
tion domain of size L3 = (2π)3 in boxes of variable size
lx × ly × lz, with lx = ly = l⊥ and lz = l‖.
Figure 4 shows some examples of two dimensional cuts

of the signed measure computed for the parallel compo-
nent of the current jz in the plane x-y, for two values of
ε, and for four different partition box sizes. It is evident
that the coarse graining of the set partition leads to can-
cellations at larger scales, so that small scale structures
(the current filaments clearly evident at small scale, see
left panel) gradually disappear. Similar behavior is seen
for all fields components, and for any value of the Hall
parameter (not shown).
From the signed measures, partition functions (17)

have been computed for all components of the current

j and of the vorticity ω as a function of the two scale pa-
rameters l⊥ and l‖. Examples of the results are presented
in Figure 5. While it is evident that scaling properties are
present and well developed in the perpendicular direction
l⊥, the partition functions decrease with the parallel scale
l‖ is somewhat smoother and less defined. This is due to
the fact that in RHMHD the turbulent cascade is mainly
developed in the perpendicular planes. For this reason,
we will mainly concentrate on the scaling properties in
the perpendicular planes, by selecting one particular par-
allel scale. We analyzed the results for different parallel
scales, and no significant difference was observed.

Figures 6 and 7 show examples of the partition func-
tions of the fields for a fixed value of l‖ = 0.03, and for dif-

ferent ε. When appropriate, power law fits χ(l⊥) ∼ l−κ
⊥

have been performed through a least square method. The
fitting curves are diplayed in the figures. For a visual test,
the partition functions have been compensated by divid-
ing them by the fitted power law l−κ

⊥ , and represented in
the bottom panels of each figure. Scaling ranges are seen
as flat regions in the compensated plots. Compensated
plots and fitting power laws have been represented as full
lines for the Hall range, and with double-dahsed lines for
the MHD range.

As can be seen in all panels of figures 6 and 7, the par-
tition functions suggests presence of power law scaling,
and therefore sign singularity, in a range of perpendicular
scales corresponding to the inertial range of the energy
spectra (cf. figure 3). This holds for all fields and Hall
parameters, and is the signature of the MHD turbulent
cascade among structures of different size [44]. A sec-
ond power law range emerges at small scales when the
strength of the Hall term increases (panels g-h of figures
6 and 7). This suggests that a secondary sign singularity
is present, with fragmentation of dissipative structures
along the scales, presumably due to the nonlinear Hall
cascade. The small scale power law is observed for the
current and vorticity components lying on the plane per-
pendicular to B0, while for the parallel components the
secondary sign singularity only appears for the largest
value of ε analyzed here (panels g and h). This is in
agreement with the emergence of a small scale power
law range in the energy spectra (see figure 3), which has
HMHD phenomenological spectral index.

As mentioned in previous Section, values of the can-
cellation exponents provide information on the topology
of the fields. In order to discuss more easily the anal-
ysis results, cancellation exponents have been converted
into the typical fractal dimension of the structures, as
D = 3− 2κ. Values of D are then displayed in Figure 8
as a function of ε, for the three components of the cur-
rent (panels a and c) and of the vorticity (panels b and
b), so that the influence of increasing Hall effect on the
scaling can be evaluated. In the following, we will use

the notation D
(f)
⊥ for fractal dimension estimated for the

perpendicular partition function χ(l⊥), and D
(f)
‖ for the

parallel partition function χ(l‖), where f = j, ω indicates
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FIG. 4: The signed measure µ as estimated for jx in the plane y-z, for Run 1 (ε = 0, left panels) and Run 3 (ε = 1/16, right
panels), for four different partition box sizes (from top to bottom, l⊥ = 0.12, 0.04, 0.016 and 0.002). The color scale is arbitrary.
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FIG. 5: The partition function χ(l⊥, l‖) versus the two scale parameters l‖ and l⊥. The examples given here refer to the parallel
components of the current (jz, left hand plots) and one of the perpendicular components of the vorticity (wx, right hand plots),
for the four values of the Hall parameter (sorted from top to bottom for increasing ε, as indicated in each plot).
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FIG. 7: Same as Figure 6, for the parallel component: jz (left hand plots) and ωz (right hand plots).
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the field under study. When the superscript (f) is omit-
ted, we are indicating both fields. It is also possible to
introduce a parameter for estimating the “global” frac-
tal dimension of the fields, by averaging the three values

D
(f)
i of the fractal dimension obtained for the i-th com-

ponent of each field f , D
⋆(f)
⊥ = (D

(f)
x + D

(f)
y + D

(f)
z )/3

(we have temporarily suppressed the subscript ⊥ in this
formula, to semplify the notation).

We remind the reader that, in the RHMHD configu-
ration, most of the nonlinear structures are generated in
the plane perpendicular to B0. Therefore, the parallel
component of the current jz and vorticity ωz, which de-
pend on the perpendicular components of the magnetic
and velocity fields, are of particular interest. The per-
pendicular components jx, jy, ωx, ωy, on the contrary,
include both the perpendicular and parallel components
of magnetic and velocity fields. This results in mixing the
turbulent perpendicular dynamics with the quasi-linear
parallel dynamics, so that results are not easily inter-
preted.

In the MHD inertial range, marked as “MHD” in the
figures, the estimated fractal dimension for the parallel
component of the current is almost constant, showing

a weak decrease from D
(j)
⊥ = 1.5 in the MHD regime

to D
(j)
⊥ = 1.4 in the Hall regime (red plot in Figure 8,

panel a). Similar values, but with opposite weak trend,
are observed for the vorticity ωz (panel b). Such val-
ues of D are representative of severely disrupted, almost
filamented current sheets. The relative independence of

D
(j)
⊥ on the Hall parameter for the parallel components

of vorticity and current is consistent with the fact that,
in the MHD inertial range, the Hall term is not expected
to play a relevant role, since it should only be effective
at smaller scales.

For the current perpendicular components (green and

blue plots in Figure 8, panel a), D
(j)
⊥ starts around 2 (in-

dicating current sheets) with no Hall effect. As the Hall
term is turned on, the dimension first weakly increases

to about D
(j)
⊥ ≃ 2.2, and then steadily decreases back

to D
(j)
⊥ ≃ 2, showing that structures are becoming more

complex. This suggests that inertial range fields are re-
acting to the onset of the Hall effect, probably in response
to the inertial range modification. For the vorticity com-
ponents perpendicular to B0 (green and blue plots in
Figure 8, panel b), the effect of the Hall term is even
more evident, causing a decrease of the dimesion from

D
(ω)
⊥ ≃ 2.3 to D

(ω)
⊥ ≃ 1.5, indicating with fragmentation

of the vorticity sheets. The “global” fractal dimensions
D⋆

⊥ are shown in Figure 8, panel e (for the current) and
panel f (for the vorticity), for both the MHD and Hall
ranges. For the current in the MHD range, the struc-
tures topology is roughly constant for all values of the
Hall effect. Vorticity, on the contrary, shows a more ev-
ident decrease of the “global” fractal dimension with ε,

from D
⋆(ω)
⊥ ≃ 2.3 to D

⋆(ω)
⊥ ≃ 1.5. This result shows that

magnetic field and velocity are decoupled in the MHD

range, so that the their structures have different topolog-
ical properties.

We now turn our attention to the range of scales
smaller than the ion skin depth, where the Hall term
becomes relevant when ε becomes larger. Results here
are very similar for both current and vorticity, suggest-
ing that velocity and magnetic fields decouple only in
the MHD range. If no Hall cascade is present (ε = 0,
see panels a and b of figures 6 and 7), the small scale
range is characterized by smooth fluctuations (for which
we assume D⊥ = 3) for all components of the fields,
as expected when dissipation is active and numerically
well resolved. This is reflected in the absence of power
law, or sign singularity, in the transition from the MHD
range toward the constant partition function value for
smooth fields (χ = 1 → κ = 0 → D = 3) at small
scales. As the Hall effect comes into play, the perpen-
dicular components of current and vorticity start to de-
velop a power law range, with cancellation exponents κ
increasing with ε (panels c-f of figure 6). The scaling of
the partition function indicates the presence of strongly
persistent structures, in the range of scales larger than
the typical dissipative scales. In terms of fractal dimen-
sion (green and blue plots in Figure 8, panels c and d), a
decrease is observed from D⊥ = 3 to D⊥ ≃ 2.4, indicat-
ing that the smooth fields in the MHD regime (Run 1)
are developing toward more complex, broken structures
(Runs 2, 3 and 4). On the other hand, for the parallel
component of current and vorticity the sign singularity
in the Hall range is only observed at ε = 1/8 (see panels
c-f of figure 7). At this value of the Hall parameter, the
field is no longer smooth (as instead happens for dissi-
pative range), but rather shows presence of quasi two-
dimensional sign persistent structures (red plots in Fig-
ure 8, panels c and d). At these small scales, the “global”
fractal dimension calculated for the current and the vor-
ticity steadily decreases from D⋆

⊥ = 3 to D⋆
⊥ ≃ 2.3 as

the Hall term coefficient increases, confirming once more
that the turbulent stuctures are being fragmented by the
nonlinear Hall cascade.

Finally, we quickly review the results obtained for the
scaling in the parallel direction. Figure 9 shows some ex-
amples of partition functions of the current and vorticity
components, as a function of the parallel scale, χ(l‖).
partition functions were estimated for l⊥/2π = 0.002.
As evident, the power law range is severely reduced be-
cause of the lower resolution of the numerical simulations.
However, we have fitted the partition functions with the
usual power law, obtaining the cancellation exponents
κ and, therefore, the fractal dimensions D. These are
shown in figure 10 as a function of the Hall parameter.
As expected from the RHMHD model, for both fields the
component parallel to the magnetic field has almost con-
stant D‖ ≃ 2.2 (see the red plots in panels a and b of fig-
ure 10). On the contrary, for the two components on the
perpendicular plane, D‖ increases with ε from very small
values (D‖ ≃ 0.8) to about D‖ ≃ 1.9 (green and blue
plots in panels a and b of figure 10), similarly to what is
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FIG. 8: The fractal dimension D⊥ estimated through equation 18, for the three components of current (a for the MHD range,
c for the Hall range) and vorticity (b for the MHD range, d for the Hall range), labeled with different colors and line style (see
inset). The indicators D⋆

⊥ (see text) are also plotted for the two fields (panels e and f , black lines).

observed for the perpendicular partition functions. The
“global” fractal dimension increases from D⋆

‖ = 1.3 to

D⋆
‖ = 2.

VI. CONCLUSIONS

In this paper, a set of simulations of a RHMHD flow
realized with different values of the Hall parameter ǫ, was
analyzed by using the sing-singular measure. The pres-
ence of power law scaling of the partition function was
observed in two distinct ranges of scales, corresponding
to the MHD and Hall MHD ranges. This is interpreted
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FIG. 9: The partition function χ(l‖), for jx (left) and ωx (right), for the four runs (ε is indicated in each plot), and at
l⊥/2π = 0.002. Power law fits are superimposed. The bottom part of each plot shows the compensated partition function
χ(l‖)/A(l‖/2π)

−κ.
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FIG. 10: The fractal dimension D of the parallel partition function, for the three components of current (left panels) and
vorticity (right panels). The overall indicators D⋆

‖ are also plotted for the two fields (bottom panels).
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as the presence of an active nonlinear turbulent cascade
generating structures (i.e. parts of the fields with per-
sistent sign) on all scales. The cancellation exponents,
mesaured by fitting the partition functions, indicate the
degree of cancellation occurring between structures of op-
posite sign, and are related to the gross fractal dimension
of the typical turbulent structures in the flow. In the
MHD range, current structures are only weakly sensi-
tive to the Hall effect, showing slightly decreasing frac-
tal dimension in particular in the perpendicular current
components. The vorticity structures have a more ev-
ident fragmentation, suggesting that velocity and mag-
netic field may have decoupled dynamics in this range.
In the Hall range, current and vorticity have similar be-
haviour, showing increasingly unraveled structures. The
nonlinear Hall term is thus responsible for disruption and
unraveling of the MHD current sheets, and for the gen-
eration of small scale structures.
The results obtained here, together with previous anal-

ysis [30, 41], provide a comprehensive approach that
might answer the basic question: do the sheets get wider
or narrower with the Hall effect? We can conclude that
the Hall term has dual effects on the current sheets at dif-
ferent scales. On one hand, it increases the “macroscale”
of the sheets by proportionally increasing their character-
istic size. On the other hand, it causes these structures to
unravel, which corresponds to generating microstructures
on smaller scales. The decrease of the fractal dimension

is a manifestation of the emerging microscales, while the
widening of the macroscale of the sheet produces an in-
crease of the filling factor of these microstructures, and
the subsequent reduction of the observed intermittency
[41].

These results may settle both the numerical and obser-
vational debate about the widening vs narrowing of the
current sheets, which was probably due the extremely
complex nature of the structures. Therefore, more com-
prehensive analysis, based on multiple approach to the
same set of data (global magnitudes, characteristic times,
energy cascade, intermittency, geometrical and topolog-
ical properties) is desirable in order to fully understand
the effect of the Hall term on the flow dynamics, and in
particular on the topological characteristics of the cur-
rent sheets. This work, along with Refs. [30, 41], may be
an example of such comprehensive approach.
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[19] D. O. Gómez, and C. Ferro Fontán, Astrophys. J. 394,
662 (1992).
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[59] D. Sundkvist, A. Retinò, A. Vaivads, S. D. Bale, Phis.

Rev. Lett. 99, 025004 (2007).
[60] S. I. Vainshtein, Y. Du, and K. R. Sreenivasan, Phys.

Rev. E 49, R2521 (2007).
[61] A. L. Bertozzi and A. B. Chhabra, Phys. Rev. E 49, 4716

(1994).
[62] Graham, J., P. D. Mininni, and A. Pouquet, Phys. Rev.

E 72, 045301(R) (2005).
[63] V. B. Yurchyshyn, V. I. Abramenko, and V. Carbone,

Astrophys. J., 538, 968 (2000).
[64] V. I. Abramenko, V. B. Yurchyshyn, and V. Carbone,

Solar Phys. 178, 35, (1998).
[65] L. Sorriso-Valvo, V. Carbone, P. Veltri, V. I. Abramenko,

A. Noullez, H. Politano, A. Pouquet, V. B. Yurchyshyn,
Planet. Space Sci. 52, 937 943 (2004).

[66] D. Laveder, T. Passot, and P. L. Sulem,, Phys. Plasmas,
9, 293-304 (2002).


