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Born-Infeld deformation strategy to smooth theories having divergent solutions is applied
to the teleparallel equivalent of General Relativity. The equivalence between teleparal-
lelism and General Relativity is exploited to obtain a deformed theory of gravity based on
second order differential equations, since teleparallel Lagrangian is built just from first
derivatives of the vierbein. We show that Born-Infeld teleparallelism cures the initial
singularity in a spatially flat FRW universe; moreover, it provides a natural inflationary
stage without resorting to an inflaton field. The Born-Infeld parameter λ bounds the
dynamics of Hubble parameter H(t) and establishes a maximum attainable spacetime
curvature.

Keywords: Born-Infeld; teleparallelism; gravity.

PACS numbers: 11.25.Hf, 123.1K

1. Introduction

The Born-Infeld (BI) procedure1 for smoothing singularities is based on the use of

a new scale λ for introducing the Lagrangian

L −→ LBI =
√−g λ

[

√

1 +
2 L

λ
− 1

]

, (1)

where L =
√−g L is the Lagrangian density whose singularities has to be cured.

The scheme (1) is essentially the way for going from the classical free particle
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Lagrangian to the relativistic one; in such case, the scale is λ = −mc2, which

smoothes the particle velocity by preventing its unlimited growing. In the regime

where L << λ the BI Lagrangian (1) becomes the undeformed Lagrangian L. In its

original form, the deformation (1) was successfully applied to smooth the divergence

characterizing the Coulombian electric field of a point-like charge, and to obtain a

finite self-energy for such field configuration.

Inspired by the fruitful properties of the BI program concerning the cure of

singularities, we are going to essay a deformation like (1) for the case of a theory

of gravity. This issue has deserved some attention in the last years;2–7 but in all

the cases the research rested on Lagrangians constructed from the Riemann cur-

vature, which unavoidably leads to troublesome fourth order differential equations

for the metric. As a matter of fact, explicit solutions for those frameworks (in any

dimension) were never found. Following the lines of Ref. 8 we will choose to remain

within a second order field equations theory at the price of change the geometrical

setting.

In the context of the teleparallel equivalent of General Relativity (TEGR),9

the dynamical object is not the metric but a set {ea(x)} of four one-forms that

turns out to be autoparallel in the Weitzenböck connection
W

Γλ
µν = eλ

a ∂νea
µ.10 This

connection is compatible with the metric gµν(x) = ηab ea
µ(x) eb

ν(x) and curvature

free: Weitzenböck spacetime is flat though it possesses torsion T λ
µν =

W

Γλ
νµ −

W

Γλ
µν ,

which is the agent where the gravitational degrees of freedom are encoded. The

TEGR Lagrangian is quadratic in the torsion; the TEGR action with cosmological

constant Λ reads

ITEGR[ea
µ] =

1

16πG

∫

e (S · T − 2Λ) d4x , e = det(ea
µ) =

√−g, (2)

where S · T = S µν
λ T λ

µν , and S ≡ S µν
λ is

S µν
λ = −1

4
(T µν

λ − T νµ
λ − T µν

λ ) +
1

2
δµ
λ T θν

θ −
1

2
δν
λ T θµ

θ. (3)

The dynamical equations resulting from this Lagrangian are equivalent to those of

GR for the metric associated with the vierbein.11–13 However, the fact that TEGR

Lagrangian is built with first derivatives of the vierbein field is very fortunate,

because tell us that any deformation of TEGR will still lead to second order

equations.

2. Born-Infeld Gravity and its FRW Cosmological Solution

Hereafter we will call Born-Infeld gravity to the theory obtained from TEGR by

means of the following deformation:

IBI[e
a
µ] =

λ

16πG

∫

e

[
√

1 +
2(S · T − 2Λ)

λ
− 1

]

d4x (4)

where the BI scale λ has dimensions of inverse squared time.
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Replacing the cosmological ansatz ea
µ = diag(1, a(t), a(t), a(t)) (which implies

the spatially flat FRW metric gµν = diag(1,−a(t)2,−a(t)2,−a(t)2) in the Euler-

Lagrange equations that result from varying the action IBI + Imatter with respect

to the vierbein, we get the motion equations

1 − ε
√

1 − ε − 12H2

λ

− 1 =
16πG

λ
ρ(t), (5)

(1 − ε)
(

16H2

λ + 8H2q
λ − 1 + ε

)

(1 − ε − 12H2

λ )3/2
+ 1 =

16πG

λ
p(t), (6)

where ε = 4Λλ−1, and H = ȧa−1 and q = −aäȧ−2 are the Hubble and deceleration

parameters respectively. By assuming the fluid state equation p = ωρ, and using the

fluid energy-momentum conservation, which is encoded in Eqs. (5)-(6), it results

ρ(t) = ρo(
ao

a )3(ω+1), ρo and ao being two constants. Replacing ρ(t) and changing to

the more convenient variable y = λ
16πGρo

( a
ao

)3(ω+1) (for ω > −1), Eq. (5) can be eas-

ily integrated; the solution for positive cosmological constant Λ and 0 < ε < 1 is14

A t + c = ln
[

y

1 + y +
√

1 + 2 y+ ε y2

]

+
1√
ε

ln
[1 + ε y√

ε
+

√

1 + 2 y + ε y2
]

. (7)

Here A = 3(1 + ω)
√

λ(1−ε)
12 , and c is an integration constant. The more relevant

feature of this solution is that the scale factor behaves as a(t) ∝ exp[
√

λ(1−ε)
12 t]

when y → 0 (i.e., a → 0). Therefore, the Hubble parameter reaches a maximum

value Hmax =
√

λ(1−ε)
12 at the early stage, curing the physical divergences charac-

terizing GR. This natural inflationary stage is a purely geometrical effect and does

not rely on the existence of an inflaton field. In terms of the redshift z = ao/a(t)−1,

H(z) becomes a constant when z goes to infinity, implying in this way, that the

particle horizon radius σ = ao

∫ ao

0
(aȧ)−1da diverges. Hence the whole spacetime

ends up being causally connected, in agreement with the isotropy of the cosmic mi-

crowave background radiation. This fact appears as an essential property of modi-

fied teleparallelism which does not require any special assumption about the sources

of the gravitational field.

The BI approach (4) generates regular solutions. In the cosmological setting this

is so, not only because the scale factor is always different from zero, but because the

geometrical invariants (both, in Riemann and Weitzenböck spacetimes) are bounded

for any finite values of the cosmological time. In fact, each invariant in Weitzenböck

spacetime that is quadratic in the torsion tensor is proportional to H2 in the cosmo-

logical scenario under consideration. On the other hand, the Riemannian invariants

for the metric gµν = diag(1,−a(t)2,−a(t)2,−a(t)2) can be cast in the polynomi-

cal form P = (H, Ḣ). For instance, the scalar curvature is R = 6(2H2 + Ḣ), the

squared Ricci scalar R2
µν = RµνRµν is R2

µν = 12(3H4 + 3H2Ḣ + Ḣ2), and the

Kretschmann invariant K = Rα
βγδR

βγδ
α reads K = 12(2H4 + 2H2Ḣ + Ḣ2). All
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these invariants are well behaved due to the saturation value H = Hmax reached

by the Hubble parameter as a(t) → 0. Moreover, a direct calculation shows that

these invariants are bounded by the BI parameter λ, ruling in this way not only

the behavior of the inflationary phase, but also establishing a maximum attainable

spacetime curvature.

Finally, note that the late time behavior (y → ∞) of the solution of Eq. (7) is

a(t) ∝ exp[
√

λε(1−ε)
12 t]. Since ε should be very small (Λ << λ) in order that the

theory does not appreciably differ from GR for most of the history of the universe

(see in Ref. 8 a lower bound for λ), one concludes that the final stage of the universe

is described by a(t) ∼ exp[
√

λε
12 t] = exp[

√

Λ
3 t] as expected, while the initial stage

is described by a(t) ∝ exp[
√

λ
12 t]. Thus the Born-Infeld scale λ would play the role

of an effective initial vacuum energy driving the inflationary stage. In this way, the

universe evolves from an inflationary stage, driven by the (vacuum-like) energy λ,

to the present Λ-dominated epoch.
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