

XXVI Biennial Meeting of the International Society for Eye Research 20 - 24 October 2024 / Buenos Aires, Argentina

<image>

ISER 2024 PROGRAM ABSTRACTS

XXVI Biennial Meeting of the International Society for Eye Research October 20 - 24, 2024 | Buenos Aires, Argentina

ORAL PRESENTATIONS	10
AI in Ophthalmology	10
Advances in optical coherence tomography	10
Artificial intelligence in ophthalmology	14
Artificial intelligence in the optic nerve	
ChatGPT, generative AI & large language models in ophthalmology & healthcare	

Cornea and Ocular Surface	23
Corneal endothelium	
Corneal epithelial wound healing	
Corneal nerves: the guardians of ocular surface health	
Cutting-edge approaches to the study of the molecular mechanisms underlying ocular pain	
Emerging methodologies and treatments for ocular surface pathologies	
Molecular targets for cornea pathologies	43
New therapeutics and models in ocular surface research	
Novel strategies for corneal repair- 3 is the magic number	
Ocular chemical injury and medical countermeasures.	
Ocular surface inflammation and immunity	
Proteostasis and ER stress in corneal pathologies	
Role of extracellular matrix in ocular healing and clinical applications	

71

iPS Cells in Ophthalmology	117
iPSC-derived RPE to develop treatments for degenerative eye diseases	117
iPSC-derived RPE to develop treatments for degenerative eye diseases-1	
New perspectives in the application of pluripotent stem cell technologies for studying retinal development and disease	125
Recent advances in stem cell based treatment paradigms for optic nerve degeneration	
Retinal organoids: emergent technologies and applications.	
Using iPSCs to unravel the network of neurodegeneration.	138
Using patient induced pluripotent stem cells to evaluate disease pathology and test novel therapeutics	142

Lens	146
Animal models of cataract	
Biology and biochemistry of lens aging and cataractogenesis	
Creating the lens-formation and function	
Lens optics/biomechamics	
Lens physiology and channel proteins.	
Lens signal transduction pathways	
Omic changes in the lens	
Posterior capsule opacification	
The genetics of cataracts	

Муоріа	185
Genomics, ionic and neurovascular implications for myopia development.	185
Retinal signals driving eye growth regulation	.189
Scleral and choroidal mechanisms underlying myopia, new biomarkers and ideas for intervention	.194
The International Myopia Institute: Global epidemiological trends in myopia and exploration of regional differences	.198

Ocular Imaging	202
Advanced imaging and clinical applications.	
Advances in vascular imaging	
Clinical applications of adaptive optics retinal imaging	
Developments in fluorescence-based imaging techniques.	
Imaging for vision restoration.	
Light meets tissue – new aspects for quantitative biomechanical imaging in ophthalmology	
Molecular imaging of the retina	
Optoretinography	
Progress in small animal ocular imaging	
Retinal imaging in diabetic retinopathy - what is the latest?	
Retinal pathological and imaging features in Alzheimer's disease	
Understanding the functional impacts of fixation on the eye-brain connection	

Ocular Immunology	249
Host and microbe interactions in corneal infection	
Impact of hypoxia, oxygenation, and oxidative stress on ocular inflammation and wound healing	
Infection versus autoimmunity in uveitis	
Microbial effects on host response to ocular infections	
Ocular immune mechanisms and infection.	
Ocular infection and inflammation: innovations from bench to bedside	
Retinal inflammation: beyond macrophages and microglia	
Tackling corneal infection and inflammation during microbial keratitis	

CONTENT

Ocular Physiology, Pharmacology and Therapeutics	281
Advancements in precision medicine: unveiling the future of personalized healthcare	
Ion channels in the eye: new roles, pathologies and therapeutic approaches	
ISER-AOPT joint session on ocular pharmacology and therapeutics	
Mechanistic insight and treatment strategies for incomplete responses to anti-VEGF therapy in neovascular AMD	
Novel medical technologies for eye diseases	
Ocular drug delivery – from bench to bedside	
Ocular fibrosis mechanism and therapeutic development	
Optic neuropathies and optic neuritis - new concepts of pathology and therapeutics approaches	
Retinal function, diagnosis, and potential therapeutics in ocular and non-ocular diseases	
Small heat shock proteins as therapeutics for eye diseases	
Therapeutic strategies for ocular diseases	
Topical ocular drug delivery to protect retinal neurons	

Ophthalmic Genetics/Genomics	333
Epigenomics and non-coding variation	333
Genetic therapies for inherited retinal diseases	337
Global eye genetics consortium - genetic studies in pan-America	340
New technologies for discovery and diagnosis	
OMICS approaches to understand complex disease	
Retinal degenerations: genes, genomes, and treatments	
RNAs and inherited ocular diseases	355

Retinal Cell Biology	360
Animal models in vision research	
Cell biology of photoreceptors	
Cellular and molecular aging in the retina.	
Cellular mechanisms of visual system development and their impact on disease	
Cellular plasticity and regeneration.	
Comparative analysis of Muller glia-dependent retinal regeneration	
Development of regionalization and connectivity in the visual system. Therapeutic implications.	
Insights into retinal development and disease	
Iron and retinopathy of prematurity	
Lipids and lipid-soluble molecules in retinal health and disease.	
Retinal connectomics / volumeEM	401
The retinal powerhouse: unravelling the metabolic mysteries of the retina	

Abstract ID: 1013

Inhibiting sphingosine kinase 1 modulated autophagic flux in retinal pigment epithelial cells.

Poster number: W-33

<u>Gabriela Gutiérrez Jofré</u>¹²³, Camila Torlaschi¹², Maria Victoria Simon¹², Melina Valeria Mateos¹², Nora Rotstein¹² ¹Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Bahía Blanca, Argentina, ²Departamento de Biología, Bioquímica y Farmacia - UNS, Bahía Blanca, Argentina, ³Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

Introduction

Retinal pigment epithelial (RPE) cells play multiple functions in the retina, preserving visual functionality. Autophagy is crucial for RPE degradative functions, and its dysregulation contributes to pathological conditions. The roles of sphingolipids in autophagy regulation are scarcely known. Sphingosine kinase (SphK1), which catalyzes the synthesis of sphingosine-1-phosphate (S1P), has been shown to facilitate endosomal trafficking.

Objectives

Our purpose was to evaluate whether SphK1 activity modulated autophagic flux in RPE cells.

Methods

Human RPE cell line (ARPE-19) cultures were treated with 10 μ M PF543, a SphK1 inhibitor, with NVP, a ceramide kinase inhibitor, with 5 μ M S1P or 10 μ M C1P, or with 10 μ M Bafilomycin 1 (BafA1), for 24 and 48 h. Cell morphology was determined with phalloidin. Cell death was analyzed by MTT assay. Formation of autophagosomes was evaluated by immunocytochemistry, using antibodies for LC3b and p62, specific autophagosome markers.

Results

Inhibiting SphK1 with PF543 for 24 h promoted morphological changes in ARPE-19 cells and the formation of perinuclear round vesicles, scarce in controls, which increased after 48 h. PF543 also induced endoplasmic reticulum enlargement, but had neither an effect on mitochondria nor on cell viability. Blocking synthesis of ceramide-1-phosphate (C1P), whose functions are similar to those of S1P, did not induce vesicle formation. The vesicles showed intense labeling with LC3b and p62 antibodies, suggesting that they might be "autophagosomes". Treatment of RPE cells 24 and 48 h with BafA1, which disrupts endocytic flow, led to the accumulation of LC3b- and p62-positive vesicles and alterations in cell morphology remarkably similar to those induced by PF543. The amount of LC3b- and p62-positive vesicles was further increased with the combined addition of PF543 and BafA1, suggesting that PF543 enhanced autophagic flux, and BafA1 prevented vesicle degradation. Supplementation with S1P 1 h after PF543 addition restored cell morphology but did not prevent vesicle formation.

Conclusion

Our results suggest that inhibition of SPhK1 promoted morphological changes in RPE cells and the formation of LC3b and p62-positive vesicles, possibly autophagosomes. Exogenous S1P preserved morphology but did not prevent autophagosome formation, implying S1P receptor activation did not regulate this formation and suggesting that SphK1 activity was essential for maintaining proper autophagic flux.

