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Optimal quantum teleportation protocols for fixed average fidelity1

Fabricio Toscano ,1,* Diego G. Bussandri ,2,† Gustavo M. Bosyk ,2,‡ Ana P. Majtey ,3,4,§ and Mariela Portesi 2,5,∥
2

1Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, Brazil3

2Instituto de Física La Plata (IFLP), CONICET–UNLP, 1900 La Plata, Argentina4

3Instituto de Física Enrique Gaviola (IFEG), CONICET–UNC, Córdoba, Argentina5

4Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina6

5Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina7

(Received 6 July 2023; accepted 6 October 2023; published xxxxxxxxxx)9

We demonstrate that, among all quantum teleportation protocols giving rise to the same average fidelity, those
with aligned Bloch vectors between the input and output states exhibit the minimum average trace distance.
This defines optimal protocols. Furthermore, we show that optimal protocols can be interpreted as the perfect
quantum teleportation protocol under the action of correlated one-qubit channels. In particular, we focus on the
deterministic case for which the final Bloch vector length is equal for all measurement outcomes. Within these
protocols, there exists one type that corresponds to the action of uncorrelated channels: these are depolarizing
channels. Thus, we established the optimal quantum teleportation protocol under a very common experimental
noise.
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I. INTRODUCTION19

Among the most astonishing techniques in quantum infor-20

mation theory are the quantum teleportation protocols (QTPs),21

which consist of two distant parties, usually called Alice and22

Bob, aiming to transmit an unknown qubit state ρ̂ in from23

Alice’s qubit system ā to Bob’s qubit system b, exploiting the24

features of quantum states and quantum measurements [1].25

QTPs are a paradigmatic example of local operations and26

classical communication (LOCC) protocols, defined on a sys-27

tem composed of three qubits: the system ā, an additional28

qubit a, and the target system b [2]. The most general telepor-29

tation protocol operates on the total system ρ̂ in ⊗ ρ̂ab, where30

the joint state ρ̂ab is usually referred to as the resource state.31

The protocol goes as follows. First, Alice performs a joint32

measurement on her qubits ā and a, followed by the classical33

communication of the corresponding measurement outcome34

(labelled by m) to Bob, who finally applies local unitary35

operations on his qubit b according to the communicated re-36

sult. The noiseless standard quantum teleportation is the only37

scheme that allows perfect transmission, i.e., ρ̂out
m = ρ̂ in ∀ m38

and for any input state being ρ̂out
m the output states in the target39

system b [1,3,4]. This protocol consists of a Bell measure-40

ment, i.e., a projection onto the Bell basis {β̂m}4
1 on qubits ā41

and a, and a Bell state as quantum resource, ρ̂ab = β̂.42

In realistic teleportation implementations, states and mea-43

surements are typically not perfect. The average fidelity44

between input and output states is generally employed as a45
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figure of merit of the transmission process [3–6]. In noisy 46

standard QTPs, Alice implements a Bell measurement, where 47

the resource state ρ̂ab is taken to be an arbitrary mixed state. 48

Within these standard protocols, one approach is to maximize 49

the average fidelity over all Bob’s unitary operations, the so- 50

called strategies, to determine what kind of mixed resource 51

states give rise to quantum teleportation, i.e., when the av- 52

erage fidelity exceeds the bound 2
3 for classical teleportation 53

[3,7]. Another approach is, for any given initial resource state, 54

to maximize the singlet fraction, i.e., the fidelity between 55

the resource state and the singlet Bell state, by LOCC, to 56

produce a state ρ̂ab with the highest average fidelity, to be 57

used with the standard QTP [4,8]. These are called optimal 58

standard QTPs. 59

Furthermore, for general resource states and positive 60

operator-valued measures (POVMs), the optimal protocol was 61

given in Ref. [9] using the same framework for the average 62

fidelity as in Ref. [8]. However, as we show below, we identify 63

several protocols that give rise to the same average fidelity, 64

but that can produce significantly different output states. In 65

Ref. [10] the limited effectiveness of fidelity as a tool for 66

evaluating quantum resources was demonstrated. Here, we 67

employ the trace distance as an additional quantum distin- 68

guishability measure to define the set of optimal QTPs in the 69

following sense: they minimize the average trace distance for 70

a fixed value of the average fidelity. One of our main findings 71

is showing that this set is given by the teleportation protocols 72

that align, i.e., those for which the direction of the Bloch 73

vector of the output states is the same as that of the initial 74

state to be teleported. 75

II. GENERAL TELEPORTATION PROTOCOLS 76

Let us introduce the main elements for our analysis and 77

fix the notation. The input state of Alice’s qubit system ā 78
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can be written as ρ̂ in = 1
2 (1̂ + tᵀσ̂), where t = (t1, t2, t3)ᵀ79

is the Bloch vector of ρ̂ in with euclidean norm t = ∥t∥ ! 1,80

σ̂ = (σ̂1, σ̂2, σ̂3)ᵀ is the vector of Pauli operators, ·ᵀ denotes81

transposition, and 1̂ is the identity operator. The resource82

state can be written as83

ρ̂ab = 1
4

⎛

⎝1̂4 + (ra)ᵀσ̂ ⊗ 1̂ + 1̂ ⊗ (rb)ᵀσ̂+
3∑

i, j=1

ri j σ̂i ⊗ σ̂ j

⎞

⎠,

(1)

where ra and rb are, respectively, the Bloch vectors of the84

reduced states ρ̂a = Trb(ρ̂ab) and ρ̂b = Tra(ρ̂ab) and ri j are85

the elements of the correlation matrix r = Tr(ρ̂ab σ̂ ⊗ σ̂).86

The parametrization (1) defines the Fano form of a two-qubit87

state [11].88

We shall consider general measurements on Alice’s qubit89

systems ā and a described by POVMs, that is, a set {Ê āa
m }90

of positive-definite operators acting on the Hilbert space Hāa
91

such that
∑

m Ê āa
m = 1̂ ⊗ 1̂. Each POVM element Ê āa

m de-92

fines univocally a two-qubit POVM state by means of ω̂āa
m =93

1
4P̄m

Ê āa
m where P̄m = 1

4 Tr(Ê āa
m ). Each POVM state ω̂āa

m is com-94

pletely characterized by its Fano form, in terms of the Bloch95

vectors ω ā
m and ω a

m of the reduced states ω̂ā
m = Tra(ω̂āa

m ) and96

ω̂a
m = Trā(ω̂āa

m ), respectively, and the correlation matrix wm =97

Tr(ω̂āa
m σ̂ ⊗ σ̂). Note that because the POVM elements add up98

to the identity, the following POVM conditions have to be99

fulfilled:100

∑

m

P̄m = 1, (2a)

∑

m

P̄m
(
ω a

m

)ᵀ = 0ᵀ, (2b)

∑

m

P̄mω ā
m = 0, (2c)

∑

m

P̄mwm = 0, (2d)

where 0 and 0 denote the null vector and null matrix, respec-101

tively.102

As a result of Alice’s measurement, the qubit b of103

Bob’s collapses to ρ̂b
m = 1

2 [1̂ + (tb
m)ᵀσ̂] with probability104

Pm = Tr(Ê āa
m ⊗ 1̂bρ̂ in ⊗ ρ̂ab) = P̄m gm(t), where gm(t) = 1 +105

(ω a
m)ᵀra + (wmra + ω ā

m)ᵀt. The Bloch vector of ρ̂b
m is106

tb
m = am

gm(t)
t + κm

gm(t)
, (3)

where am = rb(ω ā
m)ᵀ + rᵀwᵀ

m and κm = rb + rᵀω a
m. Finally,107

Alice communicates to Bob her measurement result m and108

Bob applies a unitary operation Ûm on qubit b. The output109

quantum state is ρ̂out
m = Ûmρ̂b

mÛ †
m = 1

2 (1̂ + tᵀmσ̂) with Bloch110

vector111

tm = Rmtb
m, (4)

where Rm is the unique rotation matrix such that Ûm nᵀσ̂ Û †
m =112

(Rmn)ᵀσ̂ with n the unit real column vector. Thus, for113

each QTP there is an associated channel % that yields114

%(ρ̂ in ) =
∑

m Pmρ̂out
m whose Bloch vector is 115

t% =
∑

m

Pmtm = C%t + v%,

with C% =
∑

m P̄mRmam and v% =
∑

m P̄mRmκm. 116

III. GENERALIZED ERROR MEASURES 117

IN QUANTUM TELEPORTATION 118

The performance of a general QTP can be quantified 119

by taking a measure of distinguishability between the 120

input state and the ensemble of output states in the 121

form D̄(ρ̂ in ) =
∑

m Pm D(ρ̂ in, ρ̂out
m ) where D(·, ·) stands 122

for a distance measure between quantum states. Being 123

Pm = P̄m gm(t), for any choice of D the previous quantity can 124

be expressed as a function of the initial Bloch vector t, so we 125

write D̄(ρ̂ in ) = D̄(t) ≡ D̄. 126

The final figure of merit is the average distance defined 127

as the expectation value of D̄ over the uniform distribution 128

of pure input states: ⟨D̄⟩ = 1
4π

∫∫
S(B) D̄(t) d', where d' = 129

sin θ dθ dφ (0 ! θ ! π and 0 ! φ < 2π ) is the differential 130

solid angle in the Bloch sphere S(B). The distance deviation 131

*D̄ is defined as the standard deviation of the function D̄, that 132

is, *D̄ =
√

⟨D̄2⟩ − ⟨D̄⟩2. 133

In this work, we shall consider the following distance 134

measures: the trace distance DT(ρ̂, σ̂ ) = 1
2 Tr(∥ρ̂ − σ̂∥) 135

where ∥Â∥ =
√

ÂÂ† stands for the operator norm [12], 136

and the Uhlmann-Jozsa quantum fidelity F (ρ̂, σ̂ ) = 137

[Tr(
√√

ρ̂ σ̂
√

ρ̂ )]2 [13]. For qubit states characterized by 138

Bloch vectors t and tm, they give DT(ρ̂ in, ρ̂out
m ) = 1

2∥t − tm∥, 139

and F (ρ̂ in, ρ̂out
m ) = 1

2 (1 + tᵀtm +
√

1 − t2
√

1 − t2
m) where 140

t = ∥t∥ and tm = ∥tm∥. 141

The average fidelity takes the following form for general 142

QTPs: 143

⟨F̄ ⟩ = 1
2

[
1 + 1

3 tr(C%)
]

(5)

(where tr denotes the trace of matrices to differentiate from 144

the trace of operators Tr), and the squared fidelity deviation is 145

given by 146

(
*F̄

)2 = 1
4

{ 1
15

[
tr
(
C2

%

)
+ (tr(C%))2 + tr

(
C%Cᵀ

%

)]

−
[ 1

3 tr(C%)
]2} + 1

12 tr
(
v%vᵀ

%

)
.

Note that different QTPs can result in the same matrix 147

C% in Eq. (5), producing the same average fidelity. These 148

protocols in general are not equivalent because they can yield 149

physically distinct output states. 150

IV. OPTIMAL PROTOCOLS FOR FIXED 151

AVERAGE FIDELITY 152

Let us consider a set of arbitrary teleportation protocols 153

that yield the same average fidelity. The following theorem 154

characterizes the optimal protocols within this set. 155

Theorem 1. Among all QTPs such that ⟨F̄ ⟩ = α ∈ (0, 1], 156

the average trace distance ⟨D̄T⟩ takes its minimum value for 157

those protocols that align, i.e., when the corresponding Bloch 158

vectors of the output states ρ̂out
m are given by talig

m = smt ∀ m 159
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with sm ∈ (0, 1] satisfying
∑

m Pmsm = 2α − 1. These proto-160

cols are defined as optimal.161

Proof. For arbitrary QTPs, we have that162

⟨D̄T⟩ =
〈

1
2

∑

m

Pm ∥t − tm∥
〉

"
〈

1
2
∥t − t%∥

〉
" 1 − ⟨F (ρ̂ in,%(ρ̂ in ))⟩

= 1
2

(
1 − 1

3
tr(C%)

)
= 1 − ⟨F̄ ⟩, (6)

where we used consecutively Jensen’s inequality163 ∑
n Pn ∥an∥ " ∥

∑
n Pn an∥ with

∑
n Pn = 1 (because164

every norm is a convex function), DT " 1 − F [12],165

F [ρ̂ in,%(ρ̂ in )] = F̄ because ρ̂ in is a pure state, and Eq. (5).166

Let us now consider fidelity-equivalent protocols, in the sense167

that ⟨F̄ ⟩ = α is satisfied for given α ∈ (0, 1]. The average168

trace distance can take different values, with a fixed lower169

bound, ⟨D̄T⟩ " 1 − α, as deduced from Eq. (6). It is straight-170

forward to see that this lower bound is attained by protocols171

such that talig
m = smt ∀ m with

∑
m Pmsm = 2α − 1. !172

Let us now give a comprehensive characterization of the173

optimal protocols, defined in Theorem 1. In this context, the174

following result establishes the necessary and sufficient con-175

ditions to have a protocol that aligns.176

Theorem 2. An arbitrary QTP aligns if and only if it satis-177

fies, for all m, that: (i) wmra + ω ā
m = 0, (ii) rb = 0 and ω a

m =178

0, and (iii) Rm = smw−ᵀ
m r−ᵀ with sm such that tm = smt ∀ m,179

being tm the Bloch vector of the output state of the protocol.180

Corollary 1. The quantum channel associated to a protocol181

that aligns is characterized by C%alig = 1
3 tr(C%alig )1 and valig

% =182

0. Thus, this kind of protocol yields null fidelity deviation,183

*aligF̄ = 0.184

Proof. The final Bloch vector tm of Bob’s qubit is given185

in Eq. (4) with tb
m in Eq. (3). Therefore, if tm = smt, then gm186

must be independent of t and κm must vanish, for all m. The187

first condition happens iff the statement (i) of the theorem188

is true. Applying the POVM conditions (2a) and (2b) to the189

equations κm = rb + rᵀω a
m = 0 ∀ m, we arrive at rb = 0, so190

rᵀω a
m = 0 ∀ m. Because κm = 0 ∀ m and rb = 0, we must191

have that RmrᵀwmT
gm (t) = sm1 to align, i.e., t = smtm ∀ m. There-192

fore, the matrices r and wm must be invertible and from the193

condition rᵀω a
m = 0 ∀ m, we obtain that ω a

m = 0 ∀ m. At this194

point, we demonstrated statement (ii) of the theorem. Note195

that we arrived at gm(t) = 1 ∀ m, which implies Rmrᵀwᵀ
m =196

sm1. This proves statement (iii) of the theorem.197

Note that statement (iii) of Theorem 2 implies that C%alig =198 ∑
m Pm sm1 = 1

3 tr(C%alig )1 and κm = 0 ∀ m leads to v% = 0.199

These are the statements of Corollary 1. On the other hand,200

since the lower bound in Eq. (6) is achieved for protocols that201

align, we have that for average fidelity α it holds202

2α − 1 = 1
3

tr(C%alig ) =
∑

m

P̄m sm. (7)

!203

Before establishing the next theorem, we recall that, under204

suitable local unitary transformations, i.e.,205

ρ̂ab
c = Û a ⊗ Û bρ̂ab(Û a)† ⊗ (Û b)†,

every two-qubit state ρ̂ab can be transformed into a canon- 206

ical form ρ̂ab
c , with correlation matrix rd = (oa)r(ob)ᵀ = 207

diag(r1, r2, r3), where oa and ob are rotation matrices, and 208

the transformed marginal Bloch vectors ra
c = oara and rb

c = 209

obrb [14]. Furthermore, the positivity condition on the den- 210

sity operators ρ̂ab and ρ̂ab
c , when rb = 0, corresponds to the 211

inequalities [15] 212

−2 det(rd ) − (∥rd∥2 − 1) "
∥∥ra

c

∥∥2
, (8a)

f (r1, r2, r3) " 4
∥∥(

ra
c

)ᵀ
rd

∥∥2

+
∥∥ra

c

∥∥2 [
2(1 − ∥rd∥2) −

∥∥ra
c

∥∥2]
, (8b)

where f (r1, r2, r3) = −8 det(rd ) + (∥rd∥2 − 1)2 − 4∥r̃d∥2
213

= (1 − r1 − r2 − r3)(1 − r1 + r2 + r3)(1 + r1 − r2 + r3) 214

(1 + r1 + r2 − r3), ∥rd∥2 = tr(r2
d ), r̃d = det(rd ) r−1

d , and 215

−1 ! det(rd ) ! 1 [here we are assuming that det(rd ) ̸= 0]. 216

Thus, the diagonal elements r1, r2, r3 belong to a convex 217

subset, defined by Eqs. (8), inside the tetrahedron given by 218

inequality (8b) with ra
c = 0 [14]. 219

We are now in a position to present the following theorem 220

which fully characterizes the QTPs that align. 221

Theorem 3. All QTPs that align verify the following. 222

(i) The POVM states ω̂āa
m have correlation matrices wm = 223

(oā
m)ᵀwdmoa with wdm = smr−1

d and where r = (oa)ᵀrdob is 224

the correlation matrix of the resource state ρ̂ab, with (oa)ᵀ the 225

rotation matrix that simultaneously diagonalizes the positive 226

definite matrices rrᵀ and wᵀ
mwm, while ob and oā

m are the 227

rotation matrices that diagonalize rᵀr and wmwᵀ
m respectively. 228

(ii) Bob’s rotation matrices are of the form Rm = oā
mob ∀ m. 229

Finally, (iii) the rotation matrices oā
m must fulfill the POVM 230

condition (d) that in this case reduces to
∑

P̄msm(oā
m)ᵀ = 0. 231

Corollary 2. All the protocols that align have det(rd ) < 0. 232

Proof. From the canonical decomposition of the states ρ̂ab
233

and ω̂āa
m we have that r = (oa)ᵀrdob and wm = (oā

m)ᵀwdmoa
m, 234

where the columns of oa are eigenvectors of rrᵀ and the 235

columns of oa
m are eigenvectors of wᵀ

mwm. Note that rrᵀ and 236

wᵀ
mwm are positive-definite matrices because r and wm are full 237

rank. They are diagonalized by orthogonal matrices. From the 238

orthogonality of Rm and condition (iii) in Theorem 2, we get 239

rrᵀ( wm
sm

)ᵀ wm
sm

= 1, leading to [rrᵀ,wᵀ
mwm] = 0. Then, rrᵀ

240

and wᵀ
mwm are diagonalized by a single orthogonal matrix [16] 241

that we can choose to be one of the possible matrices (oa)ᵀ 242

in the canonical decomposition of r, i.e., rrᵀ = (oa)ᵀr2
d oa

243

and wᵀ
mwm = (oa)ᵀw2

dmoa, so oa
m = oa ∀ m. Thus, we imme- 244

diately arrive at w2
dm = s2

mr−2
d . Finally, we can write Rm = 245

oā
mw−1

dmsmr−1
d ob, and then wdm = smr−1

d must be true [17]. This 246

proves statement (i). Statements (ii) and (iii) follow straight- 247

forwardly. ! 248

From Theorem 3 it is possible to conclude that the only 249

QTP such that tm = t ∀ m is, up to local unitaries on the 250

qubit systems, the perfect QTP defined by performing a Bell 251

measurement on qubits ā and a and a Bell state as resource 252

for qubits a and b. Specifically, the positivity conditions on 253

the density operators ρ̂ab and ω̂āa
m correspond, respectively, to 254

the set of inequalities (8) for the matrix elements of rd with 255

rb
c = 0, and for the matrix elements of wdm = smr−1

d with 256

Bloch vectors ω ā
cm = −r−1

d ra
c and ω a

cm = 0 ∀ m [this follows 257

from conditions (i) and (ii) of Theorem 2; see Eq. (A4) in 258

002400-3
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ra
c = 0.01
s = 0.7 s = 0.7

ra
c = 0.1ra

c = 0
s = 0.7 s = 0.7

ra
c = 0.2

ra
c = 0.1
s = 0.8

ra
c = 0.01
s = 0.8s = 0.8

ra
c = 0

s = 0.8
ra
c = 0.2

(a) (b) (c) (d)

(e) (f) (g) (h)

s = 0.7
ra
c = 0.1

(g)

ra
c = 0.011111
s = 0.7

(f)

s = 0.77777
ra
c = 0.22222

(h)

ra
c = 0.01
s = 0.8

(b)

ra
c = 0.1
s = 0.8

(c)

s = 0.8
ra
c = 0.2

(d)

ra
c = 0

s = 0.7

(e)

s = 0.8
ra
c = 0

(a)

FIG. 1. Diagonal matrix elements (r1, r2, r3) of DQTPs that align, with fixed value of average fidelity ⟨F̄ ⟩alig = 1
2 (1 + s) = α, for different

values of s and Bloch vectors ra
c (see text for explanation). The angular spherical coordinates of ra

c are θ = φ = 0 in panels [(a)–(d)], and
θ = φ = π

2 in panels [(e)–(h)]. In (d) there is no solution; in (h) the solid arrows (red online) indicate the tiny set of solutions. The lines (blue
online) correspond to the four types of Werner states Ŵ = (1−p)

4 1̂ ⊗ 1̂ + p β̂ where β̂ is one of the four Bell states. The solid lines correspond
to separable states, i.e., − 1

3 ! p ! 1
3 , and the dashed lines to entangled states, i.e., 1

3 < p ! 1. In (a) and (e), the dashed arrows (green online)
indicate the special cases with p = s

1
2 .

Appendix A]. The only solutions to these sets of inequalities,259

when sm = 1 ∀m, correspond to rBell
d = (rBell

d )−1 = wBell
dm ∈260

{rBell
,+

= −diag(1, 1, 1), rBell
,−

= diag(−1, 1, 1), rBell
-+

=261

diag(1,−1, 1), rBell
-−

= diag(1, 1,−1)} with ra
c = 0 ∀ m.262

These solutions are Bell states for the resource ρ̂ab
c = β̂ and263

for the POVM operators ω̂āa
cm = β̂m with m = 1, . . . , 4,264

in the canonical form. Therefore, from condition (i)265

of Theorem 3 we have that the correlation matrix266

of ω̂āa
cm is wm = wcm = (oā

m)ᵀwdmoa with oa = 1 and267

oā
m = bā

m ∈ {diag(1, 1, 1), diag(1,−1,−1), diag(−1, 1,−1),268

diag(−1,−1, 1)}, that are the only diagonal orthogonal269

matrices in R3×3 with det(bā
m) = 1. Note that these270

matrices satisfy condition (iii) of Theorem 3. All271

perfect QTPs, therefore, are those with resource state272

ρ̂ab = Û a ⊗ Û b β (Û a)† ⊗ (Û b)†, with r = (oa)ᵀrBell
d ob

273

being its correlation matrix and with a POVM composed by274

ω̂āa
m = Û ā ⊗ Û aω̂āa

cm(Û ā)† ⊗ (Û a)†, with ω̂āa
cm = β̂m, whose275

correlation matrices are w = (oā)ᵀbā
mrBell

d oa.276

It is worth noting that, according to Theorem 3, for telepor-277

tation protocols that align, the POVM states can be written as278

ω̂āa
m = Û ā

m ⊗ Û aω̂āa
cm(Û ā

m)† ⊗ (Û a)†, where Û a is one of the lo-279

cal unitary operations that carries ρ̂ab into its canonical form.280

Therefore, the Bob qubit state ρ̂b
m, after Alice’s measurement,281

does not depend on Û a. So, we can ignore this local unitary282

operation.283

Now, let us examine the scenario where Û ā
m is a unitary284

matrix such that Û ā
m nᵀσ̂ (Û ā

m)† = (oā
mn)ᵀσ̂ with oā

m a diagonal285

matrix. In the case of diagonal matrices oā
m, the only possible 286

way to satisfy condition (iii) of Theorem 3 is when oā
m = bā

m 287

and sm = s for m = 1, . . . , 4. 288

Therefore, for these particular protocols considered, the 289

resource state has a correlation matrix r = rdob and the 290

POVM states have wm = wcm = bā
ms r−1

d with m = 1, . . . , 4, 291

i.e., ω̂āa
m = ω̂āa

cm. We refer to these kinds of protocols as deter- 292

ministic quantum teleportation protocols (DQTPs) that align. 293

For these protocols the Bloch vectors of the reduced states ρ̂a
294

and ω̂ā
m are, respectively, ra = ra

c and ω ā
m = (bā

m)ᵀω ā
cm with 295

ω ā
cm = ω ā

c = −s r−1
d ra

c for m = 1, . . . , 4. 296

The perfect QTP, s = 1, is a special case of a DQTP that 297

aligns corresponding to ra
c = 0 and rd = rBell

d . 298

In the case of imperfect alignment of the DQTP, where s < 299

1, the set of allowed values for the diagonal elements of rd 300

and s r−1
d , as determined by the positivity conditions for the 301

density operators of the resource and POVM states, is quite 302

extensive. 303

Let us consider, as an example, all the protocols that align 304

for different values of s and Bloch vectors ra
c in the sce- 305

nario sm = s for all m. Figure 1 illustrates the sets of values 306

(r1, r2, r3), represented by the shaded red volume, for which 307

there exists a POVM that aligns for different values of ∥ra
c∥ 308

and considering two different values of s. These regions are 309

determined by the positivity conditions on ρ̂ab and ω̂āa
m [see 310

inequalities (8)]. It can be observed that, as ∥ra
c∥ increases, 311

the set of solutions becomes smaller. In Figs. 1(a) to 1(d) 312
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we consider s = 0.8; notice that in Fig. 1(d), correspond-313

ing to ∥ra
c∥ = 0.2, there is no solution. However, when we314

reduce the average fidelity value as in Figs. 1(e) to 1(h)315

where we take s = 0.7, a tiny set of solutions appears for316

∥ra
c∥ = 0.2 [indicated by the solid arrows (red online) in317

Fig. 1(h)].318

V. NOISE IN DQTP THAT ALIGN319

For a deterministic QTP meeting the conditions in Theo-320

rems 2 and 3, from Eq. (7) we have that ⟨F̄ ⟩alig = 1
2 (1 + s) =321

α. Therefore, we see that for a fixed value α < 1, i.e., fixed322

s < 1, there exist different DQTPs that align giving rise to323

the same average fidelity (see Fig. 1). These different pro-324

tocols can be identified as the action of one-qubit channel325

over the perfect DQTP that aligns: ρ̂ab
c = (εa ⊗ εb)[β̂] and326

ω̂āa
cm = (εā ⊗ εa)[β̂m] with m = 1, . . . , 4.327

A generic one-qubit channel ε can be described by the328

affine transformation tout = Λtin + v of the vectors tin in the329

Bloch sphere, where Λ and v are the matrix and the translation330

vector of the channel, respectively [18].331

Using the result in Appendix B it is shown that the332

correlation matrix of ρ̂ab
c = (εa ⊗ εb)[β̂] is rd = Λa

d Λb
d rBell

d ,333

where Λa
d and Λb

d are the diagonal matrices of the affine334

description of the channels εa and εb, respectively. Note335

that, because the values of the diagonal entries of Λa
dΛ

b
d are336

inside the tetrahedron of allowed values for channels, the337

values of the diagonal entries of rd = Λa
d Λb

d rBell
d are inside338

the tetrahedron of allowed values for correlation matrices339

of two-qubit states [18]. The Bloch vectors of the reduced340

states of ρ̂ab
c = (εa ⊗ εb)[β̂] are va = ra

c and vb = rb
c = 0,341

with va and vb the affine vectors of the channels εa and εb,342

respectively. It follows that the channel εb must be unital. The343

correlation matrix of the POVM states ω̂āa
cm = (εā ⊗ εa)[β̂m]344

are wcm = s bā
m r−1

d = (Λa
d Λb

d )−1 s bā
m rBell

d = Λā
d Λa

db
ā
m rBell

d ,345

with Λā
d and Λa

d the matrices of the affine description346

of εā and εa, respectively. Then, we arrive at first347

condition348

Λā
d

(
Λa

d

)2
Λb

d = s 1. (9)

The second condition, correlating channels on qubits ā, a and349

b, is350

vā = ω ā
c = −s

(
Λa

d Λb
d

)−1
rBell

d ra
c . (10)

Notice that this last condition disappears if the channel εa
351

is unital, i.e., with affine vector va = ra
c = 0. Thus in this352

case all the three qubit channels εa, εā and εb must be unital353

to have a DQTP that aligns. It is worth noting that all the354

more common noisy one-qubit quantum channels are of this355

kind [18].356

Conditions (9) and (10) show that, in general, the channels357

εā, εa, and εb are correlated. Uncorrelated solutions of Eq. (9)358

occur only when the channel matrices are independent. If359

none of the channels is the identity (no noise), uncorrelated360

solutions are only achieved when all the channels are the361

same, i.e., Λā
d = Λb

d = Λa
d = Λd and Λd = s

1
4 1 (which, in362

turn, defines a depolarizing channel [18]). Because these363

channels are unital, ra
c = 0 so ω ā

c = 0, condition (10) is364

automatically satisfied. In this case, both the resource and365

POVM states are Werner states, i.e., ρ̂ab = Ŵ and ω̂āa
m = Ŵm366

where Ŵm = (1−p)
4 1̂ ⊗ 1̂ + p β̂m, with m = 1, . . . , 4, and Ŵ 367

being one the previous states. The noise parameter p satisfies 368

p = s
1
2 , for Ŵ and Ŵm ∀ m. For each fixed value of s, i.e., 369

fixed average fidelity, these DQTPs that align are spotted in 370

Figs. 1(a) and 1(e) with dashed (green online) arrows. These 371

are also the solutions of DQTPs that align corresponding 372

to uncorrelated channels, but with noise only in one or two 373

of the qubit systems of the protocol. In this case, the only 374

difference is that the depolarizing channels have a matrix 375

Λd = s
1
2 1. 376

It is worth noting that the DQTP that align corresponding 377

to uncorrelated noise in all the qubits are formed by entangled 378

Werner states when 1
3 ! p = s

1
2 ! 1, and by separable when 379

0 < p = s
1
2 ! 1

3 . In the case of separable states, the average 380

fidelity of the protocols ranges 0 < ⟨F̄ ⟩alig ! 5
9 < 2

3 = ⟨F̄ ⟩cl, 381

with ⟨F̄ ⟩cl the average fidelity corresponding to the classical 382

protocol [19,20]. These show that entanglement is needed to 383

surpass the average fidelity of the classical protocol, both in 384

the resource state and also in the POVM states. 385

DQTPs that align with Werner states, i.e., ρ̂ab = Ŵ and 386

ω̂āa
m = Ŵm, exist if the parameter that defines all Ŵm states 387

is p′ = s
p , where p is the parameter that defines Ŵ . In these 388

protocols, the correlation matrix of ρ̂ab = Ŵ is rd = prBell
d , 389

and those of ω̂āa
m = Ŵm are wcm = bā

m
s
pr

Bell
d . Replacing in 390

the positivity condition (8b), rd by wdm = s
pr

Bell
d and ra

c by 391

ω ā
cm = −r−1

d ra
c = 0, we can rewrite this inequality as p8 (p − 392

s)3 (p + 3s) " 0. The solution of this inequality, together with 393

0 < s ! 1 and − 1
3 ! p ! 1 [21], corresponds to two cases: 394

case (I) when s ! p ! 1 with 0 < s ! 1, and case (II) when 395

− 1
3 ! p ! −3s with 0 < s ! 1

9 . We stress that only when 396

p′ = p = s
1
2 the DQTP that align is associated with uncorre- 397

lated noise in the qubits. This is a particular solution included 398

in the case (I). Also, note that the DQTPs that align with 399

Werner states become standard noisy QTPs when p = s and 400

s < 1 so Ŵm = β̂m ∀ m. When s = 1 it becomes the per- 401

fect QTP. All these DQTPs that align with Werner states 402

need entanglement, both in the resource state and also in the 403

POVM states, to surpass the average fidelity of the classical 404

protocol. 405

VI. CONCLUSION 406

We demonstrate that the optimal quantum teleportation 407

protocols over pure random states, with a fixed average fi- 408

delity, are those that align the Bloch vectors of the input and 409

output states. In other words, tm = smt, where sm is inde- 410

pendent of the initial Bloch vector t, for any outcome m of 411

Alice’s measurement. This alignment results in output states 412

that are diagonal in the same basis as the initial state. In addi- 413

tion, these protocols effectively act as depolarizing channels 414

ρ̂m = %
dep
m (ρ̂ in ), for each m. We characterize all the resource 415

states and POVM measures of these optimal protocols, which, 416

in turn, determine the rotation operation in the output state of 417

the protocols. 418

A remarkable type of aligned QTP is when sm = s for all m. 419

These deterministic protocols are particularly relevant as they 420

emerge when attempting to implement the perfect QTP under 421

the influence of correlated noise in qubit systems. Among 422

002400-5



AGR1112A PRA October 14, 2023 11:13

FABRICIO TOSCANO et al. PHYSICAL REVIEW A 00, 002400 (2023)

these protocols, we demonstrate the existence of one with423

uncorrelated noise, corresponding to the same depolarizing424

channel in the qubits. The amount of noise in this protocol425

determines the average fidelity of the teleportation process, a426

situation commonly encountered in experimental implemen-427

tations [22]. Therefore, in such experimental scenarios, we428

establish that the optimal QTP involves preparing a Bell state429

as the resource state and employing a Bell measurement as a430

POVM.431
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APPENDIX A: POSITIVITY CONDITIONS ON THE DENSITY OPERATORS ρ̂ab AND ω̂ āa
m THAT SATISFY THEOREM 2 441

Here we explicitly write down the inequalities that define the positivity conditions on the density operators ρ̂ab and ω̂āa
m that 442

satisfy Theorem 2, following Ref. [15]. 443

The positivity conditions on density operators ρ̂ab of the form in Eq. (1) were given in Ref. [15]. When the marginal Bloch 444

vector rb is null these inequalities are 445

3 − ∥rd∥2 "
∥∥ra

c

∥∥2
, (A1a)

−2 det(rd ) − (∥rd∥2 − 1) "
∥∥ra

c

∥∥2
, (A1b)

−8 det(rd ) + (∥rd∥2 − 1)2 − 4∥r̃d∥2 " 4
∥∥rdra

c

∥∥2 +
∥∥ra

c

∥∥2[
2(1 − ∥rd∥2) −

∥∥ra
c

∥∥2]
, (A1c)

where r̃d = det(rd ) r−1
d . The correlation matrix rd = (oa)r(ob)ᵀ = diag(r1, r2, r3) and the marginal Bloch vector ra

c = oara
446

correspond to the state in the canonical form ρ̂ab
c . It is straightforward to show that when the matrix rd is invertible, i.e., det(rd ) ̸= 447

0, the first equation is redundant. 448

Equivalently, the relevant positivity conditions on the density operators ω̂āa
m that satisfy Theorem 2 are 449

−2 det(wdm) − (∥wdm∥2 − 1) "
∥∥ω ā

m,c

∥∥2
, (A2a)

−8 det(wdm) + (∥wdm∥2 − 1)2 − 4∥(w̃m)d∥2 " 4
∥∥wdmω ā

m,c

∥∥2 +
∥∥ω ā

m,c

∥∥2[
2(1 − ∥wdm∥2) −

∥∥ω ā
m,c

∥∥2]
. (A2b)

Now we know that 450

wdm = smr−1
d ,

451

(w̃m)d = det(wdm) w−1
dm = s3

m

det(rd )
1
sm

rd = s2
m

det(rd )
rd,

and 452

ω ā
m,c = −smr−1

d ra
c .

Therefore, 453

∥wdm∥2 = s2
m

∥∥r−1
d

∥∥2 = s2
m

[det(rd )]2
∥r̃d∥2,

454

∥(w̃m)d∥2 = s4
m

[det(rd )]2
∥rd∥2,

455

∥∥ω ā
m,c

∥∥2 = s2
m

∥∥r−1
d ra

c

∥∥2 = s2
m

[det(rd )]2

∥∥r̃dra
c

∥∥2
,

and 456

∥∥wdm ω ā
m,c

∥∥2 = s4
m

∥∥r−2
d ra

c

∥∥2 = s4
m

[det(rd )]4

∥∥r̃2
dra

c

∥∥2
.

457
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Replacing these expressions into Eq. (A2) we arrive at the set of inequalities458

−2s3
m det(rd ) −

{
s2

m∥r̃d∥2 − [det(rd )]2} " s2
m

∥∥r̃dra
c

∥∥2
, (A3a)

−8s3
m[det(rd )]3 +

{
s2

m∥r̃d∥2 − [det(rd )]2}2 − 4sm[det(rd )]2∥rd∥2

" 4s4
m

∥∥r̃2
dra

c

∥∥2 − s2
m

∥∥r̃dra
c

∥∥2(
2
{
s2

m∥r̃d∥2 − [det(rd )]2} + s2
m

∥∥r̃dra
c

∥∥2)
. (A3b)

Therefore, for given values of the Bloch vector ra
c and the parameter sm, the set of allowed values of the matrix elements ri with459

i = 1, 2, 3 are defined by the inequalities (A1b), (A1c), and (A3), i.e.,460

−2 det(rd ) − (∥rd∥2 − 1) "
∥∥ra

c

∥∥2
, (A4a)

−8 det(rd ) + (∥rd∥2 − 1)2 − 4∥r̃d∥2 " 4
∥∥rdra

c

∥∥2 +
∥∥ra

c

∥∥2[
2(1 − ∥rd∥2) −

∥∥ra
c

∥∥2]
, (A4b)

−2s3
m det(rd ) −

{
s2

m∥r̃d∥2 − [det(rd )]2} " s2
m

∥∥r̃dra
c

∥∥2
, (A4c)

− 8s3
m[det(rd )]3 +

{
s2

m∥r̃d∥2 − [det(rd )]2}2 − 4s4
m[det(rd )]2∥rd∥2 "

" 4s4
m

∥∥r̃2
dra

c

∥∥2 − s2
m

∥∥r̃dra
c

∥∥2
(

2
{
s2

m∥r̃d∥2 − [det(rd )]2} + s2
m

∥∥r̃dra
c

∥∥2
)
. (A4d)

Note that the left-hand side of inequality (A4b) is461

f (r1, r2, r3) = (1 − r1 − r2 − r3)(1 − r1 + r2 + r3)(1 + r1 − r2 + r3)(1 + r1 + r2 − r3)

= −8 det(rd ) + (∥rd∥2 − 1)2 − 4∥r̃d∥2. (A5)

APPENDIX B: CALCULATION OF THE FANO FORM OF (εa ⊗ εb)[ρ̂ab]462

Here we show the action of local arbitrary one-qubit channels on a two-qubit state given in the Fano form (1). An analogous463

calculation with only one-qubit channel was performed in Ref. [23].464

Lemma 1. Let εa and εb be one-qubit channels described by the affine parameters %a, va, and %b, vb, respectively, and let465

ρ̂ab be an arbitrary two-qubit state given in Fano form in Eq. (1), then466

(εa ⊗ εb)[ρ̂ab] = 1
4

(

1̂ ⊗ 1̂ + [(ra)ᵀΛa + (va)ᵀ]σ̂ ⊗ 1̂ + 1̂ ⊗ [(rb)ᵀΛb + (vb)ᵀ]σ̂

+
3∑

i=1

3∑

j=1

[
va(vb)ᵀ + (Λa)ᵀra(vb)ᵀ + va

i (rb)ᵀΛb + (Λa)ᵀ r Λb]
i j σ̂i ⊗ σ̂ j

⎞

⎠. (B1)

Using the linear property of the quantum channels, we get467

(εa ⊗ εb)[ρ̂ab] = 1
4

⎛

⎝εa[1̂] ⊗ εb[1̂] + εa[(ra)ᵀσ̂] ⊗ εb[1̂] + εa[1̂] ⊗ εb[(rb)ᵀσ̂] +
3∑

i, j=1

ri j εb[σ̂i] ⊗ εb[σ̂ j]

⎞

⎠

= 1
4

(

1̂ ⊗ 1̂ + [(ra)ᵀΛa + (va)ᵀ]σ̂ ⊗ 1̂ + 1̂ ⊗ [(rb)ᵀΛb + (vb)ᵀ]σ̂(va)ᵀσ̂ ⊗ (vb)ᵀσ̂

+ (ra)ᵀΛaσ̂ ⊗ (vb)ᵀσ̂ + (va)ᵀσ̂ ⊗ (rb)ᵀΛbσ̂ +
3∑

k,l=1

[(Λa)ᵀ r Λb]kl σ̂k ⊗ σ̂l

⎞

⎠

= 1
4

(

1̂ ⊗ 1̂ + [(ra)ᵀΛa + (va)ᵀ]σ̂ ⊗ 1̂ + 1̂ ⊗ [(rb)ᵀΛb + (vb)ᵀ]σ̂

+
3∑

i=1

3∑

j=1

[va(vb)ᵀ + (Λa)ᵀra(vb)ᵀ + va
i (rb)ᵀΛb + (Λa)ᵀ r Λb]i j σ̂i ⊗ σ̂ j

⎞

⎠, (B2)

where we used that ε[1̂] = 1̂ + (v)ᵀσ̂ and ε[σ̂i] =
∑3

j=1 Λi j σ̂ j (so ε[σ̂] = Λσ̂) that can be easily proven using the affine468

representation of ε.469
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