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Fig. 1. Coherent structures arising from CFD simulations may be observed both by thresholding scalar quantities, and from the
topological properties of material lines. Properties of the latter, such as the tight wrapping of velocity streamlines around the vortex
core seen above, may be exploited to predict the motion of these structures as they evolve through time.

Abstract—
Numerical simulations of turbulent fluid flow in areas ranging from solar physics to aircraft design are dominated by the presence
of repeating patterns known as coherent structures. These persistent features are not yet well understood, but are believed to play
an important role in the dynamics of turbulent fluid motion, and are the subject of study across numerous scientific and engineering
disciplines. To facilitate their investigation a variety of techniques have been devised to track the paths of these structures as they
evolve through time. Heretofore all such feature tracking methods have largely ignored the physics governing the motion of these
objects at the expense of error prone and often computationally expensive solutions. In this paper we present a feature path prediction
method that is based on the physics of the underlying solutions to the equations of fluid motion. To the knowledge of the authors
the accuracy of these predictions is superior to methods reported elsewhere. Moreover, the precision of these forecasts for many
applications is sufficiently high to enable the use of only the most rudimentary and inexpensive forms of correspondence matching.
Finally, our method is easy to implement, and computationally inexpensive to execute, making it well suited for very high resolution
simulations.

Index Terms—Feature tracking, flow visualization, time-varying data, CFD.

1 INTRODUCTION

Large-scale numerical simulations of turbulent flows, enabled by rapid
advances in supercomputing technology, are providing major insights
into fields ranging from the earth and space sciences to aerodynamics.
A remarkable finding is that most turbulent flows exhibit a range of co-
herent structures embedded in the more chaotic motions, with the co-
herent structures playing a profound role in the transport of important
quantities such as energy, momentum, and magnetic fields. The ad-
vent of petascale supercomputing promises simulations of turbulence
in real world applications at unprecedented resolutions, yet at the same
time accentuates the enormous data analysis challenges faced in under-
standing numerical solutions. The largest simulations may generate
petabytes of data, all but precluding movement of a simulation output
in its entirety, and severely limiting interactive exploration.

Reducing data set sizes to more manageable scales is an essen-
tial component of many scientific workflows. Because of their role
in magnetohydro and fluid dynamics individual coherent structures
such as vortex tubes, filaments, and sheets are the subject of intense
study. Isolating and extracting these complex, dynamic features at a
single instant in time by thresholding such quantities as vorticity mag-
nitude, helicity, current, or velocity, is an effective technique for fa-
cilitating their investigation and is readily supported by commonplace
visualization methods such as direct volume rendering or isosurfacing.
The need to understand the evolution of these structures over time,
and not just at a single instant, has led to the design and application
of numerous feature tracking methods. By automating the tracking
of these structures significant reductions in the volume of data that

must be processed in an interactive setting may be possible. The re-
searcher may identify a structure of interest at one time step, and then
apply an automated feature tracking algorithm to search through the
entire spatiotemporal domain, subsetting and returning only the mini-
mally enclosing subvolumes containing the feature at other time steps,
achieving a vast reduction in data. Alternatively, the feature tracking
algorithm may be integrated with an analysis capability that captures
salient statistics that are isolated to an evolving feature.

Most of the reported feature tracking methods [20, 18, 19, 15, 6,
5, 2, 13] applicable to general coherent structures are based on cor-
respondence matching: features extracted from successive time steps
are compared against a target feature from the current time step us-
ing a variety of metrics in an effort to uniquely correspond a structure
from frame to frame. The matching criteria may include a combination
of attributes such as size, volume, orientation, or a variety of statis-
tics. Because the coherent structures contained in Computational Fluid
Dynamics (CFD) simulation outputs evolve and change over time the
comparisons are inexact and the matching approach is prone to error;
incorrect features may be corresponded, or no match may be found
even when one exists. While frequent time sampling reduces the evo-
lutionary changes in features from frame to frame - making structures
easier to track - the trend with longer, and larger scale simulations is
toward less frequent output of time steps to minimize storage needs,
exacerbating the difficulties with correspondence matching.

In this paper we present a novel method for predicting the motion
of coherent structures widely found in, and of significant importance
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to, numerous CFD applications. We take advantage of the fact that
the paths of these features is not random, but is in fact determinis-
tic, prescribed by the equations of fluid motion underlying the simu-
lations. For a feature identified at a single instant of time we are able
to precisely predict the position of that feature in the near future (or
past) using only the sampled solution to the flow field. We show that
our prediction method is more accurate than the approximate solutions
proposed by other authors [15, 13]. We also give guidance on the max-
imum temporal spacing for a CFD solution necessary for robust results
using any feature tracking approach. When this guidance is followed
the complexity of correspondence matching, which dominates many
feature tracking implementations, can be significantly reduced, and
the accuracy of the tracking improved. Finally, our method is both
simple to implement and computationally efficient.

2 RELATED WORK

The vast majority of feature tracking algorithms suitable for follow-
ing coherent structures in turbulent flows are based on correspondence
matching [20, 18, 19, 15, 6, 5, 2, 13]. These methods may be divided
into those that are cognizant of, and benefiting from, temporal coher-
ence assumed in the data set [20, 18, 19, 15, 6, 13], and those methods
that make no such assumptions [2, 5]. The former can be further di-
vided into methods that not only benefit but demand frame to frame
coherence, in particular requiring that the spatial boundaries of corre-
sponding features overlap in time [19, 13, 22, 6] and those methods
that merely rely on temporal coherence as an optimization to reduce
the search domain [20, 18, 15]. Our method does not require structures
to overlap in time.

Silver et al. [20] and Samtaney et al. [18] report on some of the
earliest work exploiting temporal coherence to track coherent struc-
tures. Their primary matching criteria is the distance between object
centroids: features whose centroid distance are within a tolerance of
the tracked feature’s centroid are considered candidates for a match.
The candidate pool is further narrowed using second order moments
of inertia to characterize the shape and orientation of the feature. Reli-
ability problems, particularly when dealing with small or fast moving
features, led Silver and Wang to later develop a volumetric based cor-
respondence matching algorithm, and to further improve reliability, re-
quired candidate features to have spatial overlap with the tracked fea-
ture [19]. When multiple candidates exist the best match is determined
by comparing normalized volume differences; the candidate with the
minimum relative volume difference between itself and tracked fea-
ture is considered the best match. Weigle and Banks [22], as well as Ji
et al. [6] take a somewhat different approach, implicitly tracking struc-
tures in a scalar field by constructing higher dimensional isosurfaces
across the entire spatiotemporal domain. Conceptually, this approach
is equivalent to finding overlapping features.

The preceding methods take advantage of temporal coherence by
assuming the magnitude of displacement of a feature between succes-
sive time steps is constrained. However, no assumptions are made re-
garding the direction of displacement. Reinders et al. were among the
first to exploit the non-random trajectory of coherent structures both in
terms of distance and direction [15]. The method uses a prediction step
based on linear extrapolation to estimate the new location of a tracked
feature, followed by correction step to verify the validity of the predic-
tion. The verification process is essentially correspondence matching
using techniques similar to those previously described. However, it is
worth noting that the authors refine the matching process by including
a user-defined weighting for the various comparison metrics. More im-
portance can be given to feature mass than feature volume, for exam-
ple. Muelder and Ma also explore prediction and correction methods,
comparing linear and quadratic extrapolation [13]. Valid results are
dependent on the predicted feature overlapping the correct feature and
no others. Both of these methods require a boot strapping process to
initiate the prediction: features must be correlated through some other
means for the first two frames for linear extrapolation (three frames
for quadratic).

Requiring the temporal sampling frequency to be high enough to
guarantee that features of interest possess spatial overlap in succes-

sive time steps may limit the viability of the above algorithms for
many real world data sets where storage availability often dictates the
time spacing between saved frames. Ji and Shen relax the time sam-
pling restrictions by introducing a global tracking algorithm: no lim-
itations are placed on the motion of a feature between time steps [5].
The algorithm corresponds structures by representing their attributes
as spatial distributions and using the Earth Mover’s Distance [16, 17]
to assess the cost of lifting one distribution to another. Hence, occu-
pancy information that includes shape, orientation, position, and scale
contribute to the cost assessment. Though in theory a structure may
move anywhere in the domain between time steps, the cost algorithm
is weighted heavily in favor of features that are in close proximity to
the tracked feature. Caban et al. present another global algorithm [2].
Theirs treats the rectilinear region enclosing the feature as a texture
and applies image processing techniques to characterize and subse-
quently match the feature containing texture. A combination of 26
first-order, second-order, and run-length statistics are used to estab-
lish a feature (texture) signature. The statistics automatically weight
the attributes by relevance using a minimal-redundancy-maximum-
relevance algorithm [14]. Unlike all previous algorithms, no bias to-
ward nearby features appears to be applied.

The reliability of all of the aforementioned methods is called into
question whenever features with similar attributes are present, and the
time sampling is inadequate to distinguish features through position
alone; a situation that is not unreasonable to assume for many real
world data sets. Consider the somewhat contrived example in Fig-
ure 2. Two downward moving features, f t

a and f t
b, are shown at three

time steps, T0, T1, and T2, denoted by the superscript t. The features
have identical attributes except for size, which is changing indepen-
dently for both. If feature f 0

b is corresponded at time T1 most of the

algorithms could be expected to correctly match f 1
b because of its po-

sition, despite the identical attributes, including size, of f 1
a and f 1

b .

However, if we try to correspond f 0
b at time step T2 the algorithms will

incorrectly match f 2
a because its centroid as well as its size are closer

to that of f 0
b . Hence, robust and accurate feature tracking in appli-

cations where many similar structures may exist requires knowledge
of feature motion. Fortunately, in many CFD domains such insight is
readily available from the solution data itself.
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Fig. 2. This cartoon illustrates problems with correspondence matching
when the data set is insufficiently sampled in the temporal domain. Two
features, fa and fb, with identical attributes except for size are easily
corresponded from time step T0 to T1, provided the tracking method is
biased in favor of features that are nearby. However, if time step T1 is
not available, feature tracking algorithms that do not correctly consider
the motion of the structures (velocity and acceleration) are unlikely to
correctly correspond feature fb from T0 to T2.
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3 THE PHYSICS OF ADVECTION OF COHERENT STRUCTURES

Equations in fluid dynamics often take the form,

∂σ

∂ t
+v ·∇σ = L(v,σ), (1)

where v is a velocity field and σ can be a scalar (e.g., the temperature
or a pollutant) or a vector quantity (e.g., magnetic fields, vorticity, or
the velocity itself); L is a linear or non-linear differential operator. As
an example, the Euler equation for an incompressible velocity field of
unit density is

∂v

∂ t
+v ·∇v =−∇p+ν∇2

v, (2)

with p the pressure, and ν the kinematic viscosity. Similarly, in mag-
netohydrodynamics, the induction equation for the magnetic field b in
Alfvénic units reads

∂b

∂ t
+v ·∇b = b ·∇v+η∇2

b, (3)

where η is the magnetic diffusivity. In the context of CFD the objec-
tive is most typically to find (and output) solutions for σ and v that
balance the above equations.

The non-linear term on the l.h.s. of these equations tells us that the
velocity field advects structures in the magnetic field or in the velocity
field itself; the property that we will exploit for feature path prediction.
This advection can be seen from a Taylor expansion of any quantity σ
at time t + dt. If the quantity is advected by the velocity field v, a
region with spatial coordinate x at time t will be at x+vdt at the later
time. From the Taylor expansion of

σ(x+vdt, t +dt)≈ σ(x, t)+
∂σ(x, t)

∂ t
dt +v ·∇σ(x, t)dt (4)

and taking the limit dt → 0, it follows that the terms on l.h.s. of Eqs. (1-
3) express the total rate of change of the quantity because of its time
evolution (the first term) and because of its motion in space as the
quantity is advected by the velocity field (the second term). The terms
on the r.h.s. of the equations, on the other hand, are associated with
deformation - the first term, through surface forces acting in each ele-
ment of fluid in the case of the Euler equation, and through stretching
of magnetic field lines in the case of the induction equation - and to
diffusion and dissipation (the second term). Indeed, the structure of
the equations is similar to the equations satisfied by the density of a
conserved quantity advected by and diffused within the fluid.

We note that the property (4) of the terms on the r.h.s. of Eqs. (1-3)
relates advection of quantities in CFD with correspondence methods
used for feature tracking. Indeed, in the absence of diffusion and dis-
sipation – when the second term on the r.h.s is zero – quantities can
be identified in the fluid that are conserved as the fluid elements are
advected, and which allow one-to-one correspondence between points
at different times. One example of this is given by Kelvin’s theorem
for the velocity field, which follows from Eq. (2) (see e.g., [1])

d

dt

∮
v ·dl = ν

∮
∇2

v ·dl, (5)

or by the equivalent Alfvén’s theorem for the magnetic field [12]. In
an inviscid flow (ν = 0) the quantity on the l.h.s. of Eq. (5), the cir-
culation

∮
v ·dl, does not change in time as its time derivative is zero.

In other words, any closed material line in the flow (any closed line
connecting fluid elements) will be advected preserving its circulation,
giving, e.g., a quantity that can be used on physical grounds for cor-
respondence methods. Note the material line may be deformed and
the local intensity of the field may vary, but the circulation will be the
same. Moreover, these material lines can be tracked by advecting only
one point in the line, as the one-to-one correspondence allows recon-
struction of the line at a later time. Advecting any point along such a
streamline at time t0 to time t1, and integrating a new streamline us-
ing the advected point as a seed, yields the equivalent streamline at
time t1 as advecting all points along the streamline at time t0. It is this
property that is the basis of our feature tracking approach.

4 APPLICATION TO STRUCTURE ADVECTION

There is no unique definition for structures in fluid dynamics. The term
coherent structure is often used to indicate, in opposition to purely
random “structureless” flows, the emergence of long living structures,
which are advected and deformed by the flow [21]. Such structures of-
ten correspond to regions in the flow with particular topological prop-
erties of the field lines, resulting in accumulation and wrapping of the
field lines around the region. Examples are given by vortex filaments
and worms in isotropic and homogeneous turbulence, horseshoe vor-
tices in pipe flows, Taylor columns in rotating flows, and current sheets
in conducting fluids.

In vortex filaments velocity streamlines wrap fast around them fol-
lowing helical trajectories; tornadoes in the atmosphere have similar
geometrical properties. An example of this phenomenon is illustrated
in Figure 1, which depicts a typical vortex filament, resulting from
a homogenous turbulence simulation, as a direct volume rendering
of vorticity magnitude, and a streamline of the velocity field tightly
winding around the core of the vortex. Similarly, current sheets in
conducting fluids result from a sharp change in the direction and inten-
sity of magnetic field lines. Thus, if such structures can be identified
by streamlines associated with the structures at some initial time, the
equations described above give an exact way to track them in flows by
their advection by the velocity field, provided there is no dissipation.

When dissipation is present (nonzero viscosity in the hydrodynamic
case, or nonzero magnetic diffusivity in the magnetohydrodynamic
case) the one-to-one correspondence between points breaks down, as
expressed by the non-zero term on the r.h.s. of Eq. (5). In that case
the advection of streamlines is broken; the presence of dissipation al-
lows streamlines to diffuse away, or to change their connectivity, and
a streamline belonging to one structure may connect with another be-
longing to another structure. As a result, when dissipation is present
there is no unambiguous way to follow a streamline or a structure in
time unless all the terms on the equations are computed. In other
words, the l.h.s. solutions, computed as a part of a numerical simu-
lation, to Eqs. (1-3) alone are not sufficient for streamline advection;
the complete fluid equations of motion must be solved.

It would therefore appear that the advection of material lines using
the velocity field resulting from solving the fluid equations of motion
would only be appropriate for ideal fluids where dissipation or diffu-
sion are absent. For most CFD applications this is not the case; the
effects of diffusion or dissipation are present. We can, however, re-
lax the restriction to ideal fluids by advecting only points for which
the effect of diffusion and dissipation is minimal. The motivation is
to minimize the second terms on the r.h.s. of Eqs. (1-3), or of Eq. (5).
For Navier-Stokes in the incompressible case, the energy dissipation
is given by

Φ = ν

(
∂vi

∂x j

∂vi

∂x j
+

∂v j

∂xi

∂v j

∂xi

)
, (6)

where vi are the Cartesian components of the velocity field, and sum-
mation over repeated indices is assumed [1]. For compressible fluids
the general form of the dissipation includes extra terms and can be
found in Ref. [1]. In the case of magnetic fields, the dissipation is pro-
portional to the square of the current density (the curl of the magnetic
field).

4.1 Time Stepping

In every CFD simulation, a time step Δt is used for time stepping in
computing numerical solutions to equations similar to Eqs. (1-3). The
choice of Δt is based on stability conditions of the numerical methods
and is in general small compared with all relevant time scales in the
problem. Because of storage constraints, only a few snapshots of the
fields are saved after several time steps. We define the time sampling
between saved output as Δts. This latter value will be compared with
another time often used as the reference time in simulations of CFD:
the turnover time τ = L/U , where L is the typical length of a structure
and U is the RMS velocity. For columnar or filamentary structures, L
is their diameter, while for sheets L should be interpreted as the struc-
ture’s thickness. From the physical point of view, the turnover time
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is proportional to the turnaround time of an eddy - the time in which
it takes an eddy to make a complete revolution - and in a turbulent
flow it is also, significantly for our purposes, proportional to the time
in which significant deformation of a structure takes place. As a re-
sult, if Δts is much larger than τ , we can expect tracking to be hard
or even impossible, as the structure may be strongly deformed or even
destroyed. However, the fact that (specially for structures of interme-
diate size in multi-scale flows) the turnover time can be much larger
than the time stepping time, will allow us to track structures even for
cases with Δts � Δt, as long as Δts � τ .

4.2 Algorithm

With the preceding discussion in mind we are nearly ready to formu-
late a method for tracking a structure in a CFD data set. It would
appear that we could simply, first, select a streamline associated with a
structure of interest, passing through an area of minimum dissipation
at a time t; second, advect a point on the streamline where dissipation
is minimal; and third, integrate a new streamline passing through the
resulting advected point at time t +Δts, where Δts < τ . The process
would then be repeated for successive time steps.

A number of difficulties arise with this simple approach. First,
while at the initial time step we are at liberty to select a point pos-
sessing minimum dissipation in the vicinity of the structure, we are
not guaranteed that successive streamlines at later time steps will pass
through regions of low dissipation. Thus the effects of diffusion or dis-
sipation may not be avoided. Secondly, streamlines are not in general
confined to a single structure; they may wander around the domain, in-
definitely in some cases, changing topological properties (e.g., helical
winding) as they do. How to constrain a streamline to a single struc-
ture is unclear. Finally, a pragmatic issue presents itself; structures of
interest are often defined and visually presented by thresholding scalar
quantities. Vorticies, filaments, and sheets can often most quickly be
revealed by displaying isosurfaces or direct volume renderings of cer-
tain scalar fields such as the magnitude of vorticity, velocity, or mag-
netic field. It is these thresholded quantities that researchers are most
often interested in tracking, and to which the majority of the feature
tracking literature has addressed. Thus we desire an algorithm that
avoids these difficulties, while providing the convenience of tracking
thresholded scalar quantities.

A naive refinement of the preceding algorithm would be to ignore
material lines altogether and simply advect a point within a structure,
as defined by a thresholded quantity, where the dissipation is minimal.
In addition to operating directly on thresholded scalars, this would
increase the probability of finding the region of lowest dissipation (or
diffusion if magnetohydrodynamic) associated with the structure by
virtue of increasing the search domain. However, Eqs. (1-3) do not
ensure that a point within a structure will remain in that structure -
as defined by a thresholded quantity - at successive time steps. They
tell us only that a material line - one that may enter and leave the
thresholded quantity numerous times - will remain with the structure
(see the point labeled ”B” in Figure 3).

With this knowledge we arrive at a final version of our algorithm:

1. threshold at time t a quantity of interest that defines all structures
in the domain. Select the subset of structure(s) that we wish to
track and gather whatever attributes we wish to use for corre-
spondence matching.

2. Within the selected structure find the point of minimum dissipa-
tion, and advect that point by the velocity field to time t +Δts;

3. the advected point may or may not reside within the structure at
time t +Δts (as defined by the thresholded quantity). Integrate a
streamline from the new point in both the forward and backward
direction.

4. Search along the streamline for curve segments that are within
the thresholded value. Each of these segments is contained
within some structure that is a candidate for matching the tracked
structure. Perform correspondence matching between all struc-
tures intersected by the streamline and the tracked structure.

5. Select the best matching structure and repeat the process.

We note that points with minimum dissipation are points where all
gradients of the field are small. In practice, regions with strong gradi-
ents in a flow are usually regions where the fields change sign rapidly,
or where the fields become zero. Since computing dissipation can be
expensive, an approximation can thus be done by looking for the points
with maximum intensity of the field, for example the maximum of the
magnitude of velocity.

5 IMPLEMENTATION

Implementation of the algorithm is fairly straight forward, and was
performed by extending the Open Source VAPOR visualization pack-
age [4, 3, 9]. VAPOR already provides methods for advecting field
lines [9], and has much of the machinery needed for implementing our
algorithm.

5.1 Initialization

Features are selected by displaying isosurfaces of an isovalue siso of
a desired scalar field, s(x),x ∈ R3, wherever s(x) = siso. Once a fea-
ture of interest at an initial time step t is identified by visual inspec-
tion its constituent voxels are labeled as members using a connected
component algorithm. A discrete voxel x is considered a connected
component of the structure if s(x)≥ siso (or s(x)≤ siso if siso is nega-
tive), and it is face-adjacent to a voxel already considered a connected
component (or x is the initial seed point; the first voxel considered).

In addition to labeling the constituent voxels the connected compo-
nent algorithm also computes the volume of the structure, and iden-
tifies voxels with minimum dissipation. Dissipation is computed by
Eq. (6) and estimating spatial derivatives using a sixth-order centered
finite difference scheme applied to the velocity field.

5.2 Advection

Once a point with minimum dissipation within the structure is lo-
cated, it is advected by the velocity field v to a new location at time
t +Δts. An adaptive line integration [7] using a fourth-order Runge-
Kutta scheme is used for both steady (streamline) and unsteady (ad-
vection) integration. The values of the velocity field v used in the in-
tegration are determined by a tri-linear interpolation of velocity values
defined on integer grid coordinates; and, for time-varying integration,
the field values are linearly interpolated between time steps. As the
integration proceeds, the interval size is iteratively doubled or halved
to ensure that the angular change between successive line intervals
stays between three and 15 degrees. The integration accuracy can be
controlled by adjusting the minimum and maximum length of the inte-
grated line intervals. At the lowest accuracy level (0.0) the interval size
lies between 4 and 10 grid cells; at the highest accuracy level (1.0), the
step size is between 0.05 and 0.25 grid points. For all of our testing
we use an integration accuracy level of 0.9, allowing the integration
interval to vary between 0.4 and 1.2 grid points.

5.3 Streamline integration

The point resulting from advection from time t to t + Δts becomes
the seed point for streamline integration. Streamline integration uses
the method just described for advection in steady fields, however, the
integration is carried out both forwards and backwards. The length of
the integration is fixed to approximately equal the maximum length of
the domain (or until the streamline exits the domain). The vector field
m used for streamline integration may be velocity or a derived vector
field such as vorticity, or magnetic field (for magnetohydrodynamic
case). Following the integration of the streamline in m the discrete
curve is traversed forwards and backwards until the end of the curve
is reached, or the value of s along the curve is greater than or equal
to siso (or s along the curve is ≤ siso, if siso is negative). The result of
this step is zero or more points contained within candidate structures
at time step t +Δts.

4



Online Submission ID: 0

5.4 Correspondence matching

If no points along the streamline of m at time t +Δts intersect a struc-
ture then tracking can not proceed; the structure has been lost. If one or
more points are contained within structures each of those points is used
to seed the connected component algorithm. Note that it is possible for
multiple points to reside in the same structure. The resulting labeled
structures are correspondence matched against the tracked structure
from the preceding time step using simple volume differences. The
best match is considered the structure with the minimal absolute vol-
ume difference between it and the tracked structure. After the best
matching structure is found the entire process is repeated, starting with
finding a new advection point in the region with minimum dissipation.

The algorithm is illustrated in its entirety in Figure 3.
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Fig. 3. This figure illustrates the feature path prediction and track-
ing algorithm. A feature defined by an isosurface of a scalar quantity
s(x) = siso is identified at time t0. The feature is labeled with a connected
component algorithm, and the location of minimum dissipation within the
structure is shown at point A. Point A is advected by the velocity field to
a new location, point B, at time t1, which happens to reside outside of the
structure at time t1. A streamline of vector field m is generated passing
through point B. The streamline is traversed to find a new point C within
the structure. Correspondence matching takes place, and if successful,
a new point, D, of minimum dissipation is found.

5.5 Multi-resolution data

Lastly, we mention that VAPOR supports a multi-resolution data
model [4], enabling the structure advection to be performed and eval-
uated at coarser grid resolutions. We find this particularly valuable
when working with high-resolution, time-varying data sets, where the
analysis costs are often dominated by the time it takes to read data
from disk. In general, analysis techniques can be applied at lowered
resolution to provide an initial impression, and subsequently verified
later at the native grid resolution. We are interested in the sensitivity
of our method to grid coarsening.

6 RESULTS

We tested the method using three different data sets. We first consider
the data stemming from a direct numerical simulation of rotating, in-
compressible turbulence in a periodic box with spatial resolution of
15363 grid points [11]. The kinematic viscosity is ν = 1.6× 10−4

and the rotation rate of the fluid is Ω = 9, which leads to a Reynolds
number Re = 5100 and a Rossby number Ro = 0.06. The Reynolds
number is the ratio of advection to dissipation, which controls the sep-
aration of scales and thus the smallest structures that develop in the
flow. Re = 5100 also indicates that though the fluid is not ideal, dissi-
pation is small relative to advection, suggesting that the data are well
suited to our algorithm. The Rossby number is defined as the ratio of
advection to rotation, Ω, or of the rotation period to the turnover time.
The time step for the simulation is Δt = 2.5×10−4. The components
of the velocity field v were output every 500 time steps, leading to
Δts = 500Δt = 0.125. The characteristic turnover time for large-scale
eddies in the simulation is τ ≈ 1.0, thus Δts ≈ 0.125τ . As a result of

rotation, the flow develops large-scale columnar structures that live for
long times and are advected by the velocity field (see Figure 8).

The second data set is from a direct numerical simulation of
isotropic and homogeneous Taylor Green (TG) incompressible turbu-
lence [10] using 10243 grid points in a periodic box. Kinematic vis-
cosity is ν = 3× 10−4 and the Reynolds number is Re = 3950. One
hundred snapshots of the velocity and the vorticity fields were saved in
single precision with Δts ≈ 0.01 for a total of 4.3 TB. In the next sec-
tion it will be shown using the turnover time of small-scale structures
that Δts ≈ 0.03τ . The flow is characterized by a myriad of small-scale
vortex filaments, which have a mean width of ≈ 0.003 of the size of
the box, and a mean length of ≈ 0.07 (see Figure 5).

The first data set has large scale structures that evolve slowly as a
result of a self-organization process. On the other hand, in the isotropic
and homogeneous turbulence data set the energy cascades to smaller
scales, creating smaller and smaller structures. These structures evolve
much more rapidly, hence the differences in the Δts’s for the two data
sets.

The third data set is from a simulation by the Weather Research
Forecast Model (WRF-ARW) [8] of of Hurricane Bill that occurred in
the Atlantic Ocean in August 2009. The model uses three nesting lev-
els to track the hurricane; however, our feature tracking experiments
used only the outer nesting level, a terrain-following grid of dimen-
sions 468× 423× 35, with 40 snapshots, three hours apart (Δts = 3
hours), starting at midnight on August 18.

6.1 Rotating Turbulence

We first present results tracking columnar structures defined by isosur-
faces of the Z component of velocity, vz, in the 15363 rotating turbu-
lence data set. These data are of particular interest due to their size
- a single snapshot at 32bit precision occupies over 14GBs of space
per variable - as well as the rather coarse time sampling of the avail-
able, stored solution data. Only every 500 time steps (Δt) were out-
put. Moreover, for much of the simulation only every tenth output was
saved for analysis. The output snapshots are indexed from 0 to 216,
and Δts is the time sampling between outputs i and i+ 1. Figure 8
shows the tracking of a single structure at outputs 136, 146, 156, and
216 from left to right, top to bottom. Note, that the tracked structure
crosses the periodic lower boundary a number of times. All of the
available stored data, every tenth output from 136 to 216, were used
by the tracking algorithm. Thus the effective Δts ≈ 1.25τ , which is
10× the real Δts. Recall that if Δts is much larger than τ , we can ex-
pect tracking to be hard or even impossible, as the structure may be
strongly deformed or even destroyed.

Two isovalues are shown: vz =−1.0, colored cyan, and vz =+1.0,
colored yellow. Inside the cyan structure vz ≤ −1.0, while within the
yellow structures vz ≥ 1.0. The tracked structure is defined by the
negative isovalue, vz = −1.0, and is colored magenta. Also shown in
red are the streamlines of velocity integrated at each time step.

At the initial time step used for tracking, output 136 (upper, left),
streamlines of the velocity field are integrated from the point of mini-
mum dissipation within the tracked structure. The streamlines are al-
most completely contained within the structure boundaries. At subse-
quent time steps the velocity streamlines are integrated from the point
advected from the previous output at the location of minimum dissipa-
tion within the tracked structure. Note how in subsequent outputs the
streamlines continue to wrap around the tracked structure, but are not
necessarily confined to the isosurface boundaries. Indeed, at output
146 (upper, right) the streamlines wander to another structure entirely.
Rotating turbulence is characterized by the development of large scale
columns in the flow (“Taylor columns”) and by a self-organization pro-
cess by which these columns merge to create larger columns (a process
called “inverse cascade” of energy in turbulent flows, by which energy
is transferred from smaller to larger scales). When the merging takes
place, streamlines belonging to two or more different structures open
and reconnect to create a thicker streamline that goes around both,
until the structures merge into one. Without some form of correspon-
dence matching the tracked structure at output 146 would be ambigu-
ous due to the streamlines intersecting two candidate strucures.
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At the coarse temporal resolution of these data the tracked struc-
ture does not have spatial overlap between the outputs used for ad-
vection. Indeed, the time between snapshots is ≈ 25% larger than the
turnover time, τ . Since only one of every ten outputs is used, this
time is 10Δts = 1.25 in units of the turnover time. Thus substantial
displacement and deformation of the structures take place in between.
Nevertheless, the algorithm performs effectively at tracking the struc-
ture through the completion of the simulation at output 216.

In Figure 4 we show a close up of the tracked structure at output
176. A gray diamond marks the advection point from the previous
time step. Note that the advected point is not inside of the structure,
but the resulting stream line integrated starting at the location of the
diamond winds its way back inside of the tracked feature as predicted.

Finally, we remark that because of the unwieldy size of this data
set we chose to take advantage of VAPOR’s wavelet-based, multi-
resolution data model to speed processing; data were coarsened from
their original 15363 to 3843 grid points for preliminary work. Never-
theless, final results with the native grid resolution were indistinguish-
able from results with the coarsened data, suggesting that for these
data our method is insensitive to fairly aggressive data reduction by
grid point averaging.

Fig. 4. A close up of the tracked structure from output number 176 of
the rotating turbulence data. A gray diamond denotes the location of the
point advected by the velocity field from the previous output, 166, at the
location of minimum dissipation. Note that the diamond is not contained
by the structure. However, streamlines of the velocity field integrated
from the diamond intersect the structure providing a way to correspond
the structure at output 176 with the structure at output 166 (not shown).

6.2 Taylor Green Turbulence

The Taylor Green data set is challenging due to both its spatial reso-
lution, 10243, and the number and complexity of the structures con-
tained within as can be seen in Figure 5, which shows a direct volume
rendering of the magnitude of the vorticity field. Thousands of vortex
filaments with complex motion and evolution are present. We elect
to isolate and track one particularly large, and long lived filament as
shown in Figure 7. We again use minimum dissipation to select our
advection point. Over the 41 snapshots for which we track this feature
it changes shape and size, bifurcating once about a quarter of the way
through the sequence.

The visualized structure, an isosurface of vorticity magnitude with
an isovalue of ≈ 78, has a length and width ≈ 0.8 and ≈ 0.08 respec-
tively (in a domain of size 2π). Its turnover time is estimated to be
τ ≈ 0.3 (recall that Δts = 0.01, substantially smaller than τ and sug-
gesting minimal deformation between successive output time steps).
In the final output (bottom, right of figure) significant deformation of
the structure since the initial output (upper, left of figure) is observed,
which is to be expected in a turbulent flow as the turnover time is pro-
portional to the deformation time.

As a final experiment with these data we coarsened the temporal
resolution to find the maximum Δts between snapshots that still al-
lowed us to track the structure; even with Δts ≈ 0.1 ≈ 0.3τ (using

Fig. 5. A direct volume rendering of vorticity magnitude from a 10243

Taylor Green simulation. The flow is characterized by the presence of a
myriad of fast moving, short-lived, small-scale vortex filaments.

one snapshot for every ten available) the structure can still be tracked.
However, if we coarsen the temporal sampling even further, using only
one snapshot for every twenty available (Δts ≈ 0.2≈ 0.6τ), the method
fails to correctly track the structure.

6.3 Hurricane Bill

We finally focus on the simulation of a hurricane generated by the
Weather Research Forecast Model (see Figure 6). A streamline of
the wind field was seeded in the hurricane vortex at point of maximal
wind velocity at the initial time step, and advected by the wind field.
The streamline advection used the magnitude of the wind field ‖v‖ for
seed prioritization, instead of dissipation as used with the prior two
data sets. The vortex diameter is approximately 300 km, and the RMS
of wind velocity in that region containing the vortex is approximately
30 m/s, indicating an approximate turnover time of τ = 9 hours. Thus
Δts ≈ 0.3τ . We were able to successfully track the vortex, defined by
isosurface ‖v‖ = 30m/s, for all 40 outputs (120 hours). As we did
with the Taylor Green data we increased the effective Δts by omitting
time steps until the algorithm failed, which occurred when Δts ≈ 1.5τ ,
using only every fifth saved time step.

6.4 Comparison with other prediction methods

To compare the feature path prediction component of our method,
which is based on the equations of fluid dynamics, with other predic-
tion methods, we have implemented the prediction method of Muelder
and Ma [13]. Muelder and Ma’s method predicts the position of fea-
tures at future time steps by extrapolating their position from previous
time steps using either direct, linear, or quadratic extrapolation. For
example, the position of a point xt contained by the structure relative
to the structure’s center ct at time t is predicted using linear extrapola-
tion by

xt = xt−1 +(ct−1 − ct−2) (7)

Note that for linear extrapolation two preceding time steps, t − 1 and
t − 2, are needed for the current time step, t. Quadratic extrapolation
requires three previous time steps.

Once a feature is predicted, correspondence matching occurs be-
tween the predicted and actual features found at time t. Similar to our
own method the features compared against the predicted feature are
a subset of all the features in the domain: those features that possess
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Fig. 6. A simulation of Hurricane Bill as it approaches the south east
coast of the United States. The tracked structure - an isosurface of
velocity magnitude shown in magenta - depicts the swirling hurricane
vortex, hundreds of kilometers in diameter and with a turnover time on
the order of nine hours.

spatial overlap with the predicted feature. Thus if the tracked feature
does not overlap the predicted feature at time t, the method fails.

We tested both linear and quadratic extrapolation with the rotating
turbulence data set, attempting to track the same structure as our own
method as reported in Section 6.1. The rotating turbulence data set is
sampled coarsely in time. Nine time steps are available for tracking.
Linear extrapolation requires two initial time steps to boot strap itself,
leaving seven additional time steps for which we can track the struc-
ture. Of these seven time steps the linear prediction method was able
to correctly predict and correspond the feature at only two time steps.
Quadratic extrapolation requires three initial time steps to boot strap,
leaving only six time steps for tracking. Using quadratic extrapolation
the method performed slightly better and was able to correctly track
the structure at three of the six time steps.

7 DISCUSSION

In the three data sets the time sampling used for tracking ranges from
a fraction of the turnover time to slightly more than the turnover time.
The best results are obtained when Δts is smaller than the turnover
time τ . For the Taylor Green data set three outputs per turnover was
the minimum required to track the structure during its lifetime. This
data set, which corresponds to isotropic and homogeneous turbulence,
is characterized by a “direct cascade” of energy, a process associated to
the transfer of energy from larger to smaller scales, creating a myriad
of vortex filaments at small scales. The smallest scale excited (and the
cluttering of the structures at that scale) is controlled by the Reynolds
number: the larger this number, the more complex the flow and the
larger the separation between the largest and smallest structures in the
flow.

In the other two data sets, the time sampling can be made slightly
larger than the turnover time, per virtue of the presence of slowly
evolving structures at the largest scales in the flow. We conclude that in
general a few outputs per turnover time may be enough to track struc-
tures using this method - which in practice results in one output every
hundreds of numerical time steps Δt - and if large-scale structures de-
velop in the flow the number of outputs can be decreased further.

8 CONCLUSION

We have presented a method for forecasting the motion of coherent
structures resulting from numerical simulations of fluid flow. Unlike

previously reported approaches our method uses properties of the un-
derlying equations of fluid dynamics to accurately predict the position
of a structure at a point in time based on an initial location. For simu-
lations of ideal fluids, when the effects of dissipation are not present,
the solutions to the equations of motion yield exact predictions. For
the more general case, when dissipation is present, we have shown
with three separate CFD data sets that restricting advection to regions
within a structure where dissipation is locally minimal produces viable
tracking results as well.

Regardless of whether fluids are idealized or not, the temporal spac-
ing between time steps plays a large role in the accuracy of the method,
as is the case with any feature tracking method applied to evolving
structures. The time sampling between frames stored on disk, Δts, is
typically larger, sometimes significantly so, than the time sampling,
Δt used by the simulation, leading to inaccuracies in the advection cal-
culations. However, Δts � Δt may not pose a problem provided that
the turnover time, τ , of the structure we wish to track is not much
smaller than Δts. The physical properties of the fluid ensure that the
deformation and motion of a structure over a period of τ is bounded.

Structures in the rotating turbulence Hurricane Bill data sets can
be tracked over very long times (larger than their turnover times) us-
ing coarse temporal resolution of the order of the turnover time. We
believe this is because the structures in these data sets are at large
scales and stable, in the sense that they result from a self-organization
process. On the other hand, structures in the TG data set, which cor-
responds to small-scale fully developed three dimensional turbulence,
can be tracked for only a few turnover times as after that time struc-
tures are destroyed in accordance with the physics of the problem. In
this case, a “direct cascade” of energy takes place by which energy
is transferred from eddies at large scales to eddies at smaller scales.
This results in rapidly deformed structures, and the need for increased
temporal resolution for the tracking. However, the method is able to
track vortex filaments even in such a complex flow with a high density
of structures.

Finally, we remark that we have demonstrated success tracking
coherent structures using only a single, inexpensive correspondence
matching test: volume difference. More sophisticated and robust cor-
respondence matching may certainly be applied if the application war-
rants. The benefit of combining more advanced matching with accu-
rate feature motion forecasting is a potential substantial reduction in
the number of candidate structures to test, which both reduces cost,
and improves reliability.
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Fig. 7. Here we show at four approximately equally separated snapshots in time the tracking of a vortex filament (shown in magenta) that is large
and long-lived relative to other filaments in the surrounding domain of the Taylor Green data set. The structures are defined by an isosurface of
the magnitude of the vorticity field. A single red streamline of the velocity field intersects the structure at each snapshot shown. The streamline is
integrated through a point advected from the region of minimum dissipation within the structure at the preceding time step. The structure bifurcates
near snapshot 14 (upper, right) and late in the simulation at snapshot number 41 (bottom, right) the structure has deformed noticeably.
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Fig. 8. Shown from left to right, top to bottom are a sequence of images depicting the tracking a columnar structure from a 15363 hydrodynamics
simulation with periodic boundary conditions. Positive and negative columns of the Z component of velocity are shown as yellow and cyan
isosurfaces, respectively. The tracked structure, colored magenta, is an isosurface of vz = −1. Streamlines (in red) of the velocity field are
integrated from advection points arising from regions of minimum dissipation and are used to track the structure through time.
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