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Summary: This paper develops a first-stage linear regression representation for an instrumental 
variables (IV) quantile regression (QR) model. The quantile first stage is analogous to the 
least-squares case, i.e., a linear projection of the endogenous variables on the instruments and 
other exogenous covariates, with the difference that the QR case is a weighted projection. The 
weights are given by the conditional density function of the innovation term in the QR structural 
model, at a given quantile. We also show that the required Jacobian identification conditions 
for IVQR models are embedded in the quantile first stage. We then suggest procedures to 
e v aluate the v alidity of instruments by e v aluating their statistical significance using the first- 
stage representation. Monte Carlo experiments provide numerical evidence that the proposed 
tests work as expected in terms of empirical size and power. An empirical application illustrates 
the methods. 

Keyw ords: fir st sta g e , instrumental variables , quantile r egr ession . 

JEL codes: C14 , C26 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/article/26/3/350/7100955 by guest on 29 February 2024
1. INTRODUCTION 

Instrumental variables (IV) methods are one of the main workhorses to estimate causal relation-
ships in empirical analysis. Standard IV regression methods stress that for instruments to be valid
they must be exogenous and must be related to the endogenous variables. The latter condition
is usually e v aluated by using a first-stage auxiliary regression, where a linear model is used to
make inference on the degree of association of the IV and the endogenous variables. While this
is usually accepted as a valid procedure, its representation is in fact specific to the two-stage
least squares (2SLS) model for average models. This paper derives a first-stage representation
for quantile regression (QR) models. 

Several IV methods have been proposed in QR to solve endogeneity when the covariates
are correlated with the error term in a re gression model. Chernozhuko v and Hansen ( 2004 ,
2005 , 2006 , 2008 ) (CH hereafter) develop an instrumental variables quantile regression (IVQR)
procedure that has been applied in several contexts. This is also usually termed the inverse QR
estimator, although we will use CH-IVQR to refer to this specific estimator. This method is one
of the most prolific approaches in terms of subsequent work, as it provides a general IV procedure
© The Author(s) 2023. Published by Oxford University Press on behalf of Royal Economic Society. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 
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or solving endogeneity of regressors (see, e.g., Chernozhukov et al., 2007 , 2009 ; Galvao, 2011 ;
hetv eriko v et al., 2016 ). We refer to Chernozhukov et al. ( 2020 ) for an overview of IVQR. 1 

CH highlight that the IVQR method is a simple solution for endogeneity and a 2SLS analogue. 2

o we ver, the first stage of the IVQR has not been considered as it is implemented as an inverse QR
stimator. This estimator contrasts with alternative IV procedures where the first stage is explicitly
mplemented. For instance, Amemiya ( 1982 ), Powell ( 1983 ), Chen and Portnoy ( 1996 ), and Kim
nd Muller ( 2004 ) use an explicit first stage that fits the endogenous variable(s) as a function of
 xogenous co variates and IV, and this is then plugged in a second stage. Lee ( 2007 ) also adopts
 two-step control-function approach where in the first step consists of the estimation of the
esiduals of the reduced-form equation for the endogenous explanatory variable. Ma and Koenker
 2006 ) present an estimator for a recursive structural equation model. 

This paper shows that a first-stage regression model can be explicitly recovered from the
H-IVQR estimator. The first-stage IVQR (FS-IVQR) is a linear projection of the endogenous
ariables on the instruments and other exogenous variables, with the difference that the QR case
s a weighted regression, that is, it has the representation of a weighted least-squares (WLS)
egression of the endogenous variable(s) on the IV and the exogenous regressors. The weights
re given by the conditional density function of the innovation term in the QR structural model,
onditional on the endogenous and exogenous covariates together with the instruments, at a given
uantile. This result provides a clear analogy between the first stage in 2SLS and IVQR. The
eri v ation of the result is simple, but conceptually important. We write the IVQR model as a
onstrained Lagrangian optimisation problem and show that one of the restrictions that must be
atisfied is the analogue of the first stage. 

The CH-IVQR method requires an identification condition that is based on the full rank of the
acobian for the exogeneity of the instruments. The lack of identification when the Jacobian is
ot full rank implies that estimating the parameters can be extremely difficult and the first-order
symptotics can be a poor guide of the actual sampling distributions (see, e.g., Dufour, 1997 ).
n this paper, we show that a necessary condition for the Jacobian identification condition to
e satisfied in IVQR models is embedded in the first-stage quantile representation. Hence, the
S-IVQR representation is directly related to the Jacobian requirement of CH-IVQR. 
The practical implementation of the FS-IVQR estimator is straightforward and as follows.

irst, from the IVQR one estimates the conditional density function at a selected quantile which
roduces an estimate of the weights. The weighting factor is estimated from the IVQR errors
sing, for instance, sparsity or kernel methods (see, e.g., Koenker, 2005 ). Second, a standard
LS regression is implemented by regressing the endogenous variable on the instruments and

xogenous variables with weights from the first step—this is parallel to the first-stage model used
n 2SLS, but using weights. We derive the limiting distribution of the FS-IVQR estimator and
how that, under some standard regularity conditions, it is asymptotically normal. 

The first-stage regression for conditional average models has been used as a natural framework
o e v aluate the v alidity of instruments since one can test for their statistical significance, that is,
ow IVs impact the endogenous variable(s). A complete parallel testing procedure to e v aluate the
alidity of IV in the QR case only works when one is able to estimate the structural parameters—
nd consequently the weights—consistently, which in turn requires at least one valid instrument.
e thus suggest three practical procedures for testing the first-stage validity of the instruments.

irst, we consider a simple test for the validity of instruments at a given value of the coefficient of
1 There is also a more recent literature on GMM QR, see, e.g., Firpo et al. ( 2022 ) and references therein. 
2 This has been formally established in Galvao and Montes-Rojas ( 2015 ). 

The Author(s) 2023. 
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the endogenous variable. This can be implemented simply by performing the WLS together with
a Wald statistic. This serves conceptually to illustrate the WLS implementation and as a building
block for a robust testing procedure discussed below. Second, we consider a test for a subset of
IV, assuming that other valid IVs are available. Finally, we propose a robust testing procedure
where we e v aluate the IV v alidity for a grid of values of coefficients of the endogenous variable.
This procedure does not require to estimate the structural parameters consistently as they are
implemented for all potential values of them. 

Based on these procedures, we suggest two potential options to the empirical researcher. On
the one hand, if there is evidence of a large FS-IVQR statistic for the IV—when e v aluated at the
CH-IVQR structural parameter estimate of the endogenous variable—then the Chernozhukov and
Hansen ( 2006 ) inference procedures based on strong IV for the structural parameters could be
used. 3 On the other hand, if there is evidence of low values of the FS-IVQR statistic for the IV—at
the estimated CH-IVQR estimator—then we suggest using a practical robust inference procedure
based on Anderson–Rubin weak identification, as in Chernozhukov and Hansen ( 2008 ), Jun
( 2008 ), Chernozhukov et al. ( 2009 ), and Andrews and Mikusheva ( 2016 ). 

One important feature of the procedure developed in this paper is that instruments could be
statistically insignificant in the first stage of a mean-based 2SLS model, but they could still be
related to the endogenous variable in the IVQR setup. The reason is that the 2SLS test only
e v aluates a mean effect, but the FS-IVQR, because of its specific weighting procedure, allows
for different first-stage coefficients across quantiles. As a result, the IV could be rele v ant at some
quantiles, but not for the mean (and vice versa), an issue that has been discussed in Chesher
( 2003 ) and subsequent literature. The test developed here thus allows inference on the validity of
the IV for the exogeneity condition across quantiles, rather than only a mean effect. 

We use a Monte Carlo e x ercise to e v aluate the finite sample performance of the proposed
tests. The tests have correct size in all cases studied, where the structural parameters can be
consistently estimated under the null hypothesis. We consider alternative cases where there
is no identification under the null. The tests have excellent power properties. In particular,
these experiments highlight the case where the first-stage 2SLS test for the mean-based model
suggests the instrument is not valid, but the proposed FS-IVQR procedure finds it is for some
quantiles. 

As an empirical illustration, we apply the FS-IVQR estimator to the Card ( 1995a ) data
on instrumenting education using college proximity. The analysis shows how to evaluate the
FS-IVQR statistical significance of the IV, and reveals that one of the proposed instruments
(proximity to 2-year college) should be discarded, but the other (proximity to 4-year col-
lege) is v alid. Ho we ver, the latter can only be used for τ = 0 . 25 , 0 . 50 , but it is not valid
for τ = 0 . 75 . 

The paper is organised as follows. Section 2 briefly re vie ws the CH-IVQR estimator, rewrites
that estimator as a constrained minimisation problem and derives the first-stage representation
for the IVQR. Then it shows that the FS-IVQR estimator is related to the identification condition
in CH. Section 3 discusses its empirical implementation and derives the estimators’ asymptotic
distribution. Section 4 presents the first-stage tests for the validity of instruments. Section 5
provides finite sample Monte Carlo evidence. Section 6 applies the proposed tests to an empirical
problem. Finally, Section 7 concludes. All proofs are collected in the Appendix. 
3 It is difficult to derive an analogous F-statistic type rule-of-thumb for categorising weak instruments as in, among 
others, Staiger and Stock ( 1997 ), Sanderson and Windmeijer ( 2016 ), and Lee et al. ( 2022 ); for ordinary least-squares 
(OLS) models (see Stock and Yogo, 2005 , for an e xtensiv e discussion). 

© The Author(s) 2023. 
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2. A FIRST-STAGE REPRESENTATION FOR IVQR 

2.1. The IVQR estimator and its variants 

et ( y, d, x, z) be random variables, where y is a scalar outcome of interest, d is a 1 × r vector of
ndogenous variables, x is a 1 × k vector of exogenous control variables, and z is a 1 × p vector
f exogenous instrumental variables, with p ≥ r . Define w = ( x, z) and s = ( d, x, z) . 

Chernozhukov and Hansen ( 2006 ) developed estimation and inference for a generalisation
f the QR model with endogenous regressors. A linear representation of the model takes the
ollowing form 

y = dα0 ( u d ) + xβ0 ( u d ) , u d | x, z ∼ Uniform (0 , 1) , (2.1)

here u d is the nonseparable error or rank and the subscript indicates the endogenous covariates
f the model, and α0 ( r × 1 vector) and β0 ( k × 1 vector) are the parameters of interest. Under
ome regularity conditions, CH establish the following IV identification function 

P [ y ≤ dα0 ( τ ) + xβ0 ( τ ) | x, z] = P [ u d ≤ τ | x, z] = τ. (2.2)

lthough each parameter and estimator is inde x ed by the quantile τ ∈ (0 , 1) , throughout the paper
e will suppress the dependence on τ . 
The restriction in ( 2.2 ) can be used to estimate the parameters of interest. For a given quantile

, the population IVQR estimator for model in ( 2.1 ), is given by 

min 

α
‖ γ ( α) ‖ A 

, 

here 

( β( α) , γ ( α)) = argmin 

β,γ

E [ ρτ ( y − dα − xβ − zγ ) ] , 

nd ρτ ( u ) = u ( τ − 1 ( u < 0)) is the check function, and ‖ · ‖ A 

= ·′ A · is the Euclidean distance
or any positively definite matrix A of dimension p × p. 

As noted by Chernozhukov and Hansen ( 2006 , p. 501), the IVQR estimator is asymptotically
qui v alent to a particular generalised method of moments (GMM) estimator where the QR first-
rder conditions are used as moment conditions. In particular, it would involve a Z-estimator
olving 

E 

[
x ′ ( 1 [ y − dα − xβ < 0] − τ ) 

] = 0 k , (2.3)

E 

[
z ′ ( 1 [ y − dα − xβ < 0] − τ ) 

] = 0 p , (2.4)

here 1 ( ·) is the indicator function. Here 0 k and 0 p are null vectors with dimensions k × 1 and
 × 1 , respectively. 
Different estimators have been proposed in the GMM framework based on identifying the

tructural parameters from equations ( 2.3 )–( 2.4 ). Kaplan and Sun ( 2017 ), Chen and Lee ( 2018 ),
nd De Castro et al. ( 2019 ) provide general estimation procedures based on smoothing techniques
f the non-differentiable indicator function. However, the constructed estimator differs from the
H-IVQR one. This can be seen in that the term zγ is not considered in the moment condition.
ur procedure follows the CH estimator and their specific notation. 
The Author(s) 2023. 
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2.2. The IVQR estimator as a constrained minimisation problem 

The IVQR estimator proposed by Chernozhukov and Hansen ( 2006 ), for a given quantile τ , can
be written as a constrained minimisation problem of ( 2.5 ), where the constraints are the moment
conditions ( 2.6 ) and ( 2.7 ), that is, 

min 

( α,β,γ ) 
‖ γ ‖ A 

, (2.5) 

subject to 

E 

[
x ′ ( 1 [ y − dα − xβ − zγ < 0] − τ ) 

] = 0 k , (2.6) 

E 

[
z ′ ( 1 [ y − dα − xβ − zγ < 0] − τ ) 

] = 0 p . (2.7) 

Now we write this constrained optimisation as a Lagrangian problem as 

L ( α, β, γ, λx , λz ) = ‖ γ ‖ A 

+ λx E 

[
x ′ ( 1 [ y − dα − xβ − zγ < 0] − τ ) 

]
+ λz E 

[
z ′ ( 1 [ y − dα − xβ − zγ < 0] − τ ) 

]
, (2.8) 

where λx is a 1 × k vector and λz is a 1 × p vector. 4 Therefore, the IVQR estimator is given by
the empirical counterpart of 

argmin 

( θ,λx ,λz ) 
L ( θ, λx , λz ) , 

where θ = ( α′ , β ′ , γ ′ ) ′ . 
The first deri v ati ves of the Lagrangian in ( 2.8 ) are 

∂ L /∂ α = − {
λx E 

[
f · x ′ d 

] + λz E 

[
f · z ′ d 

]}′ 
(2.9) 

∂L /∂β = − {
λx E 

[
f · x ′ x 

] + λz E 

[
f · z ′ x 

]}′ 
(2.10) 

∂ L /∂ γ = 

{
2 γ ′ A − λx E 

[
f · x ′ z 

] − λz E 

[
f · z ′ z 

]}′ 
(2.11) 

∂ L /∂ λx = E 

[
x ′ ( 1 [ y − dα − xβ − zγ < 0] − τ ) 

]′ 
(2.12) 

∂ L /∂ λz = E 

[
z ′ ( 1 [ y − dα − xβ − zγ < 0] − τ ) 

]′ 
, (2.13) 

where f : = f u τ (0 | d, x, z) denotes the density function of u τ : = y − dα0 ( τ ) − xβ0 ( τ ) conditional
on s = ( d, x, z) , e v aluated at the τ -th conditional quantile, which is zero. Note that f is specific
for each quantile τ . This density function plays an important role in equations ( 2.9 )–( 2.13 ) and
in what follows. 

The solution should have all equations abo v e equal to zero when assuming an interior solution
as in Assumption 3.1. Thus, from ( 10 ), 

λ′ 
x = − (

E [ f · x ′ x] 
)−1 (

E [ f · x ′ z] 
)
λ′ 

z . (2.14) 

Then, replacing ( 2.14 ) in ( 2.11 ), (
E [ f · z ′ z] − E [ f · z ′ x]( E [ f · x ′ x]) −1 E [ f · x ′ z] 

)
λ′ 

z = 2 Aγ, 
4 See Pouliot ( 2019 ) and Kaido and W ̈uthrich ( 2021 ) for recent contributions that tackle the problem of practical 
implementation of the IVQR methods. 

© The Author(s) 2023. 
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uch that 

λ′ 
z = 2 

(
E [ f · z ′ z] − E [ f · z ′ x]( E [ f · x ′ x]) −1 E [ f · x ′ z] 

)−1 
Aγ. (2.15)

Finally, replacing ( 2.15 ) in ( 2.9 ), 

E 

[
f · d ′ x 

]
λ′ 

x + E 

[
f · d ′ z 

]
λ′ 

z 

= 2 

{
E 

[
f · d ′ z 

] − E 

[
f · d ′ x 

]
( E [ f · x ′ x]) −1 E [ f · x ′ z] 

}
× {

E [ f · z ′ z] − E [ f · z ′ x]( E [ f · x ′ x]) −1 E [ f · x ′ z] 
}−1 

Aγ = 0 r , 

here 0 r is an r × 1 vector of zeros. 
Therefore, we can restate the IVQR problem for ( α′ , β ′ , γ ′ ) ′ as a system of three equations given

y { 

E 

[
f · d ′ z 

] − E 

[
f · d ′ x 

] (
E 

[
f · x ′ x 

])−1 
E 

[
f · x ′ z 

]} 

×
{ 

E 

[
f · z ′ z 

] − E 

[
f · z ′ x 

] (
E 

[
f · x ′ x 

])−1 
E 

[
f · x ′ z 

]} −1 
Aγ = 0 r (2.16)

E [ x · ( 1 [ y − dα − xβ − zγ < 0] − τ ) ] = 0 k (2.17)

E [ z · ( 1 [ y − dα − xβ − zγ < 0] − τ ) ] = 0 p . (2.18)

2.3. Fir st-sta g e IVQR parameters 

iven ( 2.16 )–( 2.18 ), we can see that ( 2.16 ) provides a first-stage representation of the IVQR
odel. This can be written as 

δ′ Aγ = 0 r , (2.19)

here 

δ : = 

{ 

E 

[
f · z ′ z 

] − E 

[
f · z ′ x 

] (
E 

[
f · x ′ x 

])−1 
E 

[
f · x ′ z 

]} −1 

×
{ 

E 

[
f · z ′ d 

] − E 

[
f · z ′ x 

] (
E 

[
f · x ′ x 

])−1 
E 

[
f · x ′ d 

]} 

. (2.20)

ere δ is a p × r matrix. Notice that ( 2.20 ) is a least-squares projection coefficient. In particular,
he representation in ( 2.20 ) is a weighted projection, where the endogenous variable(s), d, is(are)
egressed on the IV, z, and the exogenous variables, x. This is the analogue to the first stage in the
SLS case, with the difference that the QR case is a weighted regression. The weights are given
y the conditional density function of the innovation term in the QR structural model, conditional
n the endogenous and exogenous covariates together with the instruments. 

Hence, for each endogenous variable, say d j for j = 1 , 2 , ..., r , δj in ( 2.20 ), can be reco v ered
s the solution to the following optimisation problem 

μj : = ( ψ j , δj ) = argmin 

ψ,δ

E 

[
f · ( d j − xψ − zδ) 2 

]
. (2.21)

Note that the parameter δ also depends on θ = ( α′ , β ′ , γ ′ ) ′ , through the conditional density
unction f at quantile τ . Thus, this first-stage representation depends on the structural (second-
tage) parameters and, as such, it is different from the 2SLS case in mean regression models. 
The Author(s) 2023. 
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We notice that the first stage in ( 2.21 ) is different from those in the existing literature using
two-stage regressions for conditional quantile models. Amemiya ( 1982 ), Powell ( 1983 ), Chen
and Portnoy ( 1996 ), and Kim and Muller ( 2004 ) propose different two-step procedures in which
the first step fits the endogenous variable(s) as a function of exogenous covariates and IV, and this
is then plugged in a second-stage. Nevertheless, these papers use least squares without weighting
or standard quantile regression in the first stage. Our procedure derives the first stage from the
IVQR setup, thus confirming that a first-stage (albeit different) is part of the model. 

2.4. Further intuition on the FS-IVQR 

Now we further discuss the first stage derived in the previous section, in particular ( 2.20 ).
For simplification, we consider a model without additional exogenous covariates x and one
endogenous variable d, i.e., r = 1 . In this case ( 2.20 ) simplifies substantially and can be written
as 

δ = E 

[
f · z ′ z 

]−1 
E 

[
f · z ′ d 

]
, 

which is the solution of a simplified version of the optimisation problem in ( 2.21 ) as 

δ = argmin 

δ

E 

[
f · ( d − zδ) 2 

]
. 

First, we relate the proposed estimator to the rank identification conditions for the IVQR
estimator of CH. As discussed in CH, the IVQR optimisation problem is asymptotically equi v alent
to solving the following moment condition 

� (( α, γ ) , τ ) = E 

[
z ′ ( 1 [ y − dα − zγ < 0] − τ ) 

] = 0 p . 

To establish the asymptotic properties of the IVQR estimator, it is required that the Jacobian
matrices, ∂ 

∂α
� (( α, γ ) , τ ) and 

∂ 
∂γ

� (( α, γ ) , τ ) , are continuous and full column rank (see below
the conditions for the deri v ation of the asymptotic properties of the estimator, in particular,
Assumption 1, item R3). We show here that these conditions are embedded in the FS-IVQR
representation. 

The rank Jacobian conditions are 

rank 

(
∂� (( α, γ ) , τ ) 

∂α

)
= rank 

(
E [ f · z ′ d] 

) ≥ r, 

rank 

(
∂� (( α, γ ) , τ ) 

∂γ

)
= rank 

(
E [ f · z ′ z] 

) = p. 

The first equation implies that for the case of one endogenous variable, r = 1 , E [ f · z ′ d] has at
least one nonzero column, and the second equation requires p noncollinear valid instruments.
Now notice that from the FS-IVQR representation given by ( 2.20 ), in the case without exogenous
regressors, simplifies to: 

E [ f · z ′ d] = E [ f · z ′ z] δ. 

Therefore, the matrices involved in the rank conditions directly appear in representation ( 2.20 ).
Also, if the FS-IVQR parameter δ = 0 , then the rank conditions cannot be satisfied. Note that
this is a necessary condition, but not a sufficient one. Furthermore, by checking how close δ is to
zero one is in fact e v aluating the strength of the identification condition. 
© The Author(s) 2023. 
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Second, the restriction in ( 2.19 ) provides a natural framework to evaluate the relevance of the
nstruments in IVQR models. The first-stage regression representation in ( 2.21 ) is a weighted
inear projection, where the weights are the conditional density function of the innovation term in
he QR structural model, conditional on the endogenous and e xogenous co variates together with
he instruments. This exposes a caveat of the QR IV model. In order to estimate the parameters in
 2.21 ) consistently, one needs a consistent estimate of the density f , and hence at least one valid
nstrument must be available to the researcher. This is in contrast with the standard conditional
verage models where the first stage is a simple OLS regression without weights. The required
eights in the QR case will be further discussed below when we suggest a test for the validity of

he IV. 
Third, notice that the parameter δ captures the strength of the instrument in the sense it measures

he correlation between the instrument z and the endogenous variable d weighted by the density
unction f . This is the QR counterpart of the first-stage partial correlation of z on the endogenous
ariables d for the 2SLS. As noted by Galvao and Montes-Rojas ( 2015 ) the CH setup is equi v alent
o the 2SLS in least-squares models. In fact the CH estimator is the QR counterpart of a 2SLS
stimator. The e xpression abo v e also shows that there is an implicit first stage, similar to that in
SLS problems. As such, this provides an analytical expression to e v aluate the rele v ance of the
V. When the instrument is valid, δ �= 0 p×r . 

Fourth, note that the instrument z does not belong in the structural quantile model ( 2.1 ), hence
= 0 p×r can be used for identification, a key feature of the CH-IVQR estimator. Equation ( 2.19 )

lso shows that when δ = 0 p×r , the value of γ is irrele v ant and, therefore, it cannot be used in the
VQR procedure to solve endogeneity. As such, δ �= 0 p×r is a necessary condition for the IV to
ave a purpose in the CH setup. Therefore, a test for the validity of the instruments can be based
n a test for statistical significance of δ. 

Finally, another way of gaining intuition on the test is the following. Note that for the case of
ne endogenous variable, r = 1 , ( 2.19 ) is in fact equal to 0, a scalar. If we further assume that
 = I p , then 

p ∑ 

q= 1 

δq γq = 0 , (2.22)

here δ = [ δ1 , . . . , δp ] ′ is the column vector that has the first-stage effect of all IV on d. Note
gain that if δ = 0 p×1 , then the vector γ could have any value and its implied restrictions would
e irrele v ant. 

3. EMPIRICAL IMPLEMENTATION AND ASYMPTOTIC DISTRIBUTION 

n this section we propose a two-step estimator for the first-stage instrumental variables quantile
egression (FS-IVQR), consider its empirical implementation, and derive the estimators’ asymp-
otic distribution. The two steps estimation procedure consists of estimating the conditional
ensity using the IVQR model in the first step, and in the second step employing a weighted least
quares (WLS) re gression. F or simplicity of e xposition, we present the case of r = 1 , i.e., one
ndogenous variable, but as discussed abo v e the case of r > 1 can be implemented using separate
egressions. 
The Author(s) 2023. 
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3.1. FS-IVQR estimator 

The FS-IVQR estimator requires a consistent estimator of μ in ( 2.21 ), which will be based on WLS
based on the estimator of f , at a given quantile of interest τ . The CH estimator ˆ θ = ( ̂  α, ˆ β ′ , ˆ γ ′ ) ′

can be used to compute such 

ˆ f . 
The estimator has two steps as following: 
(a) In the first step we obtain the structural parameters’ estimates ˆ θ = ( ̂  α, ˆ β ′ , ˆ γ ′ ) ′ using the

Chernozhukov and Hansen ( 2006 ) IVQR estimator, that is 5 

ˆ α = argmin 

α

‖ ̂  γ ( α) ‖ A 

, 

where 

( ̂  β( α) , ˆ γ ( α)) = argmin 

β,γ

1 

n 

n ∑ 

i= 1 

[ ρτ ( y i − d i α − x i β − z i γ ) ] . 

(b) In the second step the parameters of interest δ can be obtained from a feasible WLS. 6 The
QR literature provides different alternatives for the specific estimating f . One could use a kernel
estimator for the conditional density, as in Powell ( 1991 ). This procedure would use the error
term ˆ u τ : = y − d ̂  α( τ ) − x ̂  β( τ ) − z ̂  γ ( τ ) from the CH-IVQR estimator. Another alternative is to
use sparsity estimation methods, as suggested by Hendricks and Koenker ( 1992 ). This estimator
is discussed in further details in Zhou and Portnoy ( 1996 ), Koenker ( 2005 ), and Ota et al. ( 2019 ).
We discuss practical implementation of the density estimation in Section 5 . Then, the WLS is 

ˆ μ : = ( ̂  ψ , ̂  δ) = argmin 

ψ,δ

1 

n 

n ∑ 

i= 1 

[
ˆ f i · ( d i − x i ψ − z i δ) 2 

]
. (3.1) 

Equation ( 3.1 ) produces ˆ δ, which is the main object of interest. 
Define Y , X, D, and Z as the matrices formed from a random sample of { y i , d i , x i , z i } n i= 1 .

Similarly, define W = [ X, Z] . Define the weighting diagonal matrix 

ˆ V = 

⎡ 

⎢ ⎣ 

ˆ f 1 

. . . 
ˆ f n 

⎤ 

⎥ ⎦ 

. 

Then, the estimator in ( 3.1 ) can be written in a simple matrix notation as 

ˆ μ = ( W 

′ ˆ V W ) −1 W 

′ ˆ V D. (3.2) 

Notice that if f i is a constant for all i, then the proposed FS-IVQR method should deliver same
estimates as FS-2SLS for the mean. This would happen, for example, in the case of independent
and identically distributed (i.i.d.) innovations in the second-stage structural model. Thus, there
will be differences between the two estimators only when f i varies across i, that is, when the
weighting factor is not a constant. 
5 We refer the reader to Chernozhukov and Hansen ( 2006 ) for the discussion of this estimator. 
6 We are assuming that there is only one endogenous variable, r = 1 . Otherwise the analysis below should be repeated 

separately for each endogenous variable as there will be a different first stage for each one. 

© The Author(s) 2023. 
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3.2. Asymptotic distribution 

n this subsection, we derive the asymptotic distribution of the proposed estimator. The asymptotic
roperties of the IVQR estimator can be found in Chernozhukov and Hansen ( 2006 ), and the
ssumptions therein are those required for inference. We consider Assumption 2 in Chernozhukov
nd Hansen ( 2006 , pp. 501–2), which we reproduce here for convenience. It imposes conditions
or θ0 to be identified and estimated. 

SSUMPTION 3.1. R1. Sampling. { y i , x i , d i , z i } are i.i.d. defined on a probability space and
ake values in a compact set. 

R2. Compactness and convexity. For all τ ∈ (0 , 1) , ( α, β, γ ) ∈ int ( A × B × G) where ( A ×
 × G) is compact and convex. 
R3. Full rank and continuity. y has bounded conditional density (conditional on s = ( d, w, z) ),

nd for θ = ( α, β, γ ) , 

� ( θ, τ ) : = E [ ( τ − 1 ( y < dα + xβ + zγ )) · [ x, z] ] , 

acobian matrices ∂ 
∂( α′ ,β ′ ) � ( θ, τ ) and 

∂ 
∂( β ′ ,γ ′ ) � ( θ, τ ) are continuous and have full rank, uniformly

ver A × B × G and the ima g e of A × B × G under the mapping ( α, β) 	→ � ( θ, τ ) is simply
onnected. Assume that θ0 = ( α0 , β

′ 
0 , γ

′ 
0 ) 

′ is the unique solution to the CH problem. 

We impose additional conditions for deriving the limiting properties of the feasible first-stage
stimator in ( 3.1 ). 

SSUMPTION 3.2. (i) Assume that E [ d i w i w 

′ 
i d i ] < ∞ . Let 
f σ : = V ar( f i d i w i ) < ∞ , where

 i = [ x i , z i ] and 
f : = E [ f i w i w 

′ 
i ] < ∞ be nonsingular. (ii) Assume that the density es-

imator ˆ f i satisfies the following expansion 

ˆ f i − f i = m 

−1 
n 

∑ n 
j �= i � i ( u jτ ) + o p ( m 

−1 
n ) , where

 jτ : = y j − d j α0 ( τ ) − x j β0 ( τ ) , { � i } is bounded, the contribution of { � i ( u i ) } is negligible, and
 

−1 
n = o( n 

−1 / 2 ) and nm 

−2 
n = o( n 

−1 / 2 ) . 

Assumption 3.2 contains conditions for establishing consistency and asymptotic normality of
he proposed estimator. Part (i) simply imposes standard assumptions on moment conditions.
art (ii) provides a condition on the density estimation together with rates of convergence, that
re satisfied for conditional density estimators commonly used in QR methods. This condition
s the same as in Koenker ( 2005 , pp. 161–3), where it is used for estimated weights in the
ontext of QR models, where for a parametric model m n = n , and for a nonparametric kernel
stimator m n = n 

4 / 5 . The next lemma presents the result. Estimation of weights, f i , has appeared
n the QR literature, and it is a difficult question to resolve in its full generality. Koenker and
hao ( 1994 ) treat the linear location-scale model, providing a uniform Bahadur representation

or the empirically weighted QR process. Some related results, in the context of autoregressive
onditional heteroscedasticity-type models, are provided in Koenker and Zhao ( 1996 ). Zhao
 2001 ) considers a model in which the weights are estimated by nearest-neighbour nonparametric
ethods. 

EMMA 3.1. Under Assumptions 3.1–3.2, as n → ∞ , 

√ 

n ( ˆ μ − μ0 ) 
d → N 

(
0 k+ p , V ( μ0 ) 

)
, 

here μ0 : = E [ f i w i w 

′ 
i ] 

−1 E [ f i w i d i ] , and V ( μ0 ) : = 
−1 
f 
f σ
−1 

f is the asymptotic covariance

atrix. 

The Author(s) 2023. 
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4. TESTS FOR VALIDITY OF THE IV 

In this section we suggest tests for the validity of the IV using the first-stage representation. The
formulation of the test proposed in this paper is based on the condition given in ( 2.16 ) together
with the first stage IVQR representation in ( 2.20 ). A test for validity of the instruments for p
instruments can be based on the null hypothesis 

H 0 : δ0 = 0 p×r , (4.1) 

against the alternative 

H A 

: δ0 �= 0 p×r . (4.2) 

We highlight that, differently from the 2SLS, the first-stage IVQR in ( 2.21 ) is for a given
quantile τ . Thus, for the same variables d and instruments z, the strength of the instruments may
vary across different quantiles. This difference is captured by the weights f , which are absent in
the standard 2SLS model. 

Note that the procedure works for r ≥ 1 , that is for one or more than one endogenous variables.
In the r > 1 case, separate tests could be applied as in 2SLS analysis where there may be a different
first stage for each endogenous variable. To simplify the procedures below we assume that r = 1 ,
that is, there is only one endogenous variable. 

A natural choice to test H 0 against H 1 , in ( 4.1 ) and ( 4.2 ), respectively, together with the result
in Lemma 3.1, for the case of r = 1 is the Wald statistic as 

T n = n ̂

 δ′ { V δ} −1 ˆ δ, (4.3) 

where V δ is the asymptotic covariance matrix of 
√ 

n ̂

 δ under H 0 . In practice, V δ is replaced by
a suitable consistent estimate. We will discuss the practical implementation as well the limiting
distribution in the next section. When H 0 is true, under suitable regularity conditions, ̂  δ converges
in probability to 0 p×r for a given τ . However, when H A 

is true, ˆ δ converges in probability to
δ0 �= 0 p×r . Therefore, it is reasonable to reject H 0 if the magnitude of ˆ δ is suitably large. 

The main issue at stake is that the abo v e test implementation requires to use the correct weights,
f , or a consistent estimate. This may be unfeasible if one is not able to estimate the parameters
in the structural equation, i.e., the coefficient α. Thus, we propose three different methods to
empirically e v aluate the v alidity of the instruments. 

First, we consider a simple test for the strength of instruments at a gi ven v alue of the coefficient
α. This can be implemented simply by performing the WLS together with the Wald statistic
described abo v e. While this may not be of interest for an applied researcher (as α is unknown in
practice) it serves conceptually to illustrate the WLS implementation, and as a building block for
a robust testing procedure discussed below. 

Second, we consider individual tests for a subset of IV, assuming that others are available and
they are valid. 

Finally, we propose a robust inference procedure where we e v aluate the IV v alidity for a grid
of α values. This procedure does not require to estimate the structural parameters consistently, as
they are implemented for all potential values of them. 
© The Author(s) 2023. 
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4.1. Testing for validity of the instruments 

e first consider a simple test for the validity of instruments as in ( 4.1 ) at a gi ven v alue of the
oefficient α, such that this coefficient is known. In this case, one is able to use a standard QR to
stimate ( β, γ ) and construct consistent estimates of the weights f . 

This test is very simple to implement in practice. Recall that μ = ( ψ 

′ , δ′ ) ′ are the parameters of
he FS-IVQR, and θ = ( α, β ′ , γ ′ ) are the parameters of the structural QR. As mentioned abo v e,
hen α is known, one can use a QR to estimate ( β ′ , γ ′ ) ′ and consistently reco v er ˆ f . Then, the
LS can be performed to compute ˆ μ. Let ˆ V ( ̂  μ) be a consistent estimator of V ( μ0 ) , which can be

btained from the WLS procedure. The next result provides the limiting distribution of the Wald
est statistic in ( 4.3 ) for a subset of instruments. 

ROPOSITION 4.1. Consider Assumptions 3.1–3.2, n → ∞ . Then, under H 0 : δ = 0 p and local
lternatives H A 

: δ = a p / 
√ 

n , 

T n = n ̂  μ′ ( ˆ V ( ̂  μ) 
)−1 

ˆ μ
d → χ2 

p ( a p ) . 

4.2. Testing for a subset of the instruments 

he previous section considered the case of a given value of α. However, in most applications
he researcher might not have such value available. In this section, we relax this constraint.
e vertheless, gi ven that the procedure requires a consistent estimate of the weights, we impose
 restriction on the number of instruments available. 

Consider a subset of the instruments, p 1 < p, and consider a partition of δ = [ δ′ 
1 , δ

′ 
2 ] 

′ of the
orresponding first-stage parameters of interest, with dimensions p 1 and p 2 (with p = p 1 + p 2 ),
espectively. Consider a p 1 × ( k + p) matrix R = [ 0 p 1 ×k , I p 1 , 0 p 1 ×p 2 ] where I p 1 is an identity
atrix of dimension p 1 × p 1 . Thus, Rμ = δ1 is the sub v ector of interest. Let ˆ V ( ̂  μ) be a consistent

stimator of V ( μ0 ) , which can be obtained from the WLS procedure. The next result derives the
imiting distribution of the test statistic in ( 4.3 ) for a subset of instruments. 

ROPOSITION 4.2. Consider Assumptions 3.1–3.2. Furthermore, assume that dim ( z) = p >

 1 ≥ 1 . Then, under δ2 �= 0 p 2 and H 0 : δ1 = 0 p 1 and local alternatives H A 

: δ1 = a p 1 / 
√ 

n , 

T n = n ( R ̂  μ) ′ { R ̂

 V ( ̂  μ) R 

′ } −1 ( R ̂  μ) 
d → χ2 

p 1 
( a p 1 ) . 

Computation of the test statistic in ( 4.3 ) requires a nonparametric estimator of f , the conditional
ensity of u τ | d, x, z e v aluated at the specific quantile of interest τ . Given that the weights need
o be estimated, the proposed FS-IVQR has specific properties when testing under the null
ypothesis of an invalid instrument. The condition on the number of IV being larger than the
umber of parameters tested in the null hypothesis is required for consistent estimation of θ under
he null, which in turn, is used for the consistent estimation of f . 

4.3. Robust inference for the first stage 

he previous subsections presented frameworks of tests for the statistical significance of the
S-IVQR parameters. One important limitation is that the estimator depends crucially on a given
alue or estimation of α, the coefficient of the endogenous variable in the structural equation, as
his is a requirement for computing the weights f . In turn, these may not be available nor valid
The Author(s) 2023. 
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if one works under the null of all IV being invalid, i.e., δ = 0 for the p instruments. Here we
suggest another alternative. 

F ollowing Chernozhuko v and Hansen ( 2008 ; see also Chernozhuko v et al. 2020 , sect. 3.3) we
propose here a robust inference analysis that does not have this restriction. Those authors present
an inference model based on the Anderson–Rubin frame work, v alid for weak instruments. 7 We
apply this idea to our case. Define T n ( α) as the implied Wald statistic arising from ( 4.3 ), but
which is obtained for a given fixed α. The corresponding T n ( α) statistic checks for the statistical
significance of the IV (as in a standard 2SLS framework) for all possible values α (in practice for
a grid in a compact set). It is thus a robust-type analysis to check if instruments are strong (in a
2SLS sense). 

T n ( α) is computed in two steps. First, by running a QR regression of y − dα on ( x, z) and
computing the weights as in ( 5.3 ). Second, by running WLS as described in ( 3.2 ). Note that
using the assumptions on the bandwidth as per Lemma 3.1, the estimation of α has no effect
on the WLS distribution used in the FS-IVQR. Thus, we can use the same inference procedures
described abo v e. 

This framework thus proposes a way to inform the econometrician about the first-stage validity
of the instruments, and it does not suffer from the lack of identification of the structural parameters
that may arise if the IVs are not valid. 

As an initial exploratory analysis, consider two potential cases. 
(i) Consider first the case of T n ( α) being a large value for all α. The definition of large can be

based on the consensus on the 2SLS literature on weak IV, and we left it for the reader to decide.
A common procedure would be to use F-test values for the first stage to decide. For this case,
the IV are strong for whatever value α were the true one. This suggests that ‘strong instrument
analysis’ can be carried out, e.g., IVQR Chernozhukov and Hansen ( 2006 ) inference procedures.

(ii) Consider now the case where the T n ( α) were small for a large set of values α. This suggests
that the IVs are weak, and it suggests to implement weak IV inference procedures such as robust
inference in Chernozhukov and Hansen ( 2008 ). 

In turn, the decision about whether ‘strong’ standard IVQR inference or ‘weak’ IV robust
inference should be used, can be based on the particular estimator, ˆ α, i.e., the CH-IVQR estimator,
that is, on T n ( ̂  α) ≡ T n as in ( 4.3 ). Note that this analysis may not provide a univocal prescription
for empirical practitioners in some cases. Although beyond the scope of this paper, inference
procedures should be adjusted for first-stage model selection, as suggested, for instance, in
P ̈otscher ( 1991 ) and Leeb and P ̈otscher ( 2005 , 2006 ). 

5. MONTE CARLO EXPERIMENTS 

We analyse in this section the performance of the proposed test with finite samples through a
series of Monte Carlo simulation e x ercises. The data generating process (DGP) has the following
location-scale model: 

y i = d i + x i + (1 + d i ) u i , (5.1) 

d i = c 1 + az 1 i + φz 2 i + (1 + bz 1 i ) v i , (5.2) 
7 The main intuition in their paper is that they construct confidence intervals for α based on a Wald test for the condition 
γ = 0 , which is the vector of coefficients of the IV in the CH-IVQR estimator in ( 2.5 ). The key element there is that they 
do not require to estimate α, as the confidence interval is implicitly calculated. 

© The Author(s) 2023. 
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here x i , z 1 i and z 2 i are three independent variables with distribution U (0 , 1) ; u i and v i have
tandard bi v ariate normal distribution with correlation 0.50. For all cases we set c 1 = 10 . Equa-
ions ( 5.1 )–( 5.2 ) specify a model where there could be pure location or location-scale specifica-
ions in the first stage, thus allowing the instruments to have different effects on the endogenous
ariable. Note that the parameters a and b determine the type of effect that the instrument z 1 has
n the endogenous covariate d. For example, if a �= 0 and b = 0 the instrument z 1 has a pure
ocation effect on d (pure location-shift model), while if a = 0 and b �= 0 the effect is only on
he variance of the endogenous covariate (pure scale-shift model). 

We implement the density estimator using the sparsity function model with the difference
uotient 

ˆ f i = 

2 h n 

s i 
(

ˆ θ ( τ + h n ) − ˆ θ ( τ − h n ) 
) . (5.3)

e use this estimation in lieu of a kernel estimator for simplicity. 8 The estimator in ( 5.3 ) is a
atural extension of sparsity estimation methods suggested by Hendricks and Koenker ( 1992 ).
he bandwidth for the density estimation is chosen as a scaled version of Hall and Sheather
 1988 ): 

h n = 2 n 

−1 / 3 � 

−1 ( 0 . 975 ) 2 / 3 
[ 

3 

2 

· φ
{
� 

−1 ( τ ) 
}4 

2 � 

−1 ( τ ) 2 + 1 

] 1 / 3 

. 

5.1. Fir st-sta g e parameter 

e consider here tests for H 0 : δ1 = 0 where this is the first-stage parameter associated with the
 1 instrument defined in the previous sections. We consider two different cases to investigate the
umerical properties of the tests. In the first case, φ = 1 , there is a second instrument, z 2 , such
hat the model correctly identifies the parameters in the structural ( 5.1 ) for all possible values of

and b, even under the case that a = b = 0 . In the second case, we set φ = 0 and, therefore,
nder the null hypothesis the consistent estimation of the weights f is problematic. Also, in this
ase, when a = b = 0 , there is no valid available instrument. 

We will consider three different test statistics from different estimators. First, for comparison
urposes, we present a Wald test for the coefficient in z 1 using a simple regression model of d
n ( x, z 1 , z 2 ) in a standard 2SLS framework, denoted FS-2SLS. Second, we test for H 0 : δ1 = 0
sing the true density function, f , as weights, that is, using the true θ0 , denoted FS-IVQR (true
ensity). We note that this is not observed in practice, and we include these results for comparison
urposes. Our proposed test studied in the previous section is the third one, denoted FS-IVQR
sparsity), where we use the sparsity function estimation described abo v e. Note that the three
ests differ only in the weighting procedure used in the regression of d on ( x, z 1 , z 2 ) or ( x, z 1 ) . 

Tables 1 –2 show the empirical size (i.e., a = b = 0 ) of the computed test with 1,000 simulations
or n = { 500, 1,000 } and for the quantiles τ = { 0 . 25 , 0 . 50 , 0 . 75 } . 

Consider first the case where there is a second instrument, φ = 1 in Table 1 . The tests have
pproximately correct empirical size in all cases. As such, they clearly e v aluate if the instrument
 1 e x erts an effect on the endogenous variable d. In all cases the y hav e a similar performance to
he FS-2SLS case. 
8 We also implemented the methods using a kernel estimator for the error, ˆ u τ = y − d ̂  α( τ ) − x ̂  β( τ ) − z ̂ γ ( τ ) . Since 
he results are qualitatively similar we omit them for brevity. 

The Author(s) 2023. 
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Table 1. Rejection rate of the null hypothesis using a = b = 0 and φ = 1 . 

n = 500 n = 1,000 

τ Size FS-2SLS True f Sparsity f FS-2SLS True f Sparsity f 

0.25 0.10 0.104 0.109 0.100 0.073 0.078 0.078 
0.05 0.054 0.050 0.054 0.031 0.034 0.042 
0.01 0.015 0.017 0.017 0.006 0.007 0.006 

0.50 0.10 0.104 0.109 0.101 0.073 0.078 0.076 
0.05 0.054 0.050 0.061 0.031 0.034 0.037 
0.01 0.015 0.017 0.013 0.006 0.007 0.007 

0.75 0.10 0.104 0.109 0.107 0.073 0.078 0.083 
0.05 0.054 0.050 0.056 0.031 0.034 0.004 
0.01 0.015 0.017 0.016 0.006 0.007 0.008 

Note: Empirical rejection rates of 1,000 Monte Carlo experiments. 

Table 2. Rejection rate of the null hypothesis using a = b = 0 and φ = 0 . 

n = 500 n = 1,000 

τ Size FS-2SLS True f Sparsity f FS-2SLS True f Sparsity f 

0.25 0.10 0.117 0.125 0.113 0.0114 0.106 0.117 
0.05 0.063 0.066 0.070 0.054 0.053 0.063 
0.01 0.011 0.009 0.019 0.010 0.010 0.014 

0.50 0.10 0.117 0.125 0.117 0.114 0.106 0.112 
0.05 0.063 0.066 0.061 0.054 0.053 0.057 
0.01 0.011 0.009 0.016 0.010 0.010 0.013 

0.75 0.10 0.117 0.125 0.113 0.114 0.106 0.114 
0.05 0.063 0.066 0.063 0.054 0.053 0.053 
0.01 0.011 0.009 0.012 0.010 0.010 0.010 

Note: Empirical rejection rates of 1,000 Monte Carlo experiments. 
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Now consider the case where there is no available second instrument, φ = 0 in Table 2 . The
idea of this experiment is to e v aluate the test performance when there is lack of identification
under the null. In this case, the weights in the structural model cannot be estimated consistently
under the null. Since the proposed test e v aluates the relationship between z 1 and d, the main issue
is whether this relationship can be e v aluated in other than the OLS model. The simulations show
that the size is correct for the sparsity estimator. This result suggests that the test can be used even
when the structural parameters cannot be estimated under the null (because z 1 does not solve the
endogeneity problem). 

To analyse the empirical power of the tests, we study the cases where in (i) we e v aluate a pure
location first-stage model of z 1 on d using a = { 0 , 0 . 10 , ..., 0 . 90 , 1 } and b = 0 , and in (ii) we set
a = 0 and we vary b = { 0 , 0 . 10 , ..., 0 . 90 , 1 } , and we perform 100 simulations for each case. The
only sample size considered is n = 1,000, and we calculate the rejection rates of the proposed
procedure for the quantiles τ = { 0 . 25 , 0 . 50 , 0 . 75 } . As benchmark we also use the test rejection
rates obtained in the FS-2SLS method, i.e., the Wald test of an OLS regression of d on z 1 . The
results appear in Figures 1 and 2 . For each figure we have two blocks, (i) and (ii), that correspond
to either varying a or b, respectively. 
© The Author(s) 2023. 
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Figure 1. Power for H 0 : δ1 = 0 (model with φ = 1 ). 
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We first consider the case where there is a second valid instrument φ = 1 . Figure 1 , block
i) pure location first stage, shows that the FS-IVQR power computed with true and estimated
ensities behaves similarly to FS-2SLS. That is, they correctly reject as a increases. The estimated
ensity model has slightly less power than the one with the true density. For block (ii), the results
f the FS-IVQR differ when we are in the presence of a pure-scale model for d| z 1 . Note that in
his case there is no relationship between d and z 1 at the mean (FS-2SLS), but it does affect the
ther points of the conditional distribution. Therefore, the first stage of 2SLS does not find any
elationship between the endogenous variable and the instrument, while the FS-IVQR estimators
both true and estimated weights) are able to correctly detect it. 

Finally, consider the last case when φ = 0 in Figure 2 . The FS-IVQR tests also work in this
ase. In both (i) and (ii) cases, the tests detect an association between the instrument and the
ndogenous variable. In case (ii) the FS-IVQR rejects as b increases while FS-2SLS does not. As
oted in Table 2 the test works even for the case where a = b = 0 and the endogeneity problem
n the structural estimators cannot be solved. 
The Author(s) 2023. 
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Figure 2. Power for H 0 : δ1 = 0 (model with φ = 0 ). 
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5.2. Robust inference 

We consider here the robust inference procedure discussed abo v e. This is the case where we
test for the first-stage statistical significance of the IV, but the structural parameters cannot be
identified under the null. As discussed abo v e one valid strategy is to implement the test for
H 0 : δ( α) = 0 based on T n ( α) for a grid of values of α. 

We consider the DGP in 5.2 using φ = 0 , i.e., there is only one IV ( z 1 ), and as such the coefficient
of the endogenous variable α requires a valid IV. We fix n = 1,000 and 500 simulations for each
DGP. We e v aluate τ ∈ { 0 . 25 , 0 . 50 , 0 . 75 } quantiles as abo v e. We report here the simulations for
the location-shift model of d| z, i.e., b = 0 , but we consider different values of a. In the first case
we use a = 0 such that the instrument is not valid. In a second case we use a = 1 and then the
instrument is valid. 

First, we consider the case where a = 0 and thus z 1 is not related to d. Note that for this
case we cannot correctly identify α. Figure 3 presents this simulations. For each value of α we
compute the distribution of the T ( α) . Note that should the true alpha be used for the computation,
T ( α) ∼ χ2 . The simulations show that this is the case, as the percentiles computed are similar to
1 

© The Author(s) 2023. 
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Figure 3. Percentiles of the simulated distribution of T ( α) , a = 0 . 
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hose of a chi-squared. More importantly, the simulations show that the distribution is not affected
y the α values used to e v aluate the test statistic. For instance, the 95th percentile is close to that
f a chi-squared with one degree of freedom (3.8415, about 4). 

Second, we consider now the case where a = 1 , such that z 1 has a mean effect on d, Figure 4 .
or both cases the figures indicate that the instrument is statistically significant for the entire
ange of α values. 

Both cases illustrate that the test statistic does not vary across the values of α. Although not
eported, different specifications based on variations of the Monte Carlo DGP results in the same
onclusion: the T n ( α) distribution is not related to the value of α. 

6. EMPIRICAL APPLICATION: COLLEGE PR O XIMITY AS AN INSTRUMENT 

FOR EDUCATION 

n this section we show an empirical application of the proposed test to a Mincer equation to
stimate returns to schooling. We use the data in Card ( 1995a ) (taken from Card, 1995b ) and
orrespond to 3,010 individuals of the US National Longitudinal Surv e y of Young Men. Following
he same specification of that paper, the model describes wages as a function of the years of
ducation and other exogenous controls such as work experience, race, and a set of geographic and
egional variables. A classic problem with this model is that ability is unobservable and, therefore,
ts omission induces a potential bias due to endogeneity of the OLS estimator. Specification errors
ave analogous consequences on QR estimators, as analysed by Angrist et al. ( 2006 ). Angrist et
l. proposes to implement an IV strategy using two measures of proximity to the university as
The Author(s) 2023. 
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Figure 4. Percentiles of the simulated distribution of T ( α) , a = 1 . 
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external variables to the wage equation: ne arc 2 (lived near 2-year college in 1966) and ne arc 4
(lived near 4-year college in 1966). 

We implement first the robust testing procedure, where we e v aluate the statistical first-stage
significance of the IV for different α values. Here the endogenous variable is education and,
therefore, we implement the FS-IVQR tests for dif ferent v alues of the coefficient of the returns
to education. We use a grid of values on α ∈ [0 , 1] , which will be the same used in the CH-IVQR
estimation. We consider three model specifications: (i) a model where only ne arc 2 is used as IV;
(ii) a model where only ne arc 4 is used as IV; (iii) a model where both ne arc 2 and ne arc 4 are
used as IV. Then for (i) we use a test for the FS-IVQR significance of ne arc 2 , for (ii) we use a
test for the FS-IVQR significance of ne arc 4 , and for (iii) we use a test for the FS-IVQR joint
significance of ne arc 2 and ne arc 4 . We take a sceptical approach regarding the critical value that
should be used to define that an instrument is weak or strong, as the econometric literature is still
debating on this issue. Nevertheless, we rely on the (so far) accepted applied consensus that for
a model with one IV, an F (i.e., chi-squared in our case) value of 10 is a strong IV. 

The results appear in Figures 5 and 6 . The former figure reports the corresponding T n ( α) for
a grid of αs. Note that the estimated statistics have large variation across small changes in α, as
the algorithm finds corner solutions very often. The latter figure presents a standard smoother of
these results (we use a Nadaraya–Watson estimator with a bandwidth of 0.10 and Epanechnikov
kernel). The results illustrate two different cases regarding the IV validity. The test statistic for
ne arc 2 (based on a model that only uses this variable as IV) is below any critical value to be used
for weak IV almost ev erywhere. F or whatev er critical value to be used for first-stage significance
it is clear that this variable is a weak instrument. The test statistic for ne arc 4 (based on a model
© The Author(s) 2023. 
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Figure 5. Robust IV validity, non-smooth. 

Figure 6. Robust IV validity, smooth. 
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Table 3. Returns to schooling (Card, 1995a ), ne arc 4 as IV. 

IV quantile regression 

2SLS 25 50 75 

First-stage estimates 
Lived wear 4-year college in 1966 0 .320 ∗∗∗ 0 .589 ∗∗∗ 0 .402 ∗∗ −0 .103 

(0 .0879) (0 .197) (0 .168) (0 .231) 
Experience − 0 .413 *** − 0 .624 *** − 0 .00172 − 0 .956 *** 

(0 .0337) (0 .0600) (0 .0484) (0 .121) 
Experience-squared 0 .000869 0 .00833 ∗∗∗ − 0 .0193 *** 0 .0240 ∗∗∗

(0 .00165) (0 .00298) (0 .00242) (0 .00532) 
Black indicator − 0 .936 *** − 0 .532 ** − 1 .072 *** − 0 .395 * 

(0 .0937) (0 .212) (0 .173) (0 .214) 
Constant 16 .64 ∗∗∗ 16 .79 ∗∗∗ 16 .07 ∗∗∗ 17 .08 ∗∗∗

(0 .241) (0 .285) (0 .324) (1 .014) 
Structural equation estimates 

Education 0 .132 ∗∗ 0 .152 ∗∗∗ 0 .132 ∗∗∗ 0 .0880 
(0 .0548) (0 .0315) (0 .0437) (0 .166) 

Experience 0 .108 ∗∗∗ 0 .112 ∗∗∗ 0 .105 ∗∗∗ 0 .0840 
(0 .0236) (0 .0215) (0 .00733) (0 .159) 

Experience-squared − 0 .00233 *** − 0 .00208 *** − 0 .00223 ** − 0 .00203 
(0 .000333) (0 .000423) (0 .000932) (0 .00400) 

Black indicator − 0 .147 *** − 0 .152 *** − 0 .145 *** − 0 .158 ** 

(0 .0538) (0 .0249) (0 .0503) (0 .0695) 
Constant 3 .666 ∗∗∗ 3 .105 ∗∗∗ 3 .734 ∗∗∗ 4 .652 

(0 .922) (0 .546) (0 .711) (2 .830) 
Observations 3,010 3,010 3,010 3,010 

Notes: Standard errors in parentheses. SE robust for OLS estimates. *** p < 0 . 01 , ** p < 0 . 05 , * p < 0 . 1 . Regional and 
geographic dummies are used, but omitted. Source: Card ( 1995b ). 
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that only uses this variable as IV) is a strong IV for most of the α interval to be considered.
For τ = 0 . 25 and τ = 0 . 50 , T n ( α) is abo v e 10 for α ∈ [0 , 0 . 36] , and it is abo v e 3.8415 (5%
critical value for χ2 

1 ) for all α ∈ [0 , 1] . For τ = 0 . 75 the smooth version of T n ( α) is abo v e 10
for α ∈ [0 , 1] . Ho we ver, as discussed belo w, when we e v aluate the particular estimate at the
CH-IVQR value, the instrument is not significant. As a result, we cannot apply the CH-IVQR to
τ = 0 . 75 , and this model should not be considered. The test statistic for ne arc 2& ne arc 4 (based
on a model that uses both IV) lies in between, although the critical values to be considered here
should correspond to a 2 IV case, and thus the first-stage validity pro vides mix ed results. In most
cases it lies abo v e the critical 5% value for a χ2 

2 . 
The previous analysis suggests that only ne arc 4 is a valid instrument (for τ = 0 . 25 , 0 . 50 ),

and ne arc 2 should be discarded. We thus estimate first a model using only ne arc 4 as the
only instrument (our preferred specification), and second, another one using ne arc 2& ne arc 4 as
instruments (for comparison purposes). 

Tables 3 and 4 show the results of the first-stage and structural equations’ results for models with
ne arc 4 as the only instrument, and ne arc 2& ne arc 4 as the two-instruments case, respectively.
For the latter we set A , the weighting matrix in the CH-IVQR estimator, equal to the inverse
of the asymptotic covariance matrix of ˆ γ , as suggested by CH. For the one instrument model,
© The Author(s) 2023. 
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Table 4. Returns to schooling (Card, 1995a ), ne arc 2& ne arc 4 as IV. 

IV quantile regression 

2SLS 25 50 75 

First-stage estimates 
Lived wear 2-year college in 1966 0 .123 0 .0644 0 .471 ∗∗∗ 0 .154 ∗∗

(0 .0774) (0 .129) (0 .0703) (0 .0709) 
Lived wear 4-year college in 1966 0 .321 ∗∗∗ 0 .380 ∗∗∗ 0 .298 ∗∗∗ 0 .140 ∗

(0 .0878) (0 .146) (0 .101) (0 .0737) 
Experience − 0 .412 *** − 0 .450 *** − 0 .489 *** − 0 .494 *** 

(0 .0337) (0 .0871) (0 .0247) (0 .0344) 
Experience-squared 0 .000848 −0 .000682 0 .00456 ∗∗∗ 0 .00449 ∗∗

(0 .00165) (0 .00496) (0 .00122) (0 .00192) 
Black indicator − 0 .945 *** − 0 .926 *** − 0 .886 *** − 0 .753 *** 

(0 .0939) (0 .162) (0 .113) (0 .0701) 
Constant 16 .60 ∗∗∗ 16 .42 ∗∗∗ 17 .00 ∗∗∗ 16 .68 ∗∗∗

(0 .242) (0 .393) (0 .173) (0 .211) 
Structural equation estimates 

Education 0 .157 ∗∗∗ 0 .176 ∗∗∗ 0 .268 ∗∗∗ 0 .104 
(0 .0524) (0 .0521) (0 .0270) (0 .0661) 

Experience 0 .119 ∗∗∗ 0 .120 ∗∗∗ 0 .180 ∗∗∗ 0 .0932 ∗∗∗

(0 .0227) (0 .0248) (0 .0139) (0 .0341) 
Experience-squared − 0 .00236 *** − 0 .00201 *** − 0 .00337 *** − 0 .00221 *** 

(0 .000347) (0 .000347) (0 .000352) (0 .000438) 
Black indicator − 0 .123 ** − 0 .109 ** − 0 .00925 − 0 .148 *** 

(0 .0520) (0 .0519) (0 .0342) (0 .0467) 
Constant 3 .237 ∗∗∗ 2 .698 ∗∗∗ 1 .392 ∗∗∗ 4 .360 ∗∗∗

(0 .883) (0 .870) (0 .465) (1 .116) 
Observations 3,010 3,010 3,010 3,010 

Notes: Standard errors in parentheses. SE robust for OLS estimates. *** p < 0 . 01 , ** p < 0 . 05 , * p < 0 . 1 . Regional and 
geographic dummies are used, but omitted. Source: Card ( 1995b ). 
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he estimated CH-IVQR returns to education are 0.152 (S.E. 0.0315) for τ = 0 . 25 , 0.132 (S.E.
.0437) for τ = 0 . 50 and 0.088 (0.166) for τ = 0 . 75 , not statistically significant in this case. Note
hat for the latter we have the statistical significance of the FS-IVQR e v aluated at the CH-IVQR
stimate signals that near4 is not valid. The difference between the testing procedure in the
gures and the point estimate in the table should be highlighted. For the former we use a fixed
alue of α to compute the sparsity density estimator in each case. For the latter, we have a different
H-IVQR estimate for different τ s to compute the sparsity density estimator. Thus they may not
oincide with each other in finite samples. As such, we cannot use inference for the CH-IVQR
stimator for this particular τ = 0 . 75 , and other inference procedures (such as Chernozhukov
nd Hansen, 2008 ) should be used instead. For the two-instrument case, the estimated CH-IVQR
eturns to education are 0.176 (S.E. 0.0521) for τ = 0 . 25 , 0.268 (0.0271) for τ = 0 . 50 , and 0.104
0.0662) for τ = 0 . 75 , not statistically significant in the latter. 

The FS-IVQR should be analysed with caution and it cannot be taken as in the 2SLS case.
hat is, the FS-IVQR coefficients in these tables are for the individual statistical significance of
ach instrument. The reported inference for each IV assumes that we can estimate the structural
The Author(s) 2023. 
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coefficients consistently. 9 Our approach requires that this analysis should be complemented with
the robust IV analysis in Figures 5 and 6 . When we e v aluate the T n ( α) statistics at the estimated α

coefficients, we note that ne arc 4 has values that are consistent with a strong IV for τ = 0 . 25 , 0 . 50 ,
but we cannot e v aluate the model for τ = 0 . 75 . 

The proposed method allows for an e v aluation of the first stage in a QR framework. It does not,
ho we v er, pro vides results for the selection of the ‘best’ subset of IV to be used in empirical settings.
Although it is beyond the scope of this paper, if that route were followed for a practitioner, it
should follow post-model selection adjustment for valid inference as discussed in P ̈otscher ( 1991 )
and Leeb and P ̈otscher ( 2005 , 2006 ). 

7. CONCLUSIONS 

This paper proposes a first-stage model and a testing procedure to e v aluate the degree of asso-
ciation between the IV and the endogenous regressor(s) in the IVQR estimator. The procedure
de veloped here allo ws to e v aluate instruments in a similar vein to that in 2SLS models for the
conditional average, that is, by looking at the statistical significance of the instruments in the
first-stage regression. In turn, this will allow to investigate IV validity for specific quantiles. 

Nevertheless, due to the requirement of consistent estimation of the weights in the first stage, it
is important to notice that the testing procedure is not equi v alent to the first stage in 2SLS. Tests
for each individual instrument require the availability of at least another instrument. Ho we ver,
we propose a robust analysis that does not rely on this requirement. 

The analysis may be extended in the following directions. First, this approach can be used
to identify quantile-specific treatment effects, where an IV estimate being significant at some
quantiles corresponds to a particular effect of a treatment. Second, the procedure outlined here
could be combined with the second-stage inference to produce statistics similar to the Staiger
and Stock ( 1997 ) F-statistics rule-of-thumb. In particular, to study weak instruments issues in
QR models. Third, the analysis in this paper could be further extended for the cases of multiple
endogenous variables as well as many instruments. 
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APPENDIX: PROOFS OF RESULTS 

roof of Lemma 3.1: First, consider the estimator of the parameter μ0 : =
 E [ f i .w i w 

′ 
i ]) 

−1 E [ f i .w i d 
′ 
i ]) using the true weighting matrix V as 

V = 

⎡ 

⎢ ⎣ 

f 1 

. . . 
f n 

⎤ 

⎥ ⎦ 

, (A.1)

hat is given by 

˜ μ = ( W 

′ V W ) −1 W 

′ V D, 

here W = [ X, Z] . 
The proof of the lemma requires first showing that, as n → ∞ , 

W 

′ V W 

n 

p → E [ f i .w i w 

′ 
i ] : = 
f , (A.2)

W 

′ V D 

n 

p → E [ f i .w i d i ] , (A.3)

nd 

√ 

n ( ̃  μ − μ0 ) 
d → N (0 , 
−1 

f 
f σ
−1 
f ) . (A.4)

To show ( A.2 ), its left side has a ( j, k) element given by 

1 
n 

∑ n 
i= 1 f i w ij w ik . By the Law of Large

umbers and Assumptions 3.1 and 3.2, we have that 

1 

n 

n ∑ 

i= 1 

f i w ij w ik 

p → E 

[
f i w ij w ik 

]
. 

imilar arguments can be used to show ( A.3 ). 
To show ( A.4 ), note that 

˜ μ = 

(
1 

n 

W 

′ V W 

)−1 1 

n 

W 

′ V D. 

onsider W 

′ V D, which is a sum of i.i.d. random vectors f i · w i · d i with common covariance
atrix, 
f σ . Note that, by definition, E [ f i d i w i ] = E [ f i w i w 

′ 
i ] μ0 . Therefore, by Assumptions 3.1

nd 3.2 and the central limit theorem, we have that 

√ 

n 

(
1 

n 

W 

′ V D − 
f μ0 

)
d → N 

(
0 , 
f σ

)
. 

hus, 
√ 

n ( ̃  μ − μ0 ) 
d → N 

(
0 , 
−1 

f 
f σ
−1 
f 

)
, 

here this display holds because of the convergence in distribution abo v e, 1 
n 
W 

′ V W 

p → 
f as
 → ∞ , the continuous mapping theorem, and Slutsky’s theorem. 
Finally, we have to show that using estimated weights does not affect the liming distribution

hen considering 

ˆ μ = ( W 

′ ˆ V W ) −1 W 

′ ˆ V D, 
The Author(s) 2023. 
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where the matrix 

ˆ V contains { ̂  f i } the density estimator based on a (possibly) nonparametric
estimator (e v aluated at the CH-IVQR estimator) of the density { f i } . 

We apply the results in Koenker ( 2005 , pp. 162–3) for the asymptotic distribution of weighted
estimators with estimated weights. For the particular application in the book, it is for a weighted
QR estimator; for our case, we use it for a weighted least-squares (WLS) estimator. 

The parameter to be estimated is 

μ0 = argmin 

μ

E[ f i · ( d i − w i μ) 2 ] . 

Note that in our case we have the following infeasible estimator 

˜ μ = argmin 

μ

n ∑ 

i 

f i · ( d i − w i μ) 2 , 

for the estimator with the true weights, f i . The feasible estimator is 

ˆ μ = argmin 

μ

n ∑ 

i 

ˆ f i · ( d i − w i μ) 2 , 

for the estimated weights, ˆ f i . Koenker’s result is about the asymptotic distribution of n 

1 / 2 ( ̂  μ −
μ0 ) and how it compares it with n 

1 / 2 ( ̃  μ − μ0 ) . In particular, it shows that n 

1 / 2 ( ̃  μ − μ0 ) and
n 

1 / 2 ( ̂  μ − μ0 ) are asymptotically normal with the same variance. 
In both cases, it uses a Bahadur-type representation of an 

√ 

n -consistent estimator such that
for our particular case (i.e., least squares) it is 

n 

1 / 2 ( ̃  μ − μ0 ) = n 

−1 / 2 
n ∑ 

i= 1 

f i · ( y i − w i μ0 ) w 

′ 
i + o p (1) , 

n 

1 / 2 ( ̂  μ − μ0 ) = n 

−1 / 2 
n ∑ 

i= 1 

ˆ f i · ( y i − w i μ0 ) w 

′ 
i + o p (1) . 

Then by the Assumption 3.2 (ii), together with the bounded conditions in Assumption 3.1
R1, the weights satisfy the same conditions in Koenker’s deri v ation, and the main result is
that 

n 

−1 / 2 
n ∑ 

i= 1 

ˆ f i · ( y i − w i μ0 ) w 

′ 
i = n 

−1 / 2 
n ∑ 

i= 1 

f i · ( y i − w i μ0 ) w 

′ 
i + o p (1) . 

Thus, we conclude that both estimators, ˜ μ and ˆ μ have the same asymptotic distribution. �

Proof of Proposition 4.1: The proof of this result is simple. If α is known and correct, ˆ f 

p → f .
Then, the result follows directly from Lemma 3.1, the null hypothesis, a consistent estimator of
V ( μ0 ) , and the Slutsky’s theorem. �

Pr oof of Pr oposition 4.2: From the conditions of the proposition we have that ˆ f 

p → f . Hence,
conditions of Lemma 3.1 are satisfied, and it follows that, 

√ 

n ( ̂  μ − μ0 ) 
d → N ( 0 , V ( μ0 ) ) . 
© The Author(s) 2023. 
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otice that Rμ = δ1 , hence under the null hypothesis, 
√ 

n ( R ̂  μ − 0 ) 
d → N 

(
0 , R V ( μ0 ) R 

′ ) . 

et ˆ V ( ̂  μ) be a consistent estimator of V ( μ0 ) , and V δ1 : = R V ( μ0 ) R 

′ , then by the Slutsky’s theorem,

T n = n ̂

 δ′ 
1 

(
V δ1 

)−1 ˆ δ1 
d → χ2 

p 1 
( a p 1 ) . �
The Author(s) 2023. 
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