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1. Introduction

The mechanical system of one-dimensional hard rods is the simplest non triv-
ial completely integrable dynamics where the macroscopic behavior can be de-
scribed by generalized hydrodynamics. The density of particles of each given
velocity is conserved and in the Euler scaling the macroscopic evolution of such
densities have been studied by the pioneristic work of Percus [16] and Boldrigh-
ini, Dobrushin and Suhov [4]. Fluctuations around this Euler limit have been
studied by Boldrighini and Wick in [6]. Recently these results have been gen-
eralized to a completely integrable dynamics of rods of random length (even
negative length) where lengths and velocities are exchanged at collision [11].
The elastic collisions are recovered in the particular case that all rods have
the same positive length. Similar dynamics were considered in [7], while in [2]
velocities are exchanged but not the lengths (i.e. the classical elastic collision).

In this article we investigate the evolution of the densities fluctuations in
the diffusive space-time scale for the generalized dynamics considered in [11].
We consider the system in a stationary homogeneous initial condition. We will
discuss initial inhomogeneous non-stationary state in Section 4.

The result we prove in the present article is that the initial fluctuations of
the density of particles of velocity v, after recentering on its Euler evolution,
evolve randomly shifted by a Brownian motion of variance D(v). This diffusion
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coefficient D(v) has an explicit expression depending on v and on the particular
stationary measure (cf. (3.2)). In the case of rods of constant length D(v) is
the same as computed by Spohn in [18], as well as it appears in the first order
diffusive correction to the Euler Hydrodynamic limit [3] [5].

This result corresponds to the following stochastic partial differential equa-
tion for the evolution of the macroscopic fluctuation Ξt(y, v, r) of the density of
particles of velocity v and length r at position y:

BtΞt(y, v, r) =
1

2
D(v)B2

yΞt(y, v, r) +
√
D(v)ByΞt(y, v, r) 9Wt(v), (1.1)

where ( 9Wt(v) ∶ t, v ∈ R) is a centered gaussian field with covariance

E( 9Wt(v) 9Ws(w)) = δ(t − s)
Γ(v,w)√
D(v)D(w)

with Γ(v,w) given in (3.5). Since Ξt is a distribution in (y, v, r), (1.1) should
be understood in the weak sense.

Notice that in (1.1) the noise term is only white in time and completely
correlated in space (i.e. Wt(v) does not depends on y). This is in contrast with
the typical diffusive evolution of fluctuations in chaotic systems, where it is
expected an additive space-time white noise driving the fluctuations and the
equation would be of the type [19]

BtsΞt(y, v, r) =
1

2
D(v)B2

yΞt(y, v, r) +
√
D(v)By 9Wy,t(v), (1.2)

with E( 9Wy,t(v) 9Wy′,s(w)) = δ(t−s)δ(y−y′)δ(v−w). Notice that the equilibrium
solutions of (1.1) and (1.2) have the same space-time covariance, i.e. the space-
time covariance does not give informations about the martingale term of the
evolution equation. About the uncorrelation in r, this persists in the macroscopic
fluctuations as consequence of the decorrelation at the microscopic scale.

In fact we believe, as Herbert Spohn suggested us, that (1.1) is a typical
(universal) macroscopic behaviour for the diffusive fluctuations of completely
integrable many-body systems [20].

In order to understand why (1.1) arise, we follow the behaviour of two tagged
quasi-particles with the same velocity. We call here quasi-particles (or impul-
sions) the particles with the dynamics defined by the exchange of positions at
the moment of collision. The standard technique to study such dynamics is to go
to the reduced description where quasi-particles are mapped to points and evolve
without interaction. Then the evolution of the tagged quasi-particle is obtained
by the trivial evolution of the corresponding point, shifted by the collisions with
quasi-particles of different velocity. Since the points corresponding to the other
quasi-particles are distributed by a Poisson field, these collisions happen at ran-
dom times and the collisional shifts are independent. Consequently at the Euler
scale we have a law of large numbers (see Section 2.2) that produce a determin-
istic evolution of the tagged quasi-particle with an effective velocity given by
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(2.15) (such ergodicity was proven first in [1]). Recentering the position of the
tagged quasi-particle on the Euler deterministic behavior, we have then a func-
tional central limit theorem so that the position converges in law to a Brownian
motion of variance D(v). Now consider two tagged quasi-particles with the same
velocity and initially located at macroscopic distance: this means that there are
typically ε−1 particles in between, where ε is the scaling parameter going to 0.
In the diffusive scaling each tagged quasi-particle at time t has a number of
collisions proportional to ε−2t, but most of them with the same quasi-particles,
except for an order ε−1 of collisions at the beginning and at the end of the time
interval [0, t]. Consequently the two tagged quasi-particles completely correlate
in the limit ε→ 0, i.e. they converge to the same Brownian motion. This causes
the rigid motion of the corresponding density fluctuations. Notice that in chaotic
system it is expected that the two quasi-particles at initial macroscopic distance
converge to two independent Brownian motion, generating the space-time white
noise present in (1.2).

As far as we know, equation (1.1) for the diffusive fluctuations for hard rods
is new in the literature. We recently discovered the article by Presutti and Wick
[17] that concerns the diffusive behavior of travelling wave initial conditions in
hard rods systems, where in the remark after Theorem 1 they comment about
possible diffusive behaviour of fluctuations and they write: “spatially separated
fluctuations in the density of rods with the same velocity move with the same
Brownian component”. Strangely [17] is never quoted in the following literature
about Navier-Stokes corrections for the hard rods hydrodynamics (cf. [5]). In the
introduction of [6] it was announced a second article about the Navier Stokes
corrections for the evolution of the fluctuations, but the authors confirmed us
that this has never been written.

Hard rods dynamics with domain wall initial conditions, a particular case
of travelling wave, is investigated in [10]; the paper includes the Navier-Stokes
corrections and the computation of the covariance Γ(v, v′) from Green-Kubo
formula.

Diffusive corrections to the hydrodynamic Euler scaling in general completely
integrable systems have been investigated in the physics literature, see the recent
review [9] with the references therein, as well as [13] and [8]. These articles
contain general formulas for diffusion coefficients that are in agreement with our
formula for the generalized hard rods. A generalization of our equation (1.1) to
other integrable systems will give answer about the macroscopic evolution on
the diffusive scale of multipoint correlation functions, mentioned in [9] as an
open problem.

As we believe that our approach is more elementary than the one used in the
previous literature, we have written this article to be completely independent
of results on hard rods prior to the paper [11], which is our starting point.
Essentially, the only tools we use are the law of large numbers and the central
limit theorem for a Poisson field. In Section 2 we prove the macroscopic evolution
of the fluctuations in the Euler scaling (recovering the result of [6]). In Section 3
we prove the evolution of the fluctuations in the diffusive scaling. Finally in
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Section 5 we prove two lemmas about limits for Poisson field that we need in
the proofs.

2. Equilibrium Fluctuations in the Euler scaling

Let Xε be the Poisson process on R3 with intensity ε−1ρ dx dµ(v, r), where µ
is a probability on R2 with finite second moments. We should think about x
as the macroscopic position of the point x, since the typical distance between
points is ε. The macroscopic length of the rod (x, v, r) is εr.

We define

σ ∶= ρ∬ rdµ(v, r), length density

π ∶= ρ∬ rvdµ(v, r), momentum density.

Denote the empirical length distribution by

Nεφ ∶= ∑
(x,v,r)∈Xε

εrφ(x, v, r), Nε(A) ∶= Nε
1A.

The expectation of Nε is

ENεφ = ⟨⟨φ⟩⟩,

where the length biased measure ⟨⟨⋅⟩⟩ is defined by

⟨⟨φ⟩⟩ ∶= ρ∭ rφ(x, v, r) dx dµ(v, r).

We have the law of large numbers

Nεφ
a.s.Ð→
ε→0

ENεφ = ⟨⟨φ⟩⟩.

If φ(x, v, r) = 1[0,1](x), we have ∑(x,v,r)∈Xε εrφ(x) → σ.

The central limit theorem states that

ξX,ε(φ) ∶= ε−1/2(Nε − ⟨⟨φ⟩⟩) lawÐ→
ε→0

ξX(φ) (2.1)

where ξX is the centered gaussian white noise with covariance

E(ξX(φ)ξX(ψ)) = ⟨⟨φψ⟩⟩2 − ⟨⟨φ⟩⟩⟨⟨ψ⟩⟩,

where

⟨⟨φ⟩⟩2 ∶= ρ∭ r2φ(x, v, r)dx dµ(v, r).

Notice that
E(ξX,εφ)2 = ⟨⟨φ2⟩⟩2 − ⟨⟨φ⟩⟩2,

4



so that for any φ ∈ L2(⟨⟨⋅⟩⟩2) we have the bound

E(ξX,εφ)2 ⩽ ⟨⟨φ2⟩⟩2.

Define the mass (length) measure by

mb
a(Xε) = ε ∑

(x,v,r)∈Xε

r(1[x∈[a,b)] − 1[x∈[b,a]]).

Consequently,

mb
a(Xε) a.s.Ð→

ε→0
Emb

a(Xε) = (b − a)σ. (2.2)

To each configuration Xε and a point a ∈ R, there are a dilated point and
configuration

Dε
a(b) ∶= b − a +mb

a(Xε)
Y ε =Dε

0(Xε) ∶= {(Dε
0(x), v, r) ∶ (x, v, r) ∈Xε}.

Remark 2.1. The distribution of Xε is space shift invariant, but the distribu-
tion of the rod configuration Y ε is not because Y ε has no rod containing the
origin. Our results can be extended to random rod configurations with space
shift invariant distribution, by using Palm transforms [21] and Harris theorem
[14]; see for instance [12].

If r ⩾ 0 for all (x, v, r) ∈ Xε, and the origin does not belong to a rod of Y ε,
then we can define the inverse D−1a (Y ε) = Xε. The macroscopic dilation of the
point b with respect to a is given by

EDε
a(b) = (b − a)(1 + σ).

Denote the length empirical measure induced by Y ε by

Kεφ ∶= ε ∑
(y,v,r)∈Y ε

rφ(y, v, r).

We have the law of large numbers:

Kεφ = ε ∑
(x,v,r)∈Xε

rφ(x +mx
a(Xε), v, r)

a.s.Ð→
ε→0

ρ∭ rφ(x + (x − a)σ, v, r)dx dµ(v, r)

= ρ

1 + σ∭ rφ(x, v, r)dx dµ(v, r)

= 1

1 + σ ⟨⟨φ⟩⟩. (2.3)

2.1. Static CLT for the dilated configuration

We define the fluctuation field

ξY,ε(φ) = ε−1/2(Kεφ −EKεφ).
5



We have

Kεφ −EKεφ = (Kεφ −Aεφ) + (Aεφ −EAεφ) − (EKεφ −EAεφ). (2.4)

where

Aεφ ∶= ε ∑
(x,v,r)∈Xε

rφ(x(1 + σ), v, r),

EAεφ = ρ

1 + σ∭ rφ(x, v, r)dxdµ(v, r).

The last term in (2.4) gives

ε−1/2(EKεφ −EAεφ)

= E(ε1/2 ∑
(x,v,r)∈Xε

r[φ(x +mx
0(Xε), v, r) − φ(x(1 + σ), v, r)]) (2.5)

= E(ε1/2 ∑
(x,v,r)∈Xε

r(Byφ)(x(1 + σ), v, r)(mx
0(Xε) − xσ)) +Rε

=∭ r(Byφ)(x(1 + σ), v, r)ε−1/2[E(mx
0(Xε) − xσ)]dx dµ(v, r) +Rε (2.6)

= Rε, (2.7)

where Rε denotes a generic term small with ε. Identity (2.6) follows from
Slyvniak-Mecke formula (Theorem 3.2 in [15]). Since by (2.2) the first term
in (2.6) is null, identity (2.7) follows.

The second term in (2.4) gives

ε1/2(Aε −EAε)

= ε−1/2[ε ∑
(x,v,r)∈Xε

rqφ(x, v, r) − ρ∭ rqφ(x, v, r)dx dµ(v, r)]

lawÐ→
ε→0

ξX(qφ), (2.8)

where qφ(x, v, r) ∶= φ((1 + σ)x, v, r). Notice that

E(ξX(qφ)ξX( qψ))

= ρ∭ r2 qφ(x, v, r) qψ(x, v, r)dxdµ(v, r) − ⟨⟨qφ⟩⟩⟨⟨ qψ⟩⟩

= ρ

1 + σ∭ r2φ(y, v, r)ψ(y, v, r)dydµ(v, r) − 1

(1 + σ)2 ⟨⟨φ⟩⟩⟨⟨ψ⟩⟩

= 1

1 + σ ⟨⟨φψ⟩⟩2 −
1

(1 + σ)2 ⟨⟨φ⟩⟩⟨⟨ψ⟩⟩.

Finally expand the first term of the RHS of (2.4):

ε−1/2(Kεφ −Aεφ) = ε1/2 ∑
(x,v,r)∈Xε

r(φ(x +mx
a(Xε), v, r) − φ(x(1 + σ), v, r))

= 1

1 + σ ε
1/2 ∑
(x,v,r)∈Xε

r(Bx qφ)(x, v, r)(mx
0(Xε) − xσ) +Rε.6



By the functional central limit theorem (2.1) we have

ε−1/2(mx
0(Xε) − xσ) ∶= Bε(x) lawÐ→

ε→0
B(x) ∶=

⎧⎪⎪⎨⎪⎪⎩

ξX(1[0,x]), x > 0
−ξX(1[x,0]), x < 0

Since (B(x) ∶ x ∈ R) is a bilateral Brownian motion, using Lemma 5.1 we have

ε−1/2(Kεφ −Aεφ)
lawÐ→
ε→0

ρ

1 + σ∭ r(Bx qφ)(x, v, r)B(x)dx dµ(v, r)

= 1

1 + σ ∫ dxB(x)Bx(ρ∬ rqφ(x, v, r) dµ(v, r))

= 1

1 + σ ∫ dxξX(1[0,x]1x>0 − 1[x,0]1x<0)Bx(ρ∬ rqφ(x, v, r) dµ(v, r))

= 1

1 + σ ξ
X(∫ dx(1[0,x]1x>0 − 1[x,0]1x<0)Bx(ρ∬ rqφ(x, v, r) dµ(v, r)))

= − 1

1 + σ ξ
X(ρ∬ r′ qφ(⋅, v′, r′) dµ(v′, r′)).

We conclude that

ε1/2(Kεφ −Aεφ) lawÐ→
ε→0
−ξX(P qφ), (2.9)

where
Pφ(x) = ρ

1 + σ∬ rφ(x, v′, r′) dµ(v′, r′). (2.10)

Putting together (2.9), (2.5)-(2.7) and (2.8) we have shown that

ξY,ε(φ) lawÐ→
ε→0

ξY (φ) = ξX(qφ − P qφ) = ξX(C qφ), (2.11)

where C = I−P . This identifies ξY as the centered gaussian field with covariance

E(ξY (φ)ξY (ψ)) = E(ξX(C qφ)ξX(C qψ))

= ρ∭ r2Cφ(x(1 + σ), v, r)Cψ(x(1 + σ), v, r)dxdµ(v, r),

= ρ

1 + σ∭ r2Cφ(y, v, r)Cψ(y, v, r)dydµ(v, r)

= ρ

1 + σ ⟨⟨CφCψ⟩⟩2.

That means for the Fourier transforms

φ̂(k, v, r) = ∫ ei2πkyφ(y, v, r)dy

E(ξY (φ)ξY (ψ)) = ρ

1 + σ∭ r2Cφ̂(k, v, r)∗Cψ̂(k, v, r)dkdµ(v, r).

i.e. a covariance operator

C = ρ

1 + σ r
2C2 = ρ

1 + σ r
2(I + ( σ2

(1 + σ)2 − 2
σ

1 + σ )P).

7



Remark 2.2. This is in agreement with formula (7.61) in Spohn’s book [19].

Example: in the case dµ(v, r) = 1
2
(δv0(dv)+ δ−v0(dv))δa(dr) we have σ = ρa and

π = 0. Then,

Pφ(x) = ρa

2(1 + ρa) (φ(x, v0) + φ(x,−v0))

Cφ(x,±v0) =
2 + ρa

2(1 + ρa)φ(x,±v0) −
ρa

2(1 + ρa)φ(x,∓v0).

2.2. Equilibrium fluctuations in the Euler scaling

Recall that the interparticle distance is of order ε, i.e. the coordinates (x, v, r)
are already rescaled in the Euler scale. Let Xε

t denote the free gas configuration
at time t:

Xε
t ∶= {(x + vt, v, r) ∶ (x, v, t) ∈Xε}.

Define the flow

jε(x, v, t) ∶= ε ∑
(x̃,ṽ,r̃)∈Xε

r̃(1[ṽ<v]1[x<x̃<x+(v−ṽ)t] − 1[ṽ>v]1[x+(v−ṽ)t<x̃<x])

j(x, v, t) ∶= Ejε(x, v, t) (2.12)

=∭ ρ dx dµ(ṽ, r̃) r̃ (1[ṽ<v]1[x<x̃<x+(v−ṽ)t] − 1[ṽ>v]1[x+(v−ṽ)t<x̃<x])

= ρ∫ r̃∫
+∞

v
(v − ṽ) t dµ(ṽ, r̃) + ρ∫ r̃∫

v

−∞
(v − ṽ) t dµ(ṽ, r̃)

= tvσ − tπ.

Here jε(x, v, t) is the ideal gas integrated flow along the segment (x+ vs)s∈[0,t],
and j(x, v, t) is its expectation.

The position of the quasi particle yεv,t(x) associated to (x, v, r) is given by

yεv,t(x) ∶=Dε
0(x) + vt + jε(x, v, t) (2.13)

yv,t(x) ∶= Eyεv,t(x) = x(1 + σ) + vt + j(x, v, t).

We have the following limit as a consequence of the law of large numbers

yεv,t − y
a.s.Ð→
ε→0

veff(v)t, (2.14)

where the effective velocity is given by

veff(v) ∶= v(1 + σ) − π. (2.15)

8



i.+ ✓ t

•

•

✗

•

Ye

y

To see (2.14), observe that by (2.13), if y ∈ Y ε, there is an x ∈ Xε such that
y =Dε

0(x) and yεv,t − y = jε(x, v, t), implying that (2.14) is equivalent to

1

t
jε(x, v, t) a.s.Ð→

ε→0

1

t
j(x, v, t) = vσ − π.

We have that the free gas empirical length measure at time t satisfies

Nε
t φ ∶= ε ∑

(x,v,r)∈Xε

rφ(x + vt, v, r) a.s.Ð→
ε→0

ENε
t φ = ⟨⟨φ⟩⟩.

The X-fluctuation field at time t satisfies

ξX,ε
t (φ) ∶= ε−1/2(Nε

t φ − ⟨⟨φ⟩⟩)
lawÐ→
ε→0

ξX(φt),

where

φt(x, v, r) ∶= φ(x + tv, v, r).

The hard rod configuration and empirical measure at time t are given by

Y ε
t ∶= {(yεt (x), v, r) ∶ (x, v, r) ∈Xε},

Kε
t φ ∶= ε ∑

(y,v,r)∈Y ε
t

rφ(y, v, r) = ε ∑
(x,v,r)∈Xε

rφ(yεt (x), v, r).

Using (2.3) we have the LLN for Kε
t :

Kε
t φÐ→

ε→0
ρ∭ rφ(yv,t(x), v, r)dx dµ(v, r)

= ρ∬ r(∫ φ(x(1 + σ) + veff(v)t, v, r)dx) dµ(v, r)

= ρ

1 + σ∭ rφ(x, v, r)dx dµ(v, r) = ρ

1 + σ ⟨⟨φ⟩⟩.
9



We define the Y -fluctuation field at time t by

ξY,εt (φ) ∶= ε−1/2(Kε
t φ −EKε

t φ).

We have

Kε
t φ −EKε

t φ = (Kε
t φ −Aε

tφ) + (Aε
tφ −EAε

tφ) − (EKε
t φ −EAε

tφ). (2.16)

where

Aε
tφ ∶= ε ∑

(x,v,r)∈Xε

rφ(x(1 + σ) + vt + jε(x, v, t), v, r).

The last term in (2.16) gives

ε−1/2(EKε
t φ −EAε

t φ)

= E(ε1/2 ∑
(x,v,r)∈Xε

r[φ(x +mx
0(Xε) + vt + jε(x, v, t), v, r)

− φ(x(1 + σ) + vt + jε(x, v, t), v, r)]) (2.17)

= E(ε1/2 ∑
(x,v,r)∈Xε

r(Byφ)(x(1 + σ) + vt + jε(x, v, t), v, r)(mx
0(Xε

t ) − xσ)) +Rε
t

=∭ r(Byφ)(x(1 + σ) + vt + jε(x, v, t), v, r)

× ε−1/2E[mx
0(Xε) − xσ]dx dµ(v, r) +Rε

t = Rε
t , (2.18)

whereRε
t is of smaller order in ε. The last two identities follow from the Slyvniak-

Mecke formula and from (2.2).

By Lemma 5.2 the second term in (2.16) gives

ε1/2(Aε
t −EAε

t)

= ε−1/2[ε ∑
(x,v,r)∈Xε

rφ(x(1 + σ) + vt + jε(x, v, t), v, r)

− ρ∭ rφ(x(1 + σ) + vt + jε(x, v, t), v, r)dx dµ(v, r)]
lawÐ→
ε→0

ξXt (qφt), (2.19)

where
qφt(x, v, r) ∶= φ(x(1 + σ) + veff(v)t, v, r).

Finally, the first term in (2.16) gives

ε1/2(Kε
t φ −Aε

tφ)
= ε1/2 ∑

(x,v,r)∈Xε

r[φ(x +mx
0(Xε) + vt + jε(x, v, t), v, r)

10



− φ(x(1 + σ) + vt + jε(x, v, t), v, r)]
= ε1/2 ∑

(x,v,r)∈Xε

r(Bxφ)(x(1 + σ) + vt + jε(x, v, t), v, r)(mx
0(Xε) − σx) +Rε

t

= ε ∑
(x,v,r)∈Xε

r(Bxφ)(x(1 + σ) + vt + jε(x, v, t), v, r)ε−1/2(mx
0(Xε) − σx) +Rε

t ,

and combining Lemmas 5.1 and 5.2 we obtain that the limit in law of this last
process is

ρ∭ r(Bxφ)(x(1 + σ) + veff(v)t, v, r)B(x)dx dµ(v, r)

= 1

1 + σ ∫ dxB(x) Bx(ρ∬ rqφt(x, v, r) dµ(v, r))

= 1

1 + σ ∫ dx ξX(1[0,x]1x>0 − 1[x,0]1x<0) Bx(ρ∬ rqφt(x, v, r) dµ(v, r))

= 1

1 + σ ξ
X(∫ dx (1[0,x]1x>0 − 1[x,0]1x<0) Bx(ρ∬ rqφt(x, v, r) dµ(v, r)))

= − 1

1 + σ ξ
X(ρ∬ rqφt(⋅, ṽ, r̃) dµ(ṽ, r̃)),

where we used Byφ = 1
1+σBx qφt, and that Rε

t is smaller order.

Recalling Pφ defined in (2.10), we conclude that

ε1/2(Kε
t φ −Aε

tφ)
lawÐ→
ε→0
−ξX(P qφt). (2.20)

Putting together (2.20), (2.17)-(2.18) and (2.19) we have shown that

ξY,εt (φ)
lawÐ→
ε→0

ξYt (φ) ∶= ξX(qφt − P qφt) = ξX(C qφt),

where C ∶= I − P . Recalling (2.11), we have proven that

ξYt (φ) = ξY0 (φt),
i.e.

Btξ
Y
t (φ) = ξY0 (veffBxφt) = ξYt (veffBxφ).

In other words, in a weak sense ξYt satisfies the equation

Btξ
Y
t + veffBxξ

Y
t = 0,

which is the expected equation.

3. Equilibrium Fluctuations in the diffusive scaling

3.1. Quasi-particles in the diffusing scaling

Given a point (x, v, r) ∈ Xε, recall that yεv,t(x) is the position at time t of the
quasiparticle (y, v, r), defined by (2.13). We will show that

yεε−1t(x) − veff(v)ε−1t
lawÐ→
ε→0

y +
√
D(v)Wt(v), (3.1)

11



where Wt(v) is a Wiener process in t. The limit process Wt(v) does not depend
on the initial position x. The processes in (Wt(v) ∶ v ∈ R) are jointly gaus-
sian, and described by a Lévy Chentsov field [11]. We compute explicitely the
covariances.

By (2.13) and (2.12), we have

yεv,ε−1t(x) − veff(v)ε−1t =Dε
0(x) − (1 + σ)x + jε(x, v, ε−1t) − (vσ − π)ε−1t.

Since Dε
0(x)

a.s.Ð→
ε→0
(1 + σ)x, the limit in (3.1) is equivalent to

jε(x, v, ε−1t) − (vσ − π)ε−1t lawÐ→
ε→0

√
D(v)Wt(v);

Observe that

ε ∑
(x̃,ṽ,r̃)∈Xε

r̃1[ṽ<v]1[x<x̃<x+(v−ṽ)ε−1t] = ε ∑
(x̃,ṽ,r̃)∈Xε2

r̃1[ṽ<v]1[εx<x̃<εx+(v−ṽ)t],

where Xε2 ∶= {(εx, v, r) ∶ (x, v, r) ∈ Xε}, is obtained from Xε by rescaling all

positions by a factor ε, so that Xε2 is a Poisson process of intensity measure
ε−2ρdµ(v, r). We have that

E(ε2 ∑
(x′,v′,r′)∈Xε2

r′1[v′<v]1[εx<x′<εx+(v−v′)t]) = tρ∫ r∫
v

−∞
(v − v′)dµ(v, r).

Applying (2.1) to the function

φεx,v,t(x′, v′) = 1[v′<v]1[εx<x′<εx+(v−v′)t] − 1[v′>v]1[εx+(v−v′)t<x′<εx],

we have that

jXε(x, v, ε−1t) − (vσ − π)ε−1t lawÐ→
ε→0

ξX(φ0,v,t),

which has variance

ρ∭ r̃2(1[ṽ<v]1[x<x̃<x+(v−ṽ)t] + 1[ṽ>v]1[x+(v−ṽ)t<x̃<x])dx̃ dµ(ṽ, r̃) (3.2)

= ρ∫ r̃2 ∫
+∞

v
(v − ṽ)tdµ(ṽ, r̃) − ρ∫ r̃2 ∫

v

−∞
(v − ṽ)tdµ(ṽ, r̃)

= tρ∬ r̃2∣v − ṽ∣dµ(ṽ, r̃) ∶= tD(v).

About the correlation for different initial position, assuming x < x:

E(ξX,ε(φεx,v,t)ξX,ε(φεx,v,t)) (3.3)

= ρ∭ r2(1[v′<v]1[εx<x′<εx+(v−v′)t] − 1[v′>v]1[εx+(v−v′)t<x′<εx])

× (1[v′<v]1[εx<x′<εx+(v−v′)t] − 1[v′>v]1[εx+(v−v′)t<x′<εx])dx′ dµ(v′, r)
12



= ρ∭ r2(1[v′<v]1[εx<x′<εx+(v−v′)t]1[εx<x′<εx+(v−v′)t]

+ 1[v′>v]1[εx+(v−v′)t<x′<εx]1[εx+(v−v′)t<x′<εx])dx′ dµ(v′, r)

= ρ∫ r2 ∫
v−ε(x−x)/t

−∞
[(v − v′)t − ε(x − x)]dµ(v′, r)

+ ρ∫ r2 ∫
+∞

v+ε(x−x)/t
(ε(x − x) − (v − v′)t)dµ(v′, r)

= ρ[vt − ε(x − x)]∫ r2 ∫
v−ε(x−x)/t

−∞
dµ(v′, r)

− ρt∫ r2 ∫
v−ε(x−x)/t

−∞
v′dµ(v′, r)

+ ρ[ε(x − x) − vt]∫ r2 ∫
+∞

v+ε(x−x)/t
dµ(v′, r)

+ ρt∫ r2 ∫
+∞

v+ε(x−x)/t
v′dµ(v′, r)

= ρ[vt − ε(x − x)]∫ r2 ∫
v−ε(x−x)/t

−∞
dµ(v′, r)

− ρt∫ r2 ∫
v−ε(x−x)/t

−∞
v′dµ(v′, r)

− ρ[vt + ε(x − x)]∫ r2 ∫
+∞

v+ε(x−x)/t
dµ(v′, r)

+ ρt∫ r2 ∫
+∞

v+ε(x−x)/t
v′dµ(v′, r)

Ð→
ε→0

tρ∬ (r′)2∣v − v′∣dµ(v′, r′) = tD(v).

It follows from (3.3) that two tagged quasi-particles with the same velocity are
asymptotically completely correlated.

Considering the correlation at different velocities v < v:

E(ξX,ε(φεx,v,t)ξX,ε(φεx,v,t)) (3.4)

= ρ∭ r2(1[v′<v]1[εx<x′<εx+(v−v′)t] − 1[v′>v]1[εx+(v−v′)t<x′<εx])

× (1[v′<v]1[εx<x′<εx+(v−v′)t] − 1[v′>v]1[εx+(v−v′)t<x′<εx]) dx′ dµ(v′, r)

= ρ∭ r2(1[v′<v]1[εx<x′<εx+(v−v′)t]1[εx<x′<εx+(v−v′)t]
+ 1[v′>v]1[εx+(v−v′)t<x′<εx]1[εx+(v−v′)t<x′<εx]
− 1[v<v′<v]1[εx+(v−v′)t<x′<εx]1[εx<x′<εx+(v−v′)t]) dx′ dµ(v′, r)

= ρ∭ r2(1[v′<v]1[εx<x′<εx+(v−v′)t] + 1[v′>v]1[εx+(v−v′)t<x′<εx]) dx′ dµ(v′, r)

= tρ∬ r2(1[v′<v](v − v′) + 1[v′>v](v′ − v))dµ(v′, r)

∶= tΓ(v, v).
13



Noting that

1[v′<v](v − v′) + 1[v′>v](v′ − v) =
1

2
(∣v − v′∣ + ∣v′ − v∣ − (v − v)),

we have that

Γ(v, v) = 1

2
(D(v) + D(v) − (v − v)ρ∫ r2dµ(v′, r)). (3.5)

This last expression for the covariance corresponds to the Lévy Chentsov field,
as shown in [11].

Remark 3.1. From (3.4) we can see immediately that Γ(v, v) ⩾ 0. In the par-
ticular case where there are only two velocities admitted, for example dµ(v, r) =
δa(dr) 12 (δ−1(dv) + δ1(dv)), we have D(±1) = ρa2 and Γ(1,−1) = 0. Typically
this decorrelation happens only when two velocities at most are present.

3.2. Diffusive evolution of density fluctuations

Define the fluctuation field at diffusive scaling as

ΞY,ε
t (φ) ∶= ε−1/2[ε ∑

(y,v,r)∈Y ε

rφ[yv,ε−1t − veff(v)ε−1t, v, r] −
1

1 + σ ⟨⟨φ⟩⟩]. (3.6)

Notice that this is recentered on the Euler characteristics. Define

φWt(y, v, r) ∶= φ(y +
√
D(v)Wt(v), v, r).

Theorem 3.2.

ΞY,ε
t (φ)

lawÐ→
ε→0

ΞY
t (φ) = ΞY (φWt)) = ξX(C qφWt

)

where (Wt(v) ∶ v ∈ R) is a family of Wiener processes with covariance

E(Wt(v),Wt(w)) =
tΓ(v,w)√
D(v)D(w)

with Γ defined in (3.4). More formally

ΞY
t (φ) =∭ rφ(y +

√
D(v)Wt(v), v, r)dξY0 (y, v, r)

=∭ rCφ((1 + σ)(x +
√
D(v)Wt(v)), v, r)dξX0 (y, v, r)

(3.7)

We prove this theorem after some comments. By (3.7), ΞY
t solves the stochas-

tic differential equation

dΞY
t (φ) =

1

2
ΞY
t (DB

2
yφ)dt −∭

√
D(v)(Byφ)(y, v, r)dWt(v)dΞY

t (y, v, r)
14



or in the time integrated form:

ΞY
t (φ) = ΞY

0 (φ) + ∫
t

0

1

2
ΞY
s (DB

2
yφ)ds

− ∫
t

0
∭

√
D(v)(Byφ)(y, v, r)dWs(v)dΞY

s (y, v, r)

= ΞY
0 (φ) + ∫

t

0

1

2
ΞY
s (DB

2
yφ)ds − ∫

t

0
ΞY
s (
√
D Byφ dWs),

where the last term is a martingale with quadratic variation

∫
t

0
(∭

√
D(v)(Byφ)(y, v, r)dΞY

s (y, v, r))
2

ds = ∫
t

0
ΞY
s (
√
D(Byφ))

2
ds.(3.8)

Notice that

E(ΞY,ε
t (φ)2) =

ρ

1 + σ∭ r2E[(Cφ)2(y +
√
D(v)Wt(v), v, r)]dydµ(v, r)

= ρ

1 + σ∭ r2 ∫ (Cφ)2(y(1 +
√
D(v)z, v, r)e

−z2/2
√
2πt

dzdydµ(v, r)

= ρ

1 + σ∭ r2(Cφ)2(y, v, r)dy dµ(v, r),

independent of t, in agreement with the stationarity of the process.

Similarly the expectation of the quadratic variation (3.8) is given by

t
ρ

1 + σ∭ D(v)r2(Byφ)2(y, v, r)dy dµ(v, r).

Proof of Theorem 3.2. We can express (3.6) as

ΞY,ε
t (φ) (3.9)

= ε−1/2[ε ∑
(x,v,r)∈Xε

rφ[x +mx
0(Xε) + jε(x, v, ε−1t) − veff(v)ε−1t, v, r] − 1

1 + σ ⟨⟨φ⟩⟩]

= ε−1/2[ε ∑
(x,v,r)∈Xε

rφ(x +mx
0(Xε) + z(ε−1t, x, v;Xε), v, r) − 1

1 + σ ⟨⟨φ⟩⟩]

= ε−1/2[ε ∑
(x,v,r)∈Xε

rφ(x(1 + σ) + z(ε−1t, x, v;Xε), v, r) − 1

1 + σ ⟨⟨φ⟩⟩]

+ ε1/2 ∑
(x,v,r)∈Xε

r(Byφ)(x(1 + σ) + z(ε−1t, x, v;Xε), v, r)(mx
0(Xε) − σx) +Rε

t .

Applying Lemma 5.2 to the first term on the rhs of (3.9) we have

ε−1/2[ε ∑
(x,v,r)∈Xε

rφ(x(1 + σ) + z(ε−1t,0, v;Xε), v, r) − 1

1 + σ ⟨⟨φ⟩⟩]
lawÐ→
ε→0

ξX(qφBt
),
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where we have denoted

qφWt(x, v, r) = φWt(x(1 + σ), v, r) = φ(x(1 + σ) +
√
D(v)Wt(v), v, r).

Combining Lemma 5.2 and the same argument used in (2.9) the second term
converges in law:

ε1/2 ∑
(x,v,r)∈Xε

r(Byφ)(x(1 + σ) + z(ε−1t, x, v;Xε), v, r)(mx
0(Xε) − σx)

lawÐ→
ε→0

−ξX(P qφWt).

Putting the two terms together we conclude that

ΞY,ε
t (φ)

lawÐ→
ε→0

ξX(C qφWt) = ξY (φWt).

Formally, choosing φk,w(x, v, r) = ei2πxkφ(r)δ(v −w), we have that

φ̂(k,w, t) ∶= ΞY,ε
t (φk,w) = ∫ dξY (y, r, v)ei2πk(y+

√
D(w)Wt)φ(r)δ(v −w)

= ξY (ei2πk(⋅+
√

D(w)Wt)φ(⋅)δ(⋅ −w))

satisfies the SDE

dφ̂(k,w, t) = −(2πk)
2

2
D(w)φ̂(k,w, t) + i2πk

√
D(w)φ̂(k,w, t)dWt(w).

Notice that ∣φ̂(k,w, t)∣2 = ∣φ̂(k,w,0)∣2 for any k, a persistence on the macro-
scopic scale of the complete integrability of the dynamics also at the level of
these fluctuations.

Remark 3.3. Since we consider also systems where lengths r can be negative,
in the case that σ = 0 and π = 0 the macroscopic evolution of fluctuations in the
Euler scaling is the same as the independent point particles. But in the diffusive
scaling the fluctuations have non trivial behaviour.

4. A remark about inhomogeneous initial distribution.

Let f0(x, v, r) be a nice non-negative bounded function on R3 and Xε the Pois-
son process on R3 with intensity ε−1f0(x, v, r)dx dv dr.

In the Euler scaling, the empirical distribution of the free gas converges to
the solution of

Btft(x, v, r) + vBxft(x, v, r) = 0,
with initial condition given by f0. For the rods density this corresponds to the
equation

Btgt(y, v, r) + By(veff(y, v, t)gt(y, v, r)) = 0,

veff(y, v, t) = v + ∬ r(v −w)gt(y,w, r)dwdr
1 −∬ rgt(y,w, r)dwdr

.
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as proven in [11].

For generic initial conditions, we can guess that, if the initial density f is
absolutely continuous in the x and v coordinates, then it satisfies that the limit
as t→∞ of ft(x, v, r) is constant in x, that is, ft(x, v, r) Ð→ ρf(v, r), for some
ρ ∈ R+ and f(v, r). This suggests that in a diffusive time scale the system essen-
tially behaves like if it is a stationary state determined by a Poisson point field
ρf(v, r)dx dv dr, and the analysis for the macroscopic fluctuations of Section 3
applies.

5. Two limit theorems for Poisson process

Lemma 5.1. Let φ(x, v, r) a smooth function on R3 with compact support in
x. Then

lim
ε→0

ε ∑
(x,v,r)∈Xε

rφ(x, v, r)Bε(x) law= ρ∭ rφ(x, v, r)B(x) dx dµ(v, r).

Proof. Since φ is a smooth function we can approximate both sides by step
functions, so that it is enough to prove that

lim
ε→0

ε ∑
(x,v,r)∈Xε

1[0⩽x<1]B
ε(x) law= ρ∫

1

0
B(x) dx. (5.1)

Since in this limit (v, r) are not involved, to simplify notation we will ignore
them. We can also substitute Bε(⋅) with a continuous version B̃ε(⋅) obtained
by linear interpolation that converges in law to the same limit. The positive
random measure Mε on [0,1] defined by

Mε(ψ) = ε ∑
(x,v,r)∈Xε

1[0⩽x<1]ψ(x), ψ ∈ C(0,1),

converges a.s. to the Lebesgue measure dx on [0,1]. Then, by the generaliza-
tion of Slutsky’s theorem in Theorem 2.7 (v) in [22], the the couple (Mε, B̃ε)
converges in law to (dx,B).

Let F (µ,ψ) a continuous function onM+([0,1])×C(0,1). Then F (Mε, B̃ε) Ð→
F (dx,B) in law. Apply this to

F (µ,ψ) = ∫
1

0
ψ(x)dµ(x),

and (5.1) follows.

Lemma 5.2. Let X̃ε be a homogeneous Poisson process on R with density ε−1ρ̃
and {B̃ε(x), x ∈ R} be a family of processes independent of X̃ε and such that they
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converge in law to the same random variable B̃. Then for any smooth compact
support function φ(x) on R,

lim
ε→0

ε−1/2(ε ∑
x∈X̃ε

φ(x + B̃ε(x)) − ρ̃∫ φ(x)dx) law= ξX̃(φB̃), (5.2)

where φB̃(x) = φ(x + B̃).

Proof. In order to shorten notation let’s assume ∫ φ(x)dx = 0. Denote

Zε ∶= ε1/2 ∑
x∈X̃ε

φ(x + B̃ε(x)).

Its characteristic function is

E[eikZε] = E[E(eikZε ∣Bε)] = E[exp(ρε−1 ∫ (eikε
1/2φ(x+B̃ε(x)) − 1)dx)]

= E[exp(−ρk2 ∫ φ(x + B̃ε(x))2dx)] +O(ε1/2)

Ð→
ε→0

E[exp(−ρk2 ∫ φ(x + B̃)2dx)] = E[exp(−ρk2 ∫ φ(x)2dx)].

The joint characteristic function of the couple (ξε,X ,Zε) is

E[eik1ξ
ε,X(φ)+ik2Zε] = E[exp(−ρ∫ [k1φ(x) + k2φ(x + B̃ε(x))]

2

dx)] +O(ε1/2)

Ð→
ε→0

E[exp(−ρ∫ [k1φ(x) + k2φ(x + B̃)]
2

dx)] = E[eik1ξ
X̃(φ)+ik2ξ

X̃(φB̃)],

i.e. (5.2).
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