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ABSTRACT
We have found that the ballistic trajectory of a precessing, orbiting and time-dependent velocity
jet has a semi-analytical solution. Bipolar, multipolar and S-like morphologies, which are
observed in young protoplanetary and planetary nebula (PPN and PN, respectively), can be
reproduced by setting different values for the ratio between dynamical time and precession
periods, the ratio between the precession and orbital periods, and the jet velocity variability
period. We have also computed numerical simulations and find a good agreement with the
semi-analytical solution for a jet 103 times denser than the surrounding environment.

Key words: hydrodynamics – methods: analytical – methods: numerical – ISM: jets and out-
flows – planetary nebulae: general.

1 IN T RO D U C T I O N

Collimated outflows or jets ejected by young stars or by the central
sources of protoplanetary and planetary nebulae (PPNe and PNe,
respectively) can be considered as ballistic if the jet material is much
denser than the gas of the circumstellar medium in which the jet
propagates. A ballistic model is a good tool for providing restric-
tions for the parameters employed for describing the morphologies
observed in these astrophysical objects.

Masciadri & Raga (2002) carried out an analytical and numerical
study of jets launched from a source which follows a circular orbit.
They found that this model produces global mirror-like morpholo-
gies. The case of a jet launched from a source in an elliptical orbit
was explored by González & Raga (2004).

A combination of a precessing and orbiting jet (from a source
tracing a circular orbit) was analysed by Raga et al. (2009). They
found that the ballistic trajectory of the jet material has an analytical
solution, and show that the effects of the orbital motion on the final
ballistic trajectory are observed at a distance Do = vjτ o from the jet
source. If the orbital period τo is lower than the precession period
τp, a point-symmetric morphology is observed farther away from
the central source (due to the precession).

� E-mail: pablo@nucleares.unam.mx
†Member of the Carrera del Investigador Cientı́fico, CONICET, Argentina.

A possible mechanism invoked for explaining the bipolar and
multipolar morphologies exhibited by PPNe and young PNe is the
presence of a binary system (Bond, Liller & Mannery 1978; Livio,
Salzman & Shaviv 1979; Soker & Livio 1994). One of the com-
ponents of the binary system forms an accretion disc (with ma-
terial from the companion star) and launches a jet (perpendicular
to this disc). The companion star produces a torque on the accre-
tion disc which generates a retrograde precession of the disc/jet
system (Terquem et al. 1999). Additionally, a variability of the
ejection velocity can be produced if the binary system follows an
elliptical orbit, as reported by Witt et al. (2009). Velázquez et al.
(2012) considered these elements (binary system and a jet with a
time-dependent ejection velocity) and modelled multipolar PPN by
means of 3D hydrodynamical simulations.

In this work, we follow the ideas of Masciadri & Raga (2002),
González & Raga (2004) and Raga et al. (2009) and find that the
case of a precessing, orbiting and time-dependent ejection veloc-
ity jet has a semi-analytical solution for its ballistic trajectory (the
solution is analytical for the case of a circular orbit). We then
compare this ballistic model with results obtained from 3D numer-
ical simulations, which were carried out with the Yguazú-a code.
This work is organized as follows: in Section 2 we present the
ballistic model, and in Section 3 we give the initial setup of both
the ballistic solution and the numerical simulations. The results
are shown in Section 4, and finally we present our conclusions in
Section 5.

C© 2012 The Authors
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2 BALLISTIC MODEL

As was previously mentioned, the jet material approximately has
a ballistic motion if its density is much larger than the density
of the surrounding medium. We assume that the jet has a time-
dependent ejection velocity vj(τ ). The jet source moves in an ellip-
tical orbit (we also consider the particular case of a circular orbit),
and the ejection direction precesses, describing a cone around the
orbital (z) axis, with a half-opening angle α. The orbital motion
lies on the xy plane, and the precession of the disc+jet system is
retrograde with respect to the orbital motion (see Terquem et al.
1999).

The (x, y, z) components of the ejection velocity at time τ , con-
sidering both orbital and precession effects, are

vx(τ ) = vj (τ ) sin α cos(−ωpτ + φ0) + vox(τ ) (1)

vy(τ ) = vj (τ ) sin α sin(−ωpτ + φ0) + voy(τ ) (2)

vz(τ ) = vj (τ ) cos α, (3)

where ωp is the precession angular frequency, φ0 is an initial phase
and vj(τ ) is the time-dependent ejection velocity for which we
consider a periodic variability of the form

vj (τ ) = vj0[1 + �v cos(ωoτ + δ0)], (4)

where ωo is the orbital frequency (based on Witt et al 2009, we
assume the same frequency for the orbital motion and jet velocity
variability), vj0 the mean jet velocity, �v the half-amplitude (in units
of vj0) and δ0 the initial phase of the ejection velocity variability. In
equations (1) and (2), vox and voy are the x- and y components of the
orbital speed. For a circular orbit, these velocity components are

vox = −vo sin(ωoτ + γ0); voy = vo cos(ωoτ + γ0), (5)

where γ 0 is a phase.
We now determine the locus of the ejected material at time t.

This material has been ejected at times t > τ , with the velocity
components given by equations (1)–(3). At time t, the position of
the gas ejected at a time τ is given by

(x, y, z) = (t − τ )(vx, vy, vz). (6)

Let us call D the distance to the ejected material farthest away
from the source, along the symmetry axis of the object. Then, if we
set ‘now’ as t = 0, the gas located at a distance D was launched at a
time τ = −τ d, with τ d = D/(vmax cos α) being the dynamical time
of the material at a distance D from the source, and vmax = vj0(1 +
�v). For τ = −τ d the precession, orbital and jet velocity variability
phases are

ωpτd + φ0 = f0 (7)

− ωoτd + γ0 = g0 (8)

− ωoτd + δ0 = d0, (9)

respectively. Assuming g0 = 0, i.e. at τ = −τd the binary system
is passing through its periastron, and combining equations (7)–(9)
with equations (6), we obtain

x = −τvj (τ ) sin α cos[−ωp(τ + τd) + f0]

+ τv0 sin[ωo(τ + τd)] (10)

y = −τvj (τ ) sin α sin[−ωp(τ + τd) + f0]

−τv0 cos[ωo(τ + τd)] (11)

z = − τvj (τ ) cos α , (12)

where vj (τ ) = vj0{1 + �v cos[ωo(τ + τd) + d0]}.
The following step is to write equations (10)–(12) in a dimen-

sionless form, which can be done by dividing both sides of equa-
tions (10)–(12) by D and writing τ as −τ ′τd (where τ ′ is a di-
mensionless time). Also we set τ d = p τ p and τ p = q τ o, where p
and q are two dimensionless parameters (following Velázquez et al.
2012).

The q parameter allows us to estimate the mass ratio m2/m1

between the two components of the binary system, considering the
work of Terquem et al. (1999). Choosing a value for m1 or m2, the
orbital radius and velocity can be calculated (by using Kepler’s third
law). Then, the dimensionless form of equations (10)–(12) is

x ′ = ±τ ′v′
j (τ

′) tan α cos[ω′
p(τ ′ − 1) + f0]

+τ ′v′
o sin[ω′

o(τ ′ − 1)] (13)

y ′ = ±τ ′v′
j (τ

′) tan α sin[ω′
p(τ ′ − 1) + f0]

+τ ′v′
o cos[ω′

o(τ ′ − 1)] (14)

z′ = ±τ ′v′
j (τ

′) , (15)

with v′
j (τ

′) = 1 + �v cos[ω′
o(τ ′ − 1) − d0]/(1 + �v) and v′

o =
vo/(vmax cos α). ω′

p = ωp τd = 2πp and ω′
o = ωo τd = 2πpq are

the dimensionless precession and orbital frequencies, respectively.
The + (−) sign corresponds to the trajectory of the gas emitted by
the jet (counterjet). The solution given by equations (13)–(15) is
analytical.

For the case of an elliptical orbit with an eccentricity e and semi-
major axis a, vox and voy have to be evaluated as follows. These
velocities can be written as a function of the polar coordinates r and
θ (and their derivatives), in the following way:

vox = ṙ cos θ − rθ̇ sin θ, (16)

voy = ṙ sin θ + rθ̇ cos θ. (17)

In order to obtain r and θ as a function of τ , it is necessary to
take into account the orbital equation in polar coordinates:

r = a(1 − e2)

1 + e cos θ
. (18)

Table 1. Models.

Models �v p q ε m2/m1 α(◦) f0 d0

M1a 0.5 2 2 0.5 14.8 15.0 0.0 0.0
M1b 0.5 2 2 0.5 14.8 15.0 0.0 −π/2
M1ca 0.5 2 2 – 14.8 15.0 0.0 −π/2
M1d 0.5 2 2 0.0 33.9 15.0 0.0 −π/2
M2 0.5 2 3 0.5 8.6 30.0 0.0 0.0
M3 0.5 2 4 0.5 5.2 30.0 π/4 0.0
M4 0.5 2 1.5 0.75 5.5 5.0 π/4 0.0
M5 0.25 0.5 6.0 0.5 2.2 15.0 π/4 −π/2

aModels M1c and M1b differ in that the former only considers precession
motion.

 at U
niversidad N

acional A
utÃ

³nom
a de M

Ã
©

xico on M
arch 22, 2013

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


A new ballistic jet model 1589

Figure 1. Plot of τp/τo versus m2/m1 for different values of α and e listed
in Table 1. The case for α = 5◦ and e = 0.75 is displayed as a continuous
line. The case for α = 15◦ and e = 0.5 is shown as a dotted line. The curve
for the case α = 30◦ and e = 0.5 is traced as a dashed line, while the case
for α = 15◦ and e = 0 (circular orbit) is plotted as a dot–dashed line.

Introducing the eccentric anomaly E, this equation can be written
as

r = a(1 − e cos E), (19)

with E being related to the polar angle θ by

tan
θ

2
=

(
1 + e

1 − e

)1/2

tan
E

2
. (20)

The velocities ṙ and θ̇ can be obtained from equations (18)–(20),
resulting in

θ̇ =
(

1 + e

1 − e

)1/2[
cos(θ/2)

cos(E/2)

]2
ωo

1 − e cos E
(21)

ṙ = a e sin θ (1 − e2)

(1 + e cos θ )2
θ̇ . (22)

The next step is to obtain E(τ ) from Kepler’s equation:

E − e sinE = ωoτ + γ0 . (23)

As in equation (8), for τ = −τd, γ 0 is chosen such that −ωoτd +
γ0 = 0. Writing the right-hand side of equation (23) in a dimen-
sionless form, we have

E − e sinE = ω′
o(1 − τ ′) . (24)

In order to calculate vox and voy we then follow the following
procedure:

(a) we solve numerically equation (24) (i.e. by means of a
Newton–Raphson method) in order to obtain E(τ ), choosing as
initial value E(τ ) = ω′

o,
(b) we introduce the resulting E(τ ) into equation (19) and (20)

to obtain r(τ ) and θ (τ ),
(c) we finally introduce equations (21) and (22) into equa-

tions (16) and (17).

We then obtain a dimensionless form for the trajectory, given by
equations (10)–(12), for the elliptical orbit case:

x ′ = ±τ ′v′
j (τ ′) tan α cos[ω′

p(τ ′ − 1) + f0]

−τ ′v′
ox(τ ′) (25)

y ′ = ±τ ′v′
j (τ ′) tan α sin[ω′

p(τ ′ − 1) + f0]

+τ ′v′
oy(τ ′) (26)

z′ = ±τ ′v′
j (τ

′) . (27)

3 INI TI AL SETUP

3.1 Semi-analytical ballistic model

Employing equations (25)–(27), we have traced several trajectories
for the parameters of the models listed in Table 1. As mentioned
above, the q parameter allows us to estimate the mass ratio m2/m1

between the components of the binary system. Employing equa-
tion (1) of Terquem et al. (1999), and choosing the values for e and
α, we have calculated τp/τo versus m2/m1 plots, which are displayed
in Fig. 1. Using this figure, for each q value listed in Table 1, we
can estimate its corresponding m2/m1. We have set m1 = 0.5M�
for all models.

Figure 2. 3D ballistic trajectories corresponding to models M1a (left-hand panel) and M1b (right-hand panel). The projections of these trajectory on each
three planes are plotted as dashed lines. The axes are given in dimensionless units.
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Figure 3. Same as Fig. 2 but for models M2 (left-hand panel) and M3 (right-hand panel).

Figure 4. The left-hand panel shows a comparison between trajectories of
model M1c (only precession, continuous line) and M1b (precession+orbital
motion, dashed line) projected on the xz plane. The right-hand panel shows
the yz projection of these trajectories. The axes are given in dimensionless
units.

In these models, we have explored the effects of the orbital motion
(circular and elliptical: models M1d and M1b, respectively) on the
final locus traced by a jet with a time-dependent ejection velocity.
Models M1b and M1c allow us to directly compare the cases with
precession+orbital motion and with only precession. Also, we have
calculated the jet loci obtained by setting the p and q parameters to
non-integer values.

3.2 Numerical simulations

In order to compare the results obtained from the semi-analytical
method described in the previous section, we also carried
out 3D hydrodynamic simulations for some of the models of
Table 1.

The 3D numerical simulations were performed with the YGUAZÚ-A

hydrodynamical code (Raga et al. 2000), which integrates the gas
dynamical equations with a second-order accurate scheme (in time

Figure 5. The left-hand panel (right-hand panel) shows a comparison be-
tween trajectories of models M1d (circular orbit, continuous line) and M1b
(elliptical orbit, dashed line) projected on the xz plane (yz plane). Both axes
are given in dimensionless units.

and space) using the ‘flux-vector splitting’ method of van Leer
(1982) on a binary adaptive grid. A rate equation for neutral hydro-
gen is integrated together with the gas dynamic equations, and the
radiative losses are included with a parametrized cooling function
that depends on the density, temperature and hydrogen ionization
fraction (Raga & Reipurth 2004). The resulting time-dependent
cooling function is plotted in fig. 1 of Velázquez et al. (2011) for a
gas parcel that cools at a constant (atom+ion) number density n =
1 cm−3.

A computational domain of (1.25, 1.25, 2.5) × 1017 cm along the
x-, y- and z axes (respectively) was employed. An adaptive Cartesian
grid with five refinement levels was used, achieving a resolution of
∼4.9 × 1014 cm at the finest level, corresponding to (256 × 256 ×
512) pixels in a uniform grid.

At the centre of the computational domain, we impose a pre-
cessing, orbiting and time-dependent ejection velocity jet with a
radius of 3.5 × 1015 cm and a length of 3 × 1015 cm. Models M1a,
M1b, M2, M3, M4 and M5 have been computed employing the
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A new ballistic jet model 1591

Figure 6. Left-hand panels: xz and yz projections of the column-density maps obtained for model M1a. Right-hand panels: the same but for model M1b.
Vertical and horizontal axes are given in units of 1017 cm, while the logarithmic colour scale is given in cm−2. The ballistic trajectories obtained for each model
are overlayed in white continuous lines.

Figure 7. Same as Fig. 6 but left-hand panels showing the column-density maps for model M2, while right-hand panels corresponding to model M3.

parameters listed in Table 1. The initial number density of the jet
was set to 103 cm−3, and its mean velocity to 200 km s−1. The jet
material propagates into a circumstellar medium with a constant
density of 1 cm−3 or 10 cm−3, in order to compare the results with
the predicted trajectories.

4 R ESULTS

We obtained the ballistic trajectories for models with the parameters
listed in Table 1.

Fig. 2 shows the 3D trajectories traced by models M1a (left)
and M1b (right) with solid lines. The projections of the trajectories
on the coordinate planes are shown in dashed lines. These mod-
els differ from each other in the initial phase of the jet velocity
variability. In both models, the projected trajectory on the xz plane
traces a point-symmetric quadrupolar shape, and this quadrupo-
lar morphology becomes a bipolar structure for the yz projec-
tion of model M1a. In contrast, the yz projection of model M1b
shows a wide and well-developed upper lobe and a pair of bottom
lobes.
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Figure 8. Same as Figs 6 and 7 but left-hand panels showing the column-density maps for model M4, while right-hand panels corresponding to model M5.

The 3D ballistic trajectories obtained from models M2 and M3
are shown in Fig. 3. For model M2, the xz projected trajectory
shows a clear point-symmetric quadrupolar morphology, while the
yz projection reveals a structure with six lobes. Both projections
for model M3 display a quadrupolar morphology, which can be
changed by varying the initial phase of the precession motion f0

(e.g. a six-lobe morphology will be obtained by setting f0 = 0).
In Fig. 4, we compare the projected trajectories on the xz- and

yz-planes for model M1c (solid line) and model M1b (dotted line).
Both models share the same parameters with the difference that
model M1c only has a precession (and no orbital motion). The
trajectories obtained from model M1c show a clear global point-
symmetric structure. When we include an elliptical orbital motion,
a break on this point-symmetric structure is produced, which is
clearly observed on the yz-projected trajectories. In these projec-
tions, model M1b exhibits a quadrupolar morphology, while the two
upper lobes obtained in model M1b become a single upper lobe in
model M1c.

The ballistic trajectories obtained for elliptical and circular orbits
are compared in Fig. 5 (the projected trajectories for models M1b
and M1d are shown with a dashed and a solid line, respectively).
Both models show very similar global morphologies.

In order to check the predictions obtained with the semi-analytical
calculation, we have also carried out numerical hydrodynamical
simulations for all models. After several tests, we found that a
good agreement between the numerical simulations and the semi-
analytical model is obtained if we consider a ratio between the
jet and the environment density greater than 103, as is shown in
Figs 6, 7 and 8. These figures display column-density maps (in
grey-scale) obtained from numerical simulations of models M1a
and M1b (Fig. 6), M2 and M3 (Fig. 7), and M4 and M5 (Fig. 8).
The corresponding ballistic trajectories are also shown in black
lines, and they trace very well the locus of the jet material obtained
from the numerical simulations. Some departures between the nu-
merical simulations and ballistic trajectories are observed in the
case of model M4, mainly in the top-right lobe, where the ballistic

trajectory appears ahead of the jet locus obtained from the numeri-
cal simulation (see Fig. 7). This departure is produced because the
jet gas does not follow a ballistic trajectory when the jet material
launched at later times passes through the cocoon generated by the
gas emitted at earlier times.

In the previous models, we have considered integer values for the
p and q ratios. In models M4 and M5, we explore cases with non-
integer p and q values. Fig. 8 shows the column-density maps,
in colour scale, obtained from the numerical simulation corre-
sponding to models 4 and 5. The predicted ballistic trajectories
of these models are also shown in continuous lines. The xz projec-
tion of model M4 resembles the characteristics of the PPN CRL 618
(Riera et al. 2011), while an S-shape is obtained for model M5. This
kind of S-shaped morphology is observed in several PPNe and PNe,
such as Hen 3-1475 and IC 4634 (Riera, Velázquez & Raga 2004;
Guerrero et al. 2008).

5 SU M M A RY

We have found that the trajectory of material launched as a precess-
ing and orbiting jet with a time-dependent ejection velocity has a
semi-analytical ballistic solution. We find a good fit between this
solution and the jet loci obtained through 3D numerical simulations
if the initial jet to environment density ratio has a value ≥103. The
ballistic solution is a good tool for exploring the different parame-
ters which are necessary for modelling specific PPNe, young PNe
and HH objects with bipolar or multipolar morphologies.

The obtained results confirm that a morphology with well-defined
lobes is obtained if a velocity variability of the precessing and
orbiting jet (with a half-amplitude of the order of 50 per cent of the
mean jet velocity) is considered (see Figs 2–7). The S-like shapes
are generated for slowly precessing jets (i.e. with p < 1) as is
observed for model M5 in Fig. 8.

This study shows that the effect of the orbital motion is to intro-
duce some departures from the point symmetry due to precession,
as is observed in Fig. 4. In addition, the ballistic solution shows that
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the differences between trajectories obtained considering circular
or elliptical orbital motions are not major (Fig. 5).

We conclude by noting that the semi-analytical ballistic solution
(for the trajectory of a precessing and orbiting jet, with a time-
dependent ejection velocity) is able to reproduce bipolar, multipolar
and ‘S-type’ shapes, all of which are observed in some PPNe and HH
objects. These morphologies can be obtained considering different
values for the ratio between dynamical time and precession period
(our p parameter) and for the ratio between the precession and jet
velocity variability periods (our q parameter).
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J., Riera A., 2011, ApJ, 734, 57
Velázquez P. F., Raga A. C., Riera A., Steffen W., Esquivel A., Cantó J.,
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