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Abstract. Given Ω a proper open subset of a metric space with the weak

homogeneity property and a measure µ doubling on certain local balls, we
give sufficient conditions about local weights for the two-weight boundedness

of the local fractional maximal operator acting on weighted Lebesgue spaces.

As applications we obtain analogous results for singular and fractional type
operators and their commutators. As a further application we present an a

priori estimate for solutions of ∆mu = f in Ω, acting in weighted Sobolev

spaces involving the distance to the boundary and different local weights.

1. Introduction

Let Ω be a proper open and non empty subset of X, where X is a metric space
satisfying the weak homogeneity property, that is, if d is a metric on X, there are no
more than N points in a ball B = B(x, r) whose distance from each other is greater
than r/2, for all ball B for some fixed number N . It is clear that this property
implies separability of X. Also, we will suppose that all the balls contained in Ω
are connected sets and their closure are compact sets.

For 0 < β < 1, we consider the family of balls well-inside of Ω defined by

Fβ = {B = B(xB , rB) : xB ∈ Ω, rB < β d(xB ,Ω
c)} ,

where xB and rB are the center and the radius of the ball and d(xB ,Ω
c) is the

distance of xB to the complementary set of Ω.
As usual, we will denote by λB the ball with same center and radius λ−times

of B. Also, given a Borel measure µ defined on Ω such that 0 < µ(B) < ∞ for
any ball B ∈ F = ∪0<α<1Fα, we will say that µ is doubling on Fβ if there is some
constant Cβ such that

(1.1) µ(B) ≤ Cβ µ(
1

2
B) ,

for any ball B ∈ Fβ .

Remark 1.2. Let us remark that the doubling condition on Fβ implies the finiteness
of the measure µ(B) for B ∈ Fβ , even though this is not so for all the balls contained
in Ω.
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Remark 1.3. In [6] it was proved that such a measure is doubling on Fα too, for
0 < α < 1, perhaps with a different constant that may increase to infinity when α
increases to 1. For instance, if Ω = (0,∞), dµ = dx/x, it is easy to see that µ is
doubling on Fα with constant C(α) → ∞ when α → 1−. In fact, to see this we
consider x0 ∈ (0,∞), α ∈ (0, 1) and 0 < t < α. Then, we have∫ x0

x0−tx0

dx

x
= ln

1

1− t
=

ln 1
1−t

ln 1
1− t2

∫ x0

x0− t2x0

dx

x
.

Now, denoting C(t) =
ln 1

1−t
ln 1

1− t
2

, it can be easily proved that C(t) is a continuous

function over [0, α] such that C(α) → ∞ when α → 1− which, in turn, proves our
statement for the measure given by dµ = dx

x .

In this context, for each 0 ≤ γ < 1 we consider the local fractional maximal
function on Ω defined as follows

(1.4) Mγ
β f(x) = sup

B: x∈B∈Fβ

1

µ(B)1−γ

∫
B

|f(y)| dµ(y) ,

for every f ∈ L1
loc(Ω) and every x ∈ Ω. Moreover, for each r > 1 we denote

Mγ,r
β f =

(
Mγr
β (|f |r)

)1/r
, whenever γr < 1. Throughout this work, unless otherwise

indicated, all the spaces involved will be defined with the measure µ.

When γ = 0, we will use the notation Mβ instead M0
β . This case is considered

by Harboure, Viviani and the second author in [6]. They characterized the class
of weights w such that Mβ is bounded in Lp(Ω, w). This class is a local version of
the Ap-Muckenhoupt classes and it is denoted by Aβp . We say that a positive a.e.

function w in L1
loc(Ω) belongs to Aβp if there exists a constant Cβ such that

(1.5)

(
1

µ(B)

∫
B

w dµ

)(
1

µ(B)

∫
B

w−
1
p−1 dµ

)p−1

≤ Cβ ,

for every ball B in Fβ .
In our work, we will say that a weight u satisfies a doubling condition on F if

the measure u(B) =
∫
B
u dµ is doubling in the sense of (1.1) for any ball B ∈ F .

In this case, we will denote u ∈ D(F).

Remark 1.6. Let Ω =
{

(x, y) ∈ R2 : x > 0
}

with the metric d((x1, y1), (x2, y2)) =
max {|x1 − x2|, |y1 − y2|}. Given β ∈ (0, 1) we define on Ω the function

w(x, y) =

{
e−1/x , if |y| ≤ mx ,
1 , if |y| > mx ,

where m = β
4(1+β) . By considering the balls B((2−i, 0), m

1+m ), i ∈ N, it is not

difficult to see that w ∈ D(Fβ\Fβ̃) with β̃ = m
1+m . Moreover, w 6∈ D(F ˜̃

β
) for each

˜̃
β < β̃.

On the other hand, we will consider the class Aβ∞ =
⋃
pA

β
p . Observe that if a

weight u belongs to Aβ∞, then u ∈ D(Fβ). Moreover, there are positive constants
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C and δ such that

(1.7)
u(E)

u(B)
≤ C

(
µ(E)

µ(B)

)δ
,

holds for every measurable subset E ⊂ B and for any B ∈ Fβ .

The two-weight boundedness problem forMβ was studied by the first two authors
and Viviani in [15]. In the context of Rn with the Lebesgue measure, they gave
a characterization of the pairs of weights (u, v) for which Mβ is bounded from
Lp(Ω, v) to Lq(Ω, u). More precisely, they proved the following theorem

Theorem 1.8. Given 1 < p ≤ q <∞ and 0 < β < 1, let (u, v) be a pair of weights

such that u ∈ D(Fβ) and σ = v1−p′ belongs to Aβ∞. Then

(1.9) Mβ : Lp(Ω, v)→ Lq(Ω, u)

if and only if

(1.10) |B|−1

(∫
B

u dx

)1/q (∫
B

σ dx

)1/p′

≤ C ,

for every ball B ∈ Fβ.

The condition (1.10) was denoted there as Aβ
p,q. Now, related to the aim of this

article, for 1 < p ≤ q < ∞, 0 < β < 1 and 0 ≤ γ < 1, we will say that a pair of
weights u and v lies in the class Aγ,β

p,q if and only if

(1.11) µ(B)γ−1 u(B)1/q σ(B)1/p′ ≤ C ,

for every ball B ∈ Fβ , where σ = v1−p′ . We will write (u, v) ∈ Aγ,β
p,q .

Note that this type of condition usually appears in literature in connection with
two-weight boundedness problems (see, for instance, [2] , [4] and [10]). In the
particular case γ = 0 and µ the Lebesgue measure, we obtain (1.10). Moreover, if
γ = 0, u = v and p = q, we recover the local Muckenhoupt class of weights Aβp as
in (1.5).

It is important to observe that, as in the one-weight case, (1.10) describes the
same class for all the values of β (see Theorem 3.4 in [6] and Lemma 4.1 in [15]).
Analogously, it is not difficult to check that Aγ,β

p,q coincides with Aγ,α
p,q for 0 < α <

β < 1, taking into account that µ satisfies the doubling condition on Fβ , and
u, σ ∈ D(Fβ). So, as in the one-weight case, we can refer to those as local weights
and denote this class as Aγ,loc

p,q . In the particular case γ = 0 we write Alocp,q.

Remark 1.12. For a domain Ω and 0 < β < 1 we denote d(x) = d(x,Ωc). Since
d(x) ' d(xB) for x ∈ B and xB the center of B with B ∈ Fβ , we have that dα ∈ Aβp
for all α. In turn, for the class Aγ,βp,q , it is not difficult to see that (dα,dδ) ∈ Aγ,βp,q
for a bounded domain Ω whenever γ + 1

q −
1
p ≤ 0 and α

q −
δ
p ≤ 0. For a general

domain Ω we get the result but when γ + 1
q −

1
p = α

q −
δ
p = 0.

Before stating our first result we need to recall some facts about Orlicz spaces. A
function φ : [0,∞)→ [0,∞) is called a doubling Young function if it is continuous,
increasing, convex and such that φ(0) = 0, φ(t)→∞ as t→∞ and φ(2t) ≤ Cφ(t),
for all t and some positive constant C. It follows that φ(st) ≥ sφ(t) for all s ≥ 1
and t > 0. Now, for a given metric space X, we will consider the Orlicz space Lφ =
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Lφ(X) as a subclass of measurable functions on X satisfying
∫
X
φ(|f |) dµ <∞ . A

seminorm in these spaces is given by the Luxemburg norm as follows

‖f‖φ = inf

{
λ > 0 :

∫
X

φ
( |f |
λ

)
dµ ≤ 1

}
.

On the other hand, for each ball B belonging on X, we consider the φ-average
of f over B as above, that is

‖f‖φ,B = inf

{
λ > 0 :

1

µ(B)

∫
B

φ
( |f |
λ

)
dµ ≤ 1

}
.

We recall that, given a Young function φ, the function φ̃(t) = sups>0(st−φ(s)),
known as complementary function of φ, satisfies the property

t ≤ φ−1(t) φ̃−1(t) ≤ 2t ,

for all t > 0. Thus, we have the generalized Hölder inequality

1

µ(B)

∫
B

|f g| dµ ≤ C ‖f‖φ,B ‖g‖φ̃,B .

For a weight u we will say that f belongs to the weighted Orlicz space Lφ(u) =
Lφ(X,u) if and only if fu ∈ Lφ and we denote by ‖f‖Lφ(u) = ‖f‖φ,u = ‖fu‖φ the

norm on this spaces. For more details about Orlicz spaces see, for instance, [16].

Definition 1.13. Let 1 < p <∞. We say that a Young function φ belongs to the
class Bp if there is a positive constant c such that∫ ∞

c

φ(t)

tp
dt

t
<∞ .

In the case where X is a space of homogeneous type the definition above char-
acterizes the class of functions such that the associated maximal operator

(1.14) Mφf(x) = sup
B: x∈B

‖f‖φ,B

is bounded on Lp(X) (see Theorem 1.4 in [13]).
With all this in mind, our first main result can be stated as follows.

Theorem 1.15. Let us consider 1 < p ≤ q <∞, 0 < β < 1, 0 ≤ γ < 1 and ψ be a
doubling Young function such that ψ̃ belongs to Bp. Then, for every pair of weights

(u, v) such that u ∈ D(Fβ) and σ = v1−p′ ∈ D(Fβ\Fβ̃), with β̃ < β/160, we have

(1.16) Mγ
β : Lp(Ω, v)→ Lq(Ω, u) ;

whenever

(1.17) µ(B)γ−1/p+1/q

(
1

µ(B)

∫
B

u dµ

)1/q

‖v−1/p‖ψ,B ≤ C ,

for every ball B ∈ Fβ .
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Remark 1.18. We consider Ω and d as in the Remark 1.6. Let

σ(x, y) =

{
e−1/x , if |y| ≤ mx ,
1 , if |y| > mx ,

for 0 < β < 1 with m = β
160(1+β) . Again, it is easy to check that σ ∈ D(Fβ\Fβ̃) for

β′ = m
1+m . Then, taking γ = 0, 1 < p = q <∞ and r > 1 such that r′ < p we can

to show that u = 1 in Ω and v = σ−
1
p−1 satisfies (1.17) with ψ(t) = tr.

As a corollary of Theorem 1.15 above we recover Theorem 1.8.

Corollary 1.19. Given 1 < p ≤ q < ∞ and 0 < β < 1, let (u, v) be a pair of

weights such that u ∈ D(Fβ) and σ = v1−p′ belongs to Aβ∞. Then (1.9) if and only
if (1.10) holds.

Proof. Clearly, (1.9) imply (1.10). On the other hand, if σ ∈ Aβ∞ then it satisfies a
reverse Hölder inequality, that is, there exists r > 1 such that(

1

µ(B)

∫
B

σr
)1/r

≤ c

µ(B)

∫
B

σ ,

for some positive constant c and every ball B ∈ Fβ . Then, for γ = 0 we get that

(1.10) implies (1.17) by taking ψ(t) = tp
′r and by using the Theorem 1.15 we have

(1.9). �

Remark 1.20. It is important to note that this result generalizes Theorem 1.1 in [6],
to the two-weight case.

The techniques involved in the proof of Theorem 1.15 strongly rely on estab-
lishing a connection between the boundedness problem for operators in the local
setting and in spaces of homogeneous type, (see Section 2). So, the following result
in the context of spaces of homogeneous type, which is an improvement of Theorem
1.6 in [2], will turn out to be a very important tool.

The definition we will give here are intended to contain cases where the space X
is a subset of a metric space. In this direction, for 0 ≤ γ < 1, we denote by Mγ

X
the fractional maximal operator defined for each f ∈ L1

loc(X ) by

(1.21) Mγ
X f(x) = sup

B: x∈B∈F (X )

1

µ(BX )1−γ

∫
BX

|f(y)| dµ(y) ,

where BX = B ∩ X and F (X ) = {B(xB , rB) : xB ∈ X ; rB > 0}. In the case γ > 0,

for each 1 < r < 1/γ we denote Mγ,r
X f =

(
Mγr
X (|f |r)

)1/r
, in a similar way as in

(1.4).

In the following theorems, if the space X is in particular a space of homogeneous
type in itself we will denote it X.

Theorem 1.22. Let (X, d, µ) be a space of homogeneous type and let 1 < p ≤ q <

∞, 0 ≤ γ < 1. Let ψ be a doubling Young function such that ψ̃ belongs to Bp.
Suppose (u, v) is a pair of weights such that

(1.23) µ(B)γ−1/p
(∫

B

u dµ
)1/q

‖v−1/p‖ψ,B ≤ C ,
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for every ball B ⊂ X. Then

Mγ
X : Lp(X, v)→ Lq(X, u) .

Remark 1.24. The particular case X = Rn with the Lebesgue measure was proved
by Pérez [11] (see Theorem 2.11 in that work). He studied a slighty more general
maximal operator Mϕ where ϕ is a positive essentially nondecreasing function such
that ϕ(t)/t → 0 whenever t → ∞. Roughly speaking the function ϕ measures the
degree of fractionability of the operator. The hypothesis on the pair of weights
there can be recovered by taking ϕ(t) = tγ .

Theorem 1.22 and an adapted version of Welland’s inequality (Lemma 2.3) allow
us to get the following result about fractional integral operators T γX in the context
of spaces of homogeneous type (see Section 2 for its definition).

Theorem 1.25. Let (X, d, µ) be a space of homogeneous type, 1 < p < q <∞ and
0 < γ < 1. Let ψ be as in Theorem 1.22 and let (u, v) be a pair of weights satisfying
that there exists r > 1 such that

(1.26) µ(B)γ−1/p+1/q

(
1

µ(B)

∫
B

ur dµ

)1/rq

‖v−1/p‖ψ,B ≤ C ,

for every ball B ⊂ X. Then we have

T γX : Lp(X, v)→ Lq(X, u) .

It is important to note that this result also provides an extension in some way
of Theorem 2.1 in [11], to the case of spaces of homogeneous type and p < q.

Now, we introduce the notion of local operators ([7]). For 0 < β < 1 and
0 ≤ γ < 1 we say that T γβ is a (β, γ)-local operator if it satisfies

(1) There exists a kernel K : Ω× Ω→ C such that for any f ∈ L∞c (Ω)

T γβ f(x) =

∫
Ω

K(x, y) f(y) dµ(y) , a.e. x 6∈ supp f .

Moreover, T γβ f(x) = 0 for every x such that B(x, βd(x,Ωc)) ∩ supp f = ∅.
(2) The kernel satisfies:

(a) for every x, y ∈ Ω such that d(x, y) < d(x,Ωc)

|K(x, y)| ≤ C

µ(B(x,d(x, y)))1−γ ;

(b) for some ε > 0 and whenever d(x, x0) ≤ 2d(x, y)

|K(x, y)−K(x0, y)|+ |K(y, x)−K(y, x0)| ≤ C

µ(B(x, d(x, y)))1−γ

(
d(x, x0)

d(x, y)

)ε
.

(3) Only in the case γ = 0: T 0
β : L2(Ω)→ L2(Ω).

In the case γ = 0 in order to simplify the notation, we will use Tβ instead of
T 0
β . For obvious reasons, we will refer to this type of operators as “β-local singular

operators”, while in the case 0 < γ < 1 we will speak of “β-local fractional operators
of order γ”.
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As an example of the last operators, for an open subset Ω of Rn, we consider

(1.27) Iγβf(x) =

∫
Ω

χB(x,βd(x,Ωc))(y)

|x− y|n(1−γ)
f(y) dµ(y) .

In this work we consider L∞c (Ω) as the set of functions essentially bounded
with respect to µ and support contained in a finite number of balls B such that
d(B,Ωc) > 0. By using the local version of Whitney’s Lemma (see Lemma 3.4) it
is easy to see that L∞c (Ω) is a dense subspace of Lp(Ω, v), where v is a weight.

The class of β-local singular operators was recently studied by Harboure, Viviani
and the second author ([7]) in the context of metric spaces. More precisely, they
proved that Tβ is bounded on Lp(Ω, wp), for p > 1 and weights w in Aloc

p,p.

This kind of operator has been well studied by several authors in other con-
texts (see for instance [4] in the Euclidean case and [1] in the context of space of
homogeneous type).

In this work we ask ourselves about the two-weight problem for this kind of
operators and their commutators. In order to give answers we will adapt ideas
given in [7] and combine them with new techniques, specially in the case of the
commutators. An important tool of our work is the β-local maximal sharp operator
defined by

(1.28) M]
βf(x) = sup

B: x∈B∈Fβ

1

µ(B)

∫
B

|f −mBf | dµ + sup
B: x∈B∈Cβ

1

µ(B)

∫
B

|f | dµ ,

where Cβ = {B = B(xB , β d(xB ,Ω
c)) : xB ∈ Ω}. In a similar way, we consider a

local version of the well known BMO space.

Definition 1.29. We say that a function f belongs to the space BMOβ(Ω), with

0 < β < 1, if and only if M]
βf ∈ L∞(Ω). We denote ‖f‖BMOβ(Ω) = ‖M]

βf‖L∞(Ω).

Now, for 0 < β < 1, 0 ≤ γ < 1, m ∈ N and b ∈ BMOβ(Ω) we define the
commutator of order m for a (β, γ)-local operator as follows

T γ,mβ,b f(x) =

∫
Ω

(b(x)− b(y))
m
K(x, y) f(y) dµ(y) ,

where the kernel K is as before both in the singular case and in the fractional case.

Theorem 1.30. Let 0 < β < 1, 0 ≤ γ < 1, m ∈ N∪{0} and 1 < p ≤ q <∞. Let u

and v be weights such that u ∈ Aβ∞, σr = v1−(p/r)′ ∈ D(Fβ\Fβ̃), with β̃ < β/4000
and

(1.31) µ(B)γ−1/p+1/q

(
1

µ(B)

∫
B

u dµ

)1/q

‖v−r/p‖1/rψ,B ≤ C ,

for all B ∈ Fβ, for some r > 1 such that γr < 1, where ψ is as in Theorem 1.15.
Then, for b ∈ BMOβ(Ω) we have

T γ,mβ,b : Lp(Ω, v)→ Lq(Ω, u) .

Remark 1.32. Theorem 1.30 hold for the operator T γβ,b taking m = 0. This result is
interesting in itself, and it is not necessary to give a special proof since it follows in
the same way as for m ∈ N as the results involved in the proof are also valid when
m = 0.
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The following proposition, interesting in itself, is an important tool for the proof
of the previous result for small values of β.

Proposition 1.33. Let (X, d, µ) be a space of homogeneous type and Ω ⊂ X as
usual. Let m ∈ N ∪ {0}, 0 ≤ γ < 1 and 1 < r < 1/γ. Then there exist constants
β0 and 0 < η < 1 such that for each β ∈ (0, β0/3), if T γβ is a (β, γ)-local operator,

then the commutator T γ,mβ,b satisfies∫
Ω

|T γ,mβ,b f |
q u dµ ≤ C ‖b‖mq

BMOβ

∫
Ω

|Mγ,r
η f |q u dµ ,

for every f ∈ L∞c (Ω), where u ∈ Aβ∞ and b ∈ BMOβ(Ω).

The structure of this paper is as follows. Section 2 contains some useful technical
lemmas and the proof of Theorem 1.22 and Theorem 1.25. Section 3 proves several
tools about the covering lemma that we use later. Section 4 shows that local
BMO functions belong to certain classic BMO spaces in the setting of spaces of
homogeneous type. In addition, Theorem 1.15 is proved. Finally, the proofs of
Theorem 1.30 and Proposition 1.33 are in Section 5 with some applications of the
main result. Throughout this paper C will denote a positive constant, not the same
at each occurrence.

2. Results on spaces of homogeneous type

Let X be a set endowed with a quasi-distance d with constant A such that, for
each x ∈ X and r > 0, the balls B(x, r) = {y ∈ X : d(y, x) < r} are open sets and
a positive measure µ satisfying a doubling property. A set like this is called a space
of homogeneous type and denoted by (X, d, µ).

In this section we consider the fractional maximal operator Mγ
X as in (1.21).

We state the following lemma without proof (it can be found in [2]). First, we

introduce some notation. For a ball B = B(x, r) we denote B̃ = B(x, 5A2r), where
A is the quasi-distance constant. If E is a µ-measurable set and f is a nonnegative
integrable function we write

mEf = µ(E)γ−1

∫
E

f dµ ,

for a fixed γ ∈ [0, 1). For each k ∈ Z, let Ωk =
{
y ∈ X : bk+1 ≥Mγ

Xf(y) > bk
}

,
where b > 1 is fixed and depends on the quasi-distance and doubling property
constants. In the case µ(X) < ∞, we take k0 such that bk0+1 ≥ mXf > bk0 . Note
that, in this case, Ωk = ∅, for k < k0.

Lemma 2.1. [2] For any non negative function f with bounded support, and any
k ∈ Z such that Ωk 6= ∅, there exist a sequence {Bki }i∈N of balls satisfying:

(2.1.1) Ωk ⊂
∞⋃
i=1

B̃ki ,

(2.1.2) Bki ∩Bkj = ∅ whenever i 6= j.

(2.1.3) If µ(X) =∞, then for every Bki , there exists xki ∈ Bki such that if rki is the
radius of Bki , r ≥ 5A2 rki and xki ∈ B = B(y, r), then bk+1 ≥ Mγ

Xf(xki ) ≥
mBki

f > bk ≥ mBf .
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(2.1.4) If µ(X) < ∞, then (2.1.3) still holds for k > k0, but if k = k0 we only

have one ball Bk01 such that Ωk ⊂ Bk01 = X and bk0+1 ≥ Mγ
Xf(xk0i ) ≥

m
B
k0
i
f > bk0 , for some xk0i ∈ B

k0
i .

(2.1.5) If x 6∈ ∪∞j=k ∪∞i=1 B̃
j
i and Mγ

Xf(x) <∞, then Mγ
Xf(x) ≤ bk.

(2.1.6) Let Ikj = {(l, n) ∈ Z × N : l ≥ k + 2, B̃ln ∩ B̃kj 6= ∅} and let Akj =⋃
(l,n)∈Ikj

B̃ln. Then 2µ(Akj ) ≤ µ(Bkj ).

(2.1.7) Let Ekj = B̃kj \ Akj . Then 2µ(Ekj ) ≥ µ(B̃kj ) and µ(X \ ∪k,jEkj ) = 0. If

x ∈ Ekj and Mγ
Xf(x) <∞, then Mγ

Xf(x) ≤ bk+2.

(2.1.8) Let F kj = Bkj \Akj . Then µ(F kj ) ≥ C µ(B̃kj ) and

∞∑
k=−∞

∞∑
j=l

χFkj (x) ≤ 3 ,

where χE denotes the characteristic function of the set E.

Now, we are in a position to proceed with the proof of Theorem 1.22.

Proof of the Theorem 1.22. Let f ≥ 0, f ∈ Lp(X, v) with bounded support. By
Lemma 2.1 there exist a sequence of balls {Bki } and a positive constant C such
that

‖Mγ
Xf‖

q
Lqu

=

∫
X

(Mγ
Xf)q u dµ

≤ C
∑
i,k

(mBki
f)q

∫
B̃ki

u dµ

= C
∑
i,k

µ(Bki )γq
∫
B̃ki

u dµ

(
1

µ(Bki )

∫
Bki

f dµ

)q

≤ C
∑
i,k

(
µ(B̃ki )γ−1/p

(∫
B̃ki

u dµ
)1/q

‖v−1/p‖ψ,B̃ki

)q
µ(B̃ki )q/p ‖f v1/p‖q

ψ̃,Bki

≤ C
∑
i,k

µ(F ki )q/p ‖f v1/p‖q
ψ̃,Bki

,

where in the last step we use (1.23) and the condition (2.1.8). Thus, by the def-
inition of Mψ̃ and the fact that {F ki } have bounded overlapping we can conclude
that, since p ≤ q

‖Mγ
Xf‖

q
Lqu
≤ C

∑
i,k

∫
X

(Mψ̃(f v1/p))p χFki dµ

q/p

≤ C
(∫

X
(Mψ̃(f v1/p))p dµ

)q/p
≤ C

(∫
X
fpv dµ

)q/p
,
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where the boundedness of Mψ̃ on Lp(X) follows from the fact that ψ̃ ∈ Bp (see

Theorem 1.4 in [13] and Remark 1.17 here). �

In addition, we will consider integral fractional operators. More precisely, we
will say that T γX , with 0 < γ < 1, is a fractional integral operator of order γ if it
satisfies:

(1) There exist a kernel K : X× X 7→ C such that for any f ∈ L∞c (X)

T γXf(x) =

∫
X
K(x, y) f(y) dµ(y) , a.e. x 6∈ supp f .

(2) The kernel satisfies:
(a) for every x, y ∈ X

|K(x, y)| ≤ C

µ(B(x,d(x, y)))1−γ ;

(b) for some ε > 0

|K(x, y)−K(x0, y)|+ |K(y, x)−K(y, x0)| ≤ C

µ(B(x, d(x, y)))1−γ

(
d(x, x0)

d(x, y)

)ε
.

Remark 2.2. It is well known the Lp(Rn) − Lq(Rn) boundedness for this class of
operators, where 1/p = 1/q + γ. See for instance [1], [2] and references here.

The following lemma gives a version of Welland’s inequality (see [17]) in the
context of spaces of homogeneous type. This kind of result has already appeared in
the literature, with slightly stronger hypotheses (see Proposition 5.1 in [3]). Then
we can obtain the proof of Theorem 1.25 proceeding in the same way as for Theorem
6.5 in [5].

Lemma 2.3. Let (X, d, µ) be a space of homogeneous type. Let 0 < γ < 1 and
0 < ε < min{γ, 1 − γ}. Then, for every bounded function f with compact support
the following inequality holds

|T γXf(x)| ≤ C
(
Mγ−ε

X f(x)Mγ+ε
X f(x)

)1/2
,

for every x ∈ X, where C > 0 only depends on n, γ and ε.

Proof. In order to prove the lemma, taking s > 0 to be chosen later we split the
operator as follows

|T γXf(x)| ≤
∫
X

|f(y)|
µ(B(x, d(x, y))1−γ dµ(y)

≤
∫

{y∈X:µ(B(x,d(x,y)))<s}

|f(y)|
µ(B(x, d(x, y))1−γ dµ(y)

+

∫
{y∈X:µ(B(x,d(x,y)))≥s}

|f(y)|
µ(B(x, d(x, y))1−γ dµ(y)

= I + II.
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Now, we consider the non-necessarily symmetric quasi-distance δ associated to
(X,d, µ) and equivalent to d, introduced by Maćıas and Segovia in [8], given by

δ(x, y) =

{
µ(B(x, d(x, y))) , x 6= y ;

0 , x = y .

It satisfies that

(2.4) δ ≤ d ≤ 3δ .

Now, denoting by Bδ the balls with respect to the metric δ, we have that
B(x, r) ⊂ Bδ(x, r) ⊂ B(x, 3r), for every x ∈ X and r > 0.

For I, we assume first that µ({x}) = 0. Therefore, defining Rk = {y ∈ X :
2−k−1s ≤ δ(x, y) < 2−ks} and using the inclusion Bδ(x, 2

−ks) ⊂ B(x, 2−k+2s),
µ(B(x, δ(x, y))) ≤ δ(x, y) and the fact that µ is doubling, we can get

I ≤
∞∑
k=0

∫
Rk

|f(y)|
δ(x, y)1−γ dµ(y)

≤ C
∞∑
k=0

(2−ks)ε
1

µ(B(x, 2−k−1s))1−γ+ε

∫
B(x,2−k+2s)

|f(y)| dµ(y)

≤ C
∞∑
k=0

(2−ks)εMγ−ε
X f(x)

≤ C sεMγ−ε
X f(x) .

Now, if µ({x}) 6= 0 we have that 2−k1−1s < µ({x}) ≤ 2−k1s, for some k1 and
proceeding as above

I ≤
∫
{x}

|f(y)|
µ({x})1−γ dµ(y) +

∞∑
k=k1+1

∫
Rk

|f(y)|
δ(x, y)1−γ dµ(y)

≤ C (2−k1s)εMγ−ε
X f(x) + C

∞∑
k=k1+1

(2−ks)εMγ−ε
X f(x)

≤ C sεMγ−ε
X f(x) .

To estimate term II, let Nk = {y ∈ X : 2ks ≤ δ(x, y) < 2k+1s}. Assuming that
µ(X) =∞ and by the doubling property of µ, we have

II =

∫
{y∈X: δ(x,y)≥s}

|f(y)|
δ(x, y)1−γ dµ(y)

=

∞∑
k=0

∫
Nk

δ(x, y)−ε
|f(y)|

δ(x, y)1−γ−ε dµ(y)

≤
∞∑
k=0

(2ks)−ε
1

µ(B(x, 2ks))1−γ−ε

∫
Bδ(x,2k+1s)

|f(y)| dµ(y)

≤ C
∞∑
k=0

(2ks)−ε
1

µ(B(x, 2k+3s))1−γ−ε

∫
B(x,2k+3s)

|f(y)| dµ(y)

≤ C s−εMγ+ε
X f(x) .
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On the other hand, if µ(X) < ∞, we take k1 such that 2k1s < µ(X) ≤ 2k1+1s.
Then, for each x we have that B(x, 2k1+1s) = X and C 2k+1s ≤ µ(Bδ(x, 2

k+1s))
(see [9]). Therefore, in a similar way as before we obtain

II ≤ C µ(X)−εMγ+ε
X f(x) +

k1−1∑
k=0

(2ks)−εMγ+ε
X f(x)

≤ C 2−εk1s−εMγ+ε
X f(x) + s−εMγ+ε

X f(x)

≤ C s−εMγ+ε
X f(x) .

In both cases we have the same estimate. Finally

T γXf(x) ≤ C sεMγ−ε
X f(x) + s−εMγ+ε

X f(x) ,

and taking sε = (Mγ+ε
X f(x))1/2(Mγ−ε

X f(x))−1/2 we get the desired result. �

We end this section with the following lemma, which is a version of the Fefferman-
Stein inequality on spaces of homogeneous type. It was proved by Pradolini and
the second author in [12].

Lemma 2.5. [12] Let (X, d, µ) be a space of homogeneous type such that µ(X) <∞.
Let f be a positive function with bounded support and w ∈ A∞. Then, for every p,
1 < p <∞, there exists a positive constant C such that if ‖MXf‖Lp(X,w) <∞, then

(2.6) ‖MXf‖Lp(X,w) ≤ C‖M ]
Xf‖Lp(X,w) ,

where

M ]
Xf(x) = sup

B: x∈B∈F (X)

1

µ(BX)

∫
BX

|f(y)−mBXf | dµ(y) +
1

µ(X)

∫
X
|f(y)| dµ(y) ,

where BX and F (X) are as in (1.21).

In this context we say that f ∈ BMO(X) if M ]
Xf ∈ L∞(X), and we denote

‖f‖BMO(X) = ‖M ]
Xf‖L∞(X).

3. Covering lemmas

In this section we present some known results that are useful in the context of
local operators. We state them below without proof.

Before we need the notion of “cloud” of a given set E in Ω. That is, given
0 < β < 1 and E ∈ Ω, the set

(3.1) Nβ(E) =
⋃

R∩E 6=∅
R∈Fβ

R ,

is the “cloud” of E. In particular, for balls, this idea was introduced in [6] along
with the following generalized notion of dilated ball. We denote

(3.2) B̃ = 5B , if 5B ∈ Fβ or B̃ = Nβ(B) , if 5B 6∈ Fβ .

In that article, the authors proved several lemmas. For the sake of completeness,
we state the following ones and invite the reader to look for their proofs there.
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Lemma 3.3 ([6], local Vitali). Let X be a separable metric space and Ω an open
proper subset of X. Let 0 < β < 1 and Γ a family of balls belonging to Fβ with
uniformly bounded radii. Then, there exists a disjoint and at most countable sub-
family Λ such that the collection of open sets {B̃}B∈Λ, with B̃ defined as (3.2), still
covers

⋃
B∈ΓB.

Lemma 3.4 ([6], Whitney for Fβ). Let Ω be an open proper subset of X. Given
0 < β < 1, for each a, 0 < a < β/80, there exists a covering Wa of Ω by balls
belonging to Fβ with the following properties

i) If P = B(xP , rP ) ∈ Wa, then 10P ∈ Fβ and

1

2
a d(xP ,Ω

c) ≤ rP ≤ a d(xP ,Ω
c) .

ii) If P and P ′ belong to Wa and P ∩ P ′ 6= ∅ then P ′ ⊂ 5P and P ⊂ 5P ′.

iii) There is a number M , only depending on β and a, such that for any ball
B0 = B(x0, r0) ∈ Fβ with 5B0 6∈ Fβ, the cardinality of the set

Wa(B0) = {P ∈ Wa : P ∩Nβ(B0) 6= ∅} ,

is at most M . We will denote the union of this sets as

Wa,B0
=

⋃
P∈Wa(B0)

P .

Even though we said before that the proof of the latter lemma can be found in
[6], it will be useful to recall here how to build the desired balls in it. For this, we
consider the bands Ωk = {x ∈ Ω : 2k−1 ≤ d(x,Ωc) < 2k}. Since X is separable, we
choose, for each k, a maximal net of points in Ωk, namely {xki }i∈Jk with Jk ⊂ N,
whose distances from each other are at least a2k−1. Thus,

Wa =
⋃

i∈Jk;k∈N
B(xki , a2k−1) .

In general, we will denote these balls by Pi = B(xi, ri). A careful examination
of the proof of the Lemma 3.1 in [6] reveals that the measure does not need to be
doubling for all ball sizes. So we can state it in the following way this result.

Lemma 3.5. [6] Let X be a metric space with the weak homogeneity property and
Ω as before. In the same hypothesis on the Lemma 3.4, if µ is doubling on Fβ\Fβ̃,

with β̃ < a/2, then, for any ball B0 such that 5B0 6∈ Fβ we get

(1) If Pj and Pi belongs to Wa(B0), we have

µ(Pj) ≤ C µ(Pi) ,

for some positive constants C.
(2) Moreover

µ(Nβ(B0)) ≤ C µ(B0) .

where C > 0 only depend on β, a and the constant of the doubling property
of µ.
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Remark 3.6. By an analogous reasoning and the same hypotheses of the previous
lemma we can prove that µ(Nβ(Nβ(B0))) ≤ C µ(B0), for every ball B0 such that
5B0 6∈ Fβ .

Remark 3.7. For the constant a fixed in Lemma 3.4 we consider k ∈ N such that
1
2

β
80k < a < β

80k and we denote P̂i = 80k Pi for each Pi ∈ Wa. Then

1

2

1

2

β

80k
d(xi,Ω

c) <
1

2
ad(xi,Ω

c) ≤ ri ≤ ad(xi,Ω
c) <

β

80k
d(xi,Ω

c) ,

which implies that P̂i ∈ Fβ but 5P̂i 6∈ Fβ . Consequently, using Lemma 3.5, for
every µ doubling on Fβ

µ(Nβ(Pi)) ≤ µ(Nβ(P̂i)) ≤ C µ(P̂i) ≤ C µ(Pi) ,

where C does not depend on i.

The following lemma says that a certain element x can not belong to too many
clouds of balls of the covering given by Lemma 3.4.

Lemma 3.8. Let 0 < β < 1, for a collection of Whitney type balls {Pi}, there is a

natural number M such that
∑
i

χNβ(Pi)(x) ≤M , for all x ∈ Ω.

Proof. For k ∈ Z we consider the bands Ωk =
{
y ∈ Ω : 2k−1 ≤ d(y,Ωc) < 2k

}
.

Suppose that x ∈ Ωk and define N =
⋃

i: x∈Nβ(Pi)

Nβ(Pi). If we show that N is a

bounded set in X, since the center of Pi lies in a maximal net of points in each
Ωj whose distances from each other are at least a2j−1 the conclusion follows by
applying the weak homogeneity property.

In order to prove our statement we will prove two facts. The first is that there
exists a constant C such that d(y, z) ≤ C, for y, z ∈ N . The second is the inclusion

(3.9) N ⊂
l⋃

j=j0

Ωj .

for certain constants j0 y l independent of i.

Let us start considering y, z ∈ N , and balls R, B, R′ and B′ belonging Fβ with
the following properties: y ∈ R, z ∈ R′, R ∩ Pi 6= ∅, B ∩ Pi 6= ∅, R′ ∩ Pj 6= ∅,
B′ ∩ Pj 6= ∅ and x ∈ B ∩ B′ So, defining A = {xi, xj , xR, xR′ , xB , xB′} the set of
centers, by (3.9) we can deduce that

d(y, z) ≤ 2β max
z∈A

d(z,Ωc) ≤ 2β 2kmax = C ,

where kmax is the largest of the subindexes corresponding to the bands containing
the centers in A. In order to prove the inclusion above we use some claims whose
proofs can be found in [6] whit same names.

Claim 1. Given B and B′ in Fβ such that B ∩ B′ 6= ∅, if xB ∈ Ωk then xB′ ∈ Ωi
with k −m ≤ i ≤ k +m for some m only depending on β.

Claim 2. If B ∈ Fβ and xB ∈ Ωk then B ⊂ ∪k+1
j=k−nΩj for some fixed n depending

only on β.
Claim 3. If Pi ∩ Ωj 6= ∅, then xPi ∈ Ωj−1 ∪ Ωj ∪ Ωj+1.
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Now, since x belongs to Ωk ∩B, by Claim 1 we have that xB ∈ ∪k+m
j=k−mΩj . Then,

from Claim 2, B ⊂ ∪k+m+1
j=k−m−nΩj . Now, since B ∩ Pi 6= ∅, we apply Claim 3 and

conclude that xPi lies in some Ωj , k − m − n − 1 ≤ j ≤ k + m + 2. Finally,
for an arbitrary ball R such that R ∩ Pi 6= ∅ we can deduce in analogous way that
R ∈ ∪k+2m+3

j=k−2m−2n−2Ωj and the proof of (3.9) is complete taking j0 = k−2m−2n−2
and l = k + 2m+ 3. �

Remark 3.10. A similar reasoning allows us to prove that {Nβ(Nβ(Pi))} have
bounded overlap as well.

4. Estimates for local operators

In this section we prove some results concerning local operators. To do this,
as in [7], we consider metric spaces having a particular geometric property. More
precisely, we say that X with a metric d have the P property if there exists σ > 0
such that ∀x0 ∈ X, R > 0, y ∈ B(x0, R) and 0 < r ≤ 2R, there exists z ∈ X
satisfying

B(z, σr) ⊂ B(x0, R) ∩B(y, r) .

In general, a metric space (X,d) does not necessarily have this property. How-
ever, we can take an equivalent metric δ (introduced by Macias and Segovia (see
Section 2)) in such a way that (X, δ) has the P property.

In [7] the authors proved that given Ω an open proper subset of X, then a
measure µ is doubling on Fβ with respect to d if and only if it is doubling on Fβ
with respect to the metric δ. Consequently, it is not difficult to see that Aβ,γp,q (d) is

equivalent to Aβ,γp,q (δ) for each 0 < β < 1 and 0 ≤ γ < 1, where Aβ,γp,q (d) denote the

class of weights Aβ,γp,q respect to d-balls.
We will denote by Fβ(δ) the local family of balls where the distance of xB to

the complementary set of Ω is measured by the metric δ. Thus, if Mγ
β is the local

fractional maximal function associated to Fβ(δ), this new function is equivalent to
Mγ
β whenever 0 < β < 1/3, that is, there exist positive constants c1 and c2 such

that

(4.1) c1M
γ
β f(x) ≤Mγ

βf(x) ≤ c2Mγ
β f(x)

for every x ∈ Ω.

The important role of the P property can be appreciated in the next lemma.

Lemma 4.2. Let (X, d) be a metric space satisfying the P property. Let us consider
Ω an open proper subset of X and µ a doubling measure on F . Let 0 < β < 1/14
and let {Pi} be a covering of Whitney’s type as in Lemma 3.4, then there exist
0 < τ < 1/7 and a new covering {Qi} with the following properties:

(1) Qi ∈ Fτ and
⋃
x∈Pi

B(x, βd(x,Ωc)) ⊂ Qi , for every i.

(2) The space (Qi, d|Qi , µ|Qi) is of homogeneous type, with a uniform doubling
constant on i.

To get the new covering it is sufficient to takeQi = θPi, with θ = 2β
a +β+1, where

β < 1/14 and a small enough. We can check that Qi ∈ Fτ , for some 0 < τ < 1/7.
The details can be found inside the proof of Theorem 2.2 in [7].
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Lemma 4.3. Let β ≥ 1/42. We consider the covering {P ′i} provided by Lemma
3.4 and its associated {Q′i} as in Lemma 4.2 for β′ = β/50. Then, every ball
B = B(xB , rB) with xB ∈ Q′i, rB ≤ 2Ri belongs to Fβ, where Ri is the radius of
Q′i. In particular, Q′i ∈ Fβ.

Proof. Let B = B(xB , rB) where xB ∈ Q′i and rB ≤ 2Ri. Taking into account that
Ri = θ ri = θ a d(xi,Ω

c), since a < β′/80 and β ≥ 1/42 we estimate

θa = 2β′ + a(β′ + 1) =
1

50

(
2β + a(β + 50)

)
<

1

50

(
2β +

51

80 · 50

)
<

1

50

(
2β + 3β

)
=

1

10
β .

Thus, if r ≤ 2Ri we proceed as follows

Ri <
1

10
β
(
d(xB ,Ω

c) + d(xB , xi)
)
<

1

10
βd(xB ,Ω

c) +
1

10
Ri ;

this implies that

rB ≤ 2Ri < βd(xB ,Ω
c) ,

and the lemma is proved. �

Lemma 4.4. Let β < 1/4. Then BMOβ(Ω) = BMO4β(Ω).

Proof. Clearly BMO4β(Ω) ⊂ BMOβ(Ω), since µ is doubling on F and this family is

increasing on β. In order to prove the converse inclusion, let β̂ = 4β, f ∈ BMOβ(Ω)
and B = B(xB , rB) ∈ Fβ̂ . If B ∈ Fβ or B ∈ Cβ (see Definition 1.29 and (1.28))

there is nothing to prove.
Now, suppose that B ∈ Fβ̂\Fβ . We consider Wa a covering for Ω given by

Lemma 3.4 with a < β̂/80. Since 5rB > β̂d(xB ,Ω
c), from item iii) in that lemma

we get that there exists a finite number independent of the ball B, say N , of balls
Pi ∈ Wa such that Pi ∩B 6= ∅ and B ⊂ ∪Ni=1Pi. In particular, let Pi0 = B(xi0 , ri0)
be the one containing xB . Since Pi0 ⊂ B(xB , 2ri0) and the fact that B 6∈ Fβ , we
can deduce 2ri0 < rB and µ(Pi0) ≤ µ(B(xB , rB)). Thus

1

µ(B)

∫
B

|f −mBf | dµ ≤
2

µ(B)

∫
B

|f −mPi0
f | dµ

≤ 2

N∑
j=1

1

µ(Pi0)

∫
Pj

|f −mPi0
f | dµ

≤ 2

N∑
j=1

1

µ(Pi0)

∫
Pj

|f −mPi0
f | dµ(4.5)

≤ C ‖f‖BMOβ(Ω) ,(4.6)

where the Lemma 3.5 is used in (4.5) and the last inequality can be obtained by
considering a finite chain of balls inWa, say P = P1, P2, · · · , Pn = P ′, with n ≤ N .
By using the doubling condition of µ and ii) of Lemma 3.4 we get

1

µ(P )

∫
P

|f −mP ′f | dµ

≤ C 1

µ(P )

∫
P

|f −mP f | dµ+ |mP1
f −mP2

f |+ · · ·+ |mPn−1
f −mPnf |
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≤ C ‖f‖BMOβ(Ω) + C

n−1∑
j=2

1

µ(5Pj)

∫
5Pj

|f −m5Pjf | dµ

≤ C ‖f‖BMOβ(Ω) .

Now, combining this estimate with (4.6) we complete the proof of lemma. So,
the proof is done. �

Lemma 4.7. Let (X, d) be a metric space satisfying the P property. Let Ω be an
open proper subset of X and µ a doubling measure on F . Let β and τ be such that
0 < β < τ < 1/3 and let Q ∈ Fτ . If f ∈ BMOβ(Ω) then f ∈ BMO(Q). Moreover,
the following inequality holds

‖f‖BMO(Q) ≤ C ‖f‖BMOβ(Ω) ,

where the constant do not dependent on Q.

Proof. Let B = B(xB , rB) with xB ∈ Q and rB > 0. Let R be the radius of Q. If
rB < 2R, since Q ∈ Fτ we get

R < τ d(xQ,Ω
c) ≤ τ d(xB , xQ) + τ d(xB ,Ω

c) ≤ τ R+ τ d(xB ,Ω
c) .

Thus,

R <
τ

1− τ
d(xB ,Ω

c) ,

and B ∈ F2τ/(1−τ). Now, we remember that BQ = B ∩Q and since the P property
implies µ(B) ≤ C µ(BQ), by taking the smallest natural number j0 such that
2τ/(1− τ) ≤ 4j0β we can estimate as follows:

1

µ(BQ)

∫
BQ

|f −mBQf | dµ ≤
C

µ(B)

∫
B

|f −mBf | dµ

≤ C ‖f‖BMO
4j0+1β

(Ω) ≤ C ‖f‖BMOβ(Ω) ,

where we used the Lemma 4.4. On the other hand, in the case rB ≥ 2R, we have
that BQ = Q and the conclusion is obvious. �

Before starting with the proof of one of the most important results of this work,
it is necessary to note that the Bp condition is sufficient to prove that (1.17) implies

(1.11), that is (u, v) ∈ Aβ,γp,q . It is easy to see that ψ doubling and ψ̃ belonging to Bp

imply that ψ̃(t1/p) is a concave function (or equivalent to one concave function).

Then its inverse
(
ψ̃−1(t)

)p
is convex and by an argument of duality we can see

that Lψ(B, dµ
µ(B) ) ⊂ Lp

′
(B, dµ

µ(B) ) with ‖g‖p′,B ≤ C ‖g‖ψ,B . Then condition (1.11)

follows from (1.17) by taking g = v−1/p in the last inequality.

Proof of Theorem 1.15. Let β0 be such that 1/100 < β0 < 1/42. For the case
β ≤ β0, we consider a Whitney’s type covering {Pi} given by Lemma 3.4 applied in
(X, δ) for a such that β/160 < a < β/80. Now, let {Qi} be the covering provided
by Lemma 4.2. We have that Ω = ∪iPi = ∪iQi. Then, by (4.1), we can estimate
as follows ∫

Ω

(Mγ
β f(x))q u(x) dµ(x) ≤

∫
Ω

(Mγ
βf(x))q u(x) dµ(x)
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≤
∑
i

∫
Pi

(Mγ
βf(x))q u(x) dµ(x)

≤
∑
i

∫
Qi

(Mγ
Qi
f(x))q ui(x) dµ(x) ,

where ui = u|Qi and the fact that every ball B ∈ Fβ containing x ∈ Pi is contained
in Qi by Lemma 4.2 again. Now, since each Qi we can take Mγ

X =Mγ
Qi

, by applying

Theorem 1.22 on each Qi and using the bounded overlapping property (see [7]) and
the fact that p ≤ q we get∫

Ω

(Mγ
βf(x))q u(x) dµ(x) ≤ C

∑
i

(∫
Qi

|f(x)|p vi(x) dµ(x)

)q/p
≤ C

(∫
Ω

|f(x)|p v(x) dµ(x)

)q/p
.

Thus, we obtain the desired estimate in this case. Now, if β > β0 it is sufficient to
prove (1.16) for Mγ

(β0,β] where

(4.8) Mγ
(β0,β]f(x) = sup

B: x∈B∈Fβ\Fβ0
µ(B)γ−1

∫
B

|f | dµ .

In fact, we note that Mγ
β f(x) ≤Mγ

β0
f(x) +Mγ

(β0,β]f(x). For this aim, we consider

again a covering {Pi} of Ω as in Lemma 3.4 for a such that β/160 < a < β/80
again. Then, given Pi, for each x ∈ Pi, we choose a ball Bx ∈ Fβ\Fβ0

such that

Mγ
(β0,β]f(x) ≤ 2µ(Bx)γ−1

∫
Bx

|f | dµ .

Since Bx ∩ Pi 6= ∅ we have that Bx ⊂ Nβ(Pi). Now, assuming for the time being
that there exists some constant C > 0 such that

(4.9) µ(Bx) ≥ C µ(Pi)

holds, for every x ∈ Pi and every i, we can obtain∫
Ω

(
Mγ

(β0,β]f(x)
)q
u(x) dµ(x)

≤ C
∑
i

∫
Pi

(
µ(Bx)γ−1

∫
Bx

|f | dµ
)q
u(x) dµ(x)

≤ C
∑
i

µ(Pi)
(γ−1)q u(Pi)

(∫
Nβ(Pi)

|f | dµ
)q

≤ C
∑
i

µ(Pi)
(γ−1)q u(Pi)σ

(
Nβ(Pi)

)q/p′(∫
Nβ(Pi)

|f |p v dµ
)q/p

≤ C
∑
i

(
µ(Pi)

γ−1u(Pi)
1/qσ(Pi)

1/p′
)q (∫

Nβ(Pi)

|f |p v dµ
)q/p

≤ C
(∑

i

∫
Ω

χNβ(Pi)|f |
p v dµ

)q/p
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≤ C
(∫

Ω

|f |p v dµ
)q/p

,

using Hölder’s inequality, Remark 3.7 and the fact that (u, v) satisfies (1.11) (see the
comment before the start of this proof). The last inequality follows from Lemma
3.8.

Now, we will prove (4.9). Let us start with Bx = B(xB , rB) and Pi = B(xi, ri).
If the ball Bx is such that 5Bx /∈ Fβ then, since Pi ⊂ Nβ(Bx), the Lemma 3.5
implies that µ(Pi) ≤ µ(Nβ(Bx)) ≤ Kµ(Bx).

On the other hand, if 5Bx ∈ Fβ , taking into account that 10Pi ∈ Fβ we have

d(xi,Ω
c) ≤ d(xB ,Ω

c) + d(xB , x) + d(x, xi)

≤ d(xB ,Ω
c) +

β

5
d(xB ,Ω

c) +
β

10
d(xi,Ω

c) ,

which implies that

d(xi,Ω
c) ≤ 10 + 2β

10− β
d(xB ,Ω

c) < 2 d(xB ,Ω
c) .

Furthermore, since β0 > 1/100 and Bx /∈ Fβ0
we get

ri <
β

80
d(xi,Ω

c) <
β

40
d(xB ,Ω

c) < 2β0 d(xB ,Ω
c) < 2 rB .

Now, it is clear that Pi ⊂ 5Bx and using Lemma 3.5 again the proof of (4.9) is
complete, and the proof of theorem is done. �

We end this section with the following lemma, which reflects the relationship
between the fractional maximal operator defined on a space of homogeneous type
and the local fractional maximal operator.

Lemma 4.10. Let Ω be an open subset in a metric space (X, d) satisfying the P
property and let 0 ≤ γ < 1. Suppose that the space (Q, d|Q, µ|Q) is of homogeneous
type, where Q ∈ Fξ, for some 0 < ξ < 1/3. Then, there exist η, with 0 < η < 1,
and C > 0 such that for each x ∈ Q we have

Mγ
Qf(x) ≤ CMγ

η f(x) ,

where Mγ
Q and Mγ

η are as in (1.21) and (1.4) respectively.

Proof. Let 0 < ξ < 1/3 and Q = B(x0, r0) ∈ Fξ. Given x ∈ Q, there exist xB ∈ Q
and rB > 0 such that BQ = B(xB , rB) ∩Q satisfies that

Mγ
Qf(x) ≤ 2

1

µ(BQ)1−γ

∫
BQ

f dµ .

Now, by the P property we can get that µ(BQ) ≥ C µ(B(xB , r)). If rB > 2r0 the
result is obvious since BQ = Q. On the other hand, if rB ≤ 2r0, in an analogous
way as in Lemma 4.7, taking η = 2ξ/(1− ξ) < 1 the lemma is done. �
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5. Applications

In this section we prove Theorem 1.30 and give some other applications. In this
direction, we will need Proposition 1.33, which is interesting in itself since it is a
local version of an analogous result proved in the context of spaces of homogeneous
type (see [14]).

Proof of Proposition 1.33. The first part of the proof is analogous to the one given
in [7, Proposition 3.3]. However, for a sake of completeness we include a sketch of
it. First, we need to check that T γβ is a (3β, γ)-local operator with respect to the
metric δ.

The representation of T γβ with 0 ≤ γ < 1 by a kernel and the boundedness
properties are independent of the metric. By using the equivalence of the metric
given in (2.4) and the hypothesis on the kernel, we have

suppK ⊂ {(x, y) : d(x, y) < βd(x,Ω)} ⊂ {(x, y) : δ(x, y) < 3β δ(x,Ω)} .
Also we can deduce that

|K(x, y)| ≤ C

µ(Bδ(x,d(x, y))1−γ ≤
C

µ(Bδ(x, 1/3 δ(x, y))1−γ .

Thus, the size condition is obtained. Analogously we can check the smoothness
conditions respect to δ.

Now, taking 3β < 1/14 and considering a covering {Pi} of Ω as in Lemma 3.4
we consider the associated balls {Qi} which are spaces of homogeneous type, given
by Lemma 4.2. Then, for each x ∈ Pi, since T γβ,b is a (β, γ)-local operator, we can

see T γ,mβ,b as an operator defined as in Section 2 on Qi. Moreover, for each x ∈ Pi
we have that T γ,mβ,b f(x) = T γ,mβ,b (fχQi)(x).

So, for γ = 0, the restriction of Tmβ,b to functions supported on Qi is the commu-
tator of a Calderón-Zygmund operator in this space. Then, by applying Theorem
1.4 in [14] we obtain∫

Pi

|Tmβ,bf(x)|q u(x) dµ(x) ≤ C ‖b‖mqBMO(Qi)

∫
Qi

(
(Mm+1

Qi
f)(x)

)q
u(x) dµ(x) .

For 0 < γ < 1, keeping in mind the size condition on the kernel, we get the following
pointwise estimate for the restriction of T γ,mβ,b to functions supported on Qi,

|T γ,mβ,b f(x)| ≤ C
∫
Qi

|b(y)− b(x)|mK(x, y) f(y) dµ(y) .

Now, by using the Theorem 1.1 in [1] we have that∫
Qi

|T γ,mβ,b f(x)|q u(x) dµ(x) ≤ C ‖b‖mqBMO(Qi)

∫
Qi

|Mγ
Qi

(Mm
Qif)(x)|q u(x) dµ(x) ,

for every f ∈ L∞ with compact support. Now, for 0 ≤ γ < 1 we note that there
exists a constant C > 0 such that

Mγ
Qi

(Mm
Qif)(x) ≤ CMγ

φm
f(x) ,

for every x ∈ Qi, where φm(t) = t (log(e+ t))m (see Lemma 4.1 in [1]). So, for each
1 < r < 1/γ, choosing t0 large enough such that φm(t) ≤ Ctr for every t ≥ t0, we
have that ‖f‖φm,Qi ≤ C ‖f‖tr,Qi . Then, by Lemma 4.10,

Mγ
φm
f(x) ≤ CMγ

trf(x) =
(
Mγr
Qi
|f |r(x)

)1/r

≤ C
(
Mγr
η |f |r(x)

)1/r

= CMγ,r
η f(x),
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for every x ∈ Qi. Finally, by Lemma 4.2 and Lemma 4.7∫
Ω

|T γ,mβ,b f(x)|q u(x) dµ(x) ≤
∑
i

∫
Pi

|T γ,mβ,b (fχQi)(x)|q u(x) dµ(x)

≤ C
∑
i

‖b‖mqBMO(Qi)

∫
Qi

|Mγ,r
η f(x)|q ui(x) dµ(x)

≤ C ‖b‖mqBMOβ(Ω)

∫
Ω

|Mγ,r
η f(x)|q u(x) dµ(x),

where ui = u|Qi , as we wanted to prove. �

Now, as a consequence of the latter proposition we can obtain Theorem 1.30. In
its proof we will start by considering β such that 3β < 1/14. The larger values of
β will be studied in a different way. For this, following again the reasoning applied
in [7], we split the operator into two terms. To this aim, we take a smooth cut
function η, defined on (0,∞), such that 0 ≤ η ≤ 1, η(t) = 1 when 0 ≤ t ≤ 1
and η(t) = 0 for t ≥ 2. We denote by d(x) = d(x,Ωc) and for α fixed such that
0 < 3 (2α) < 1/14, we define

(5.1) T γβ,0f(x) =

∫
Ω

K(x, y)
(

1− η
(d(x, y)

α d(x)

))
f(y) dµ(y) ,

and its commutator

(5.2) T γ,mβ,b,0f(x) =

∫
Ω

|b(x)− b(y)|mK(x, y)
(

1− η
(d(x, y)

α d(x)

))
f(y) dµ(y) .

The technique we will apply involves the following pointwise estimate.

Lemma 5.3. Let 0 < δ < 1, 0 ≤ γ < 1 and Qi as in Lemma 4.2. Then, for each
x ∈ Qi, there exist constants C and r with 0 < γr < 1 such that(

M ]
Qi

(
T γ,mβ,b,0(fχNβ(Pi))χPi

)δ
(x)
)1/δ

≤ C ‖b‖mBMOβ(Ω)

(
Mγ,r
Qi
f(x) +

(
1

µ(Pi)1−γr

∫
Nβ(Nβ(Pi))

|f |rdµ
)1/r

)
,

for all 0 < β < 1/14, where the last maximal is defined as in (1.21).

Proof. We assume that 0 < γ < 1 (the case γ = 0 can be obtained follwing a quite
similar reasoning). We consider x ∈ Qi = B(xi, Ri) with Ri = θ ri (see Lemma
4.2) and let xB ∈ Qi and B = B(xB , rB) containing x. To simplify the notation,
we will denote g = fχNβ(Pi).

First, we assume that 2B ∈ Fβ . In this case we take g1 = gχ(2B)Qi
and g2 =

g − g1. Observe that for each y ∈ BQi = B ∩Qi
T γ,mβ,b,0g(y) ≤ |b(y)− b(2B)Qi

|m T γβ,0g(y)

+ T γβ,0
(
(b− b(2B)Qi

)mg1

)
(y) + T γβ,0

(
(b− b(2B)Qi

)mg2

)
(y) .

So, we have(
1

µ(BQi)

∫
BQi

∣∣(T γ,mβ,b,0g(y)
)δ − c ∣∣ dµ(y)

)1/δ
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≤
(

1

µ(BQi)

∫
BQi

(
|b(y)− b(2B)Qi

|m T γβ,0g(y)
)δ
dµ(y)

)1/δ

+

(
1

µ(BQi)

∫
BQi

(
T γβ,0

(
(b− b(2B)Qi

)mg1

)
(y)
)δ

dµ(y)

)1/δ

+

(
1

µ(BQi)

∫
BQi

∣∣T γβ,0((b− b(2B)Qi
)mg2

)
(y)− c

∣∣δ dµ(y)

)1/δ

= I1(x) + I2(x) + I3(x) .

To estimate I1(x) we observe first that |T γβ,0f(x)| ≤ CMγ
β f(x) for each x ∈ BQi

(see in the proof of Theorem 4.1 in [7]).
By using Hölder’s inequality with exponent s > 1 such that δs < 1, then by the

equivalence between norms in BMO and since Mγ
β is of weak type (1, 1/(1 − γ)),

(see [7]), Kolmogorov’s inequality allows us to get

I1(x) ≤ C

(
1

µ(BQi)

∫
BQi

|b− b(2B)Qi
|mδs

′
dµ

)1/δs′ (
1

µ(B)

∫
B

|T γβ,0f |
δs dµ

)1/δs

≤ C ‖b‖mBMO(Qi)

(
1

µ(B)

∫
B

|Mγ
β f |

δs dµ

)1/δs

≤ C ‖b‖mBMO(Qi)

1

µ(BQi)
1−γ

∫
BQi

|f | dµ

≤ C ‖b‖mBMOβ(Ω)M
γ
Qi
f(x)

≤ C ‖b‖mBMOβ(Ω)M
γ,r
Qi
f(x) ,

where we applied Lemma 4.7 and the last maximal is defined as in (1.21).
Now, in order to estimate I2(x), we apply Kolmogorov’s inequality again and

Hölder inequality with r > 1 such that γr < 1. Thus

I2(x) ≤ C µ(BQi)
γ−1

∫
BQi

|b− b(2B)Qi
|m|f1| dµ

≤ C µ(BQi)
γ−1

(∫
BQi

|b− b(2B)Qi
|mr

′
dµ

)1/r′ (∫
BQi

|f |rdµ

)1/r

= C

(
1

µ(BQi)

∫
BQi

|b− b(2B)Qi
|mr

′
dµ

)1/r′ (
1

µ(BQi)
1−γr

∫
BQi

|f |rdµ

)1/r

≤ C ‖b‖mBMOβ(Ω)M
γ,r
Qi
f(x) .

Finally, for I3(x), we take c = T γβ,0
(
(b − b(2B)Qi

)mf2

)
(xB). Then, taking into

account the support of K, for each y ∈ BQi we estimate the integrand in I3(x) as
follows∣∣∣T γβ,0((b− b(2B)Qi

)mg2

)
(y)− T γβ,0

(
(b− b(2B)Qi

)mg2

)
(xB)

∣∣∣
≤
∫

(2B)c∩Ω

|b(z)− b(2B)Qi
|m|K(y, z)−K(xB , z)| |g(z)| dµ(z)
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=

∫
(2B)c∩Nβ(Pi)

|b(z)− b(2B)Qi
|m|K(y, z)−K(xB , z)| |f(z)| dµ(z)

≤
∑

j:Pj∈Wa,Qi

∫
(2B)c∩Pj∩Qi

|b(z)− b(2B)Qi
|m|K(y, z)−K(xB , z)| |f(z)| dµ(z) ,

where the last inequality is obtained by using the fact that 5Qi 6∈ Fβ , Lemma 4.2,
and Lemma 3.4. Moreover, the cardinality of Wa(Qi) is finite, let us say M , and
independent of i. Thus, choosing s, q and r such that 1

s + 1
q + 1

r = 1, by Hölder’s

inequality we get∣∣∣T γβ,0((b− b(2B)Qi
)mf2

)
(y)− T γβ,0

(
(b− b(2B)Qi

)mf2

)
(xB)

∣∣∣
≤

M∑
j=1

µ(Pj)

[(
1

µ(Pj)

∫
Bc∩Pj

|b(z)− b(2B)Qi
|msdµ(z)

)1/s

×

(
1

µ(Pj)

∫
(2B)c∩Pj∩Qi

|K(y, z)−K(xB , z)|qdµ(z)

)1/q

×

(
1

µ(Pj)

∫
Pj

|f(z)|rdµ(z)

)1/r ]
.

If we show that for each t > 0

(5.4)

(
1

µ(Pj)

∫
Bc∩Pj

|b(z)− b(2B)Qi
|tdµ(z)

)1/t

≤ C ‖b‖BMOβ(Ω) ,

and each q > 1

(5.5)

(
1

µ(Pj)

∫
(2B)c∩Pj∩Qi

|K(y, z)−K(xB , z)|q dµ(z)

)1/q

≤ C µ(Pj)
γ−1 ,

then, since µ(Pj) ≥ C µ(Pi) (see Lemma 3.5) we have∣∣∣T γβ,0((b− b(2B)Qi
)m f2

)
(y)− T γβ,0

(
(b− b(2B)Qi

)mf2

)
(xB)

∣∣∣
≤ C ‖b‖mBMOβ(Ω)

M∑
j=1

µ(Pj)
γ

(
1

µ(Pj)

∫
Pj

|f |rdµ

)1/r

≤ C ‖b‖mBMOβ(Ω)

(
1

µ(Pi)1−γr

∫
Nβ(Nβ(Pi))

|f |rdµ

)1/r

.

In summary, we have proven that(
M ]
Qi

(
T γ,mβ,b,0(fχNβ(Pi))χPi

)δ
(x)
)1/δ

≤ C ‖b‖mBMOβ(Ω)

(
Mγ,r
Qi
f(x) +

(
1

µ(Pi)1−γr

∫
Nβ(Nβ(Pi))

|f |rdµ
)1/r

)
,

for every ball B such that 2B ∈ Fβ .



24 MAURICIO RAMSEYER, OSCAR SALINAS, AND MARISA TOSCHI

Now, we consider the case 2B /∈ Fβ and we decompose the function f as f1 =
fχNβ(B) and f2 = f −f1. In this situation, we can deduce that µ(BQi) ≥ C µ(Qi),
because it is not difficult to see that r > C Ri, then in the same way as before(

1

µ(Qi)

∫
Qi

∣∣∣(T γ,mβ,b,0f(y)
)
χQi(y)− c

∣∣∣δ dµ(y)

)1/δ

≤ I1(x) + I2(x) + I3(x) .

For the terms I1(x) and I2(x) we proceed as in the case above. However, the
support of f2 is in Ω \ Nβ(B) and B(y, βd(y,Ωc)) ⊂ Nβ(B) then K(y, w) = 0.
Similarly, as B(z, βd(z,Ωc)) ⊂ Nβ(B) we have that K(z, w) = 0 and so I3(x) = 0.

Finally, proceeding as above we also have the required estimate for the average

1

µ(Qi)

∫
Qi

∣∣T γ,mβ,b,0f(y)
∣∣ dµ(y)

≤ C ‖b‖mBMOβ(Ω)

(
Mγ,r
Qi
f(x) +

(
1

µ(Pi)1−γr

∫
Nβ(Nβ(Pi))

|f |rdµ
)1/r

)
,

and the proof of lemma will be complete provided that we will show (5.4) and (5.5).

For (5.4) it is sufficient to prove it in the case B ∈ Fβ/2 and P ∈ Wa(Qi) such
that P ∩B 6= ∅ (if the latter does not occur, we can proceed by considering a chain
of balls as in the end of the Lemma 4.4). So,(

1

µ(P )

∫
Bc∩P

|b− b(2B)Qi
|tdµ

)1/t

≤
(

1

µ(P )

∫
P

|b− bP |tdµ
)1/t

+ |bP − b(2B)Qi
|

≤ C ‖b‖BMOβ(Ω) + |bP − b(2B)Qi
| .

If rB > 2rP there is nothing to do since P ⊂ 2B. On the other hand, it is easy to
see that B ⊂ 5P ∈ Fβ whenever rB ≤ 2rP . Then

|bP − b(2B)Qi
| ≤ C

µ(5P )

∫
5P

|b− b5P | dµ ≤ C ‖b‖BMOβ(Ω) .

Now, for (5.5), since y ∈ B and z ∈ Qi ∩ (2B)c we have that B(y, 3d(y, z)) ⊃
B(xB ,d(xB , z)). So, in a similar way as in Lemma 4.7 we get B(y, 3d(y, z)) ∈
F3τ/(1−τ) and µ(B(y,d(z, y))) ≥ C µ(B(xB ,d(z, xB))). Then, from the size condi-
tion of the kernel we can estimate as follows∫

(2B)c∩Pj∩Qi
|K(y, z)−K(xB , z)|q dµ(z)

≤ C
∫

(2B)c∩Pj∩Qi

1

µ(B(y,d(y, z)))(1−γ)q

(
d(y, xB)

d(y, z)

)εq
dµ(z)

≤ C
kj−1∑
k=1

2−jεq
∫

(Bk+1\Bk)∩Pj∩Qi
µ(B(xB , 2

krB))(γ−1)q dµ(z) ,

where Bk = B(xB , 2
krB) and kj is the smallest index such that Bkj totally contains

Pj , that is, Bkj ⊃ Pj but Bkj−1 6⊃ Pj . Recalling that µ is doubling on F again we
proceed as follows∫

(2B)c∩Pj∩Qi
|K(y, z)−K(xB , z)|q dµ(z)
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≤ C
∫

(2B)c∩Pj∩Qi

1

µ(B(y,d(y, z)))(1−γ)q

(
d(y, xB)

d(y, z)

)εq
dµ(z)

≤ C
kj−1∑
k=1

2−jεqµ(B(xB , 2
kjrB))(γ−1)q µ(Pj)

≤ C µ(Pj)
(γ−1)q+1 ,

which prove (5.5) and the lemma in the case 0 < γ < 1.
Finally, as we said before, taking s = 1/δ in the estimation of I(x), using the

(1, 1) boundedness of Mβ and the corresponding estimates for the kernel when
γ = 0, we obtain the lemma for this case as well. Then the proof is complete. �

With all this, we are in position to prove Theorem 1.30.

Proof of Theorem 1.30. On the one hand, if β is such that 3β < 1/14, since (5.9)
with p, q and r as in the hypothesis implies (1.17) for p/r and q/r, by Proposition
1.33 and Theorem 1.15 we obtain the desired boundedness result, that is (1.30).

On the other hand, for 3β ≥ 1/14, we will adapt the idea followed in the proof of
Theorem 4.1 in [7]. Thus, we consider the operator T γ,mβ,b,0 defined as in (5.2). The

operator T γ,mβ,b,1 = T γ,mβ,b − T
γ,m
β,b,0 is the commutator of a (2α, γ)-local operator, (the

proof is similar to the one for the case γ = 0, which can be seen in [7]). Then, since
0 < 3 (2α) < 1/14, in an analogous way as before we obtain the result for T γ,mβ,b,1.

So, it just remains to see T γ,mβ,b,0. For this, we consider β′ = β/50 and take {P ′i} the

covering associated with the family Fβ′ for a such that β′/160 < a given by Lemma
3.4. Moreover, since 3β′ < 1/14, we get that the associated balls {Q′i} are spaces of
homogeneous type as in Lemma 4.2. Since ui = u|Qi ∈ A∞(Qi) whenever u ∈ Aβ∞
(see [7]), we be able to take 0 < δ < 1 such that ui ∈ Aq/δ(Qi) and apply Lemma
2.5 (where the hypothesis hold by the known continuity of the maximal operator
in weighted Lebesgue spaces). Taking into account the support of T γ,mβ,b,0 allow us
to get∫

Ω

∣∣∣T γ,mβ,b,0f(x)
∣∣∣qu(x) dµ(x)

≤
∑
i

∫
P ′i

∣∣∣T γ,mβ,b,0(fχNβ(P ′i )
)(x)

∣∣∣qu(x) dµ(x)

≤ C
∑
i

∫
Q′i

∣∣∣((T γ,mβ,b,0(fχNβ(P ′i )
)
)
χP ′i

)δ
(x)
∣∣∣q/δui(x) dµ(x)

≤ C
∑
i

∫
Q′i

∣∣∣M((T γ,mβ,b,0(fχNβ(P ′i )
)
)δ
χP ′i

)
(x)
∣∣∣q/δ ui(x) dµ(x)

≤ C
∑
i

∫
Q′i

(
M ]
Q′i

((
T γ,mβ,b,0(fχNβ(P ′i )

)
)δ
χP ′i
)
(x)
)q/δ

ui(x) dµ(x) .

Then, from Lemma 5.3, we obtain∫
Ω

∣∣∣T γ,mβ,b,0f(x)
∣∣∣q u(x) dµ(x)
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≤ C ‖b‖mBMOβ(Ω)

(∑
i

∫
Q′i

(
Mγ,r
Q′i
f(x)

)q
ui(x) dµ(x)

+
∑
i

∫
Q′i

(
1

µ(P ′i )
1−γr

∫
Nβ(Nβ(P ′i ))

|f |rdµ
)q/r

ui(x) dµ(x)

)
.

Our hypothesis on the weights, as we said at the beginning of the proof, implies
(1.17) for p/r and q/r. In [7] the authors proved that the classes of weights are
invariant under change of equivalent metrics. Then, without loss of generality,
we can suppose that the P property is valid in our space. So, as we have seen
before, for each ball B = B(xB , rB) with xB ∈ Q′i and rB < 2R′i we have that
µ(B) ≤ C µ(BQi).

In addition ‖·‖ψ,A ≤ C ‖·‖ψ,B for any A ⊂ B such that µ(B) ≤ C µ(A). In fact,

since ψ is a Young function it satisfies that ψ(st) ≥ sψ(t), for any s ≥ 1 and t > 0.
Then, if we take λ = ‖·‖ψ,B

1

µ(A)

∫
A

ψ
( |f |
Cλ

)
dµ ≤ C

µ(B)

∫
B

ψ
( |f |
Cλ

)
dµ ≤ 1

µ(B)

∫
B

ψ
( |f |
λ

)
dµ ≤ 1 ,

which proves our statement. Then it is clear that the pair of weights (ui, vi) satisfies
(1.23) with φ(t) = tq/r, for every ball B ∈ F (Q′i) and constant independent of i.
Then, by Theorem 1.22 and the bounded overlapping of {Q′i} we can deduce∑

i

∫
Q′i

(
Mγ,r
Q′i
f(x)

)q
ui(x) dµ(x) =

∑
i

∫
Q′i

(
Mγr
Q′i

(|f |r)(x)
)q/r

ui(x) dµ(x)

≤ C
∑
i

(∫
Q′i

|f(x)|p vi(x) dµ(x)

)q/p

≤ C
(∫

Ω

|f(x)|p v(x) dµ(x)

)q/p
.

For the second term we proceed as in the proof of Theorem 1.15. Since σr ∈
D(Fβ\Fβ̃), combining Remark 3.6 and Remark 3.7 and using the fact that (u, v) ∈
Aβ,γp,q , that is (1.11). we can apply Hölder inequality with p/r > 1 and obtain∑

i

∫
Q′i

(
1

µ(P ′i )
1−γr

∫
Nβ(Nβ(P ′i ))

|f |rdµ
)q/r

ui(x) dµ(x)

≤ C
∑
i

µ(P ′i )
(γr−1)q/r ui(Q

′
i)
(∫
Nβ(Nβ(P ′i ))

|f |rdµ
)q/r

≤ C
∑
i

(
µ(P ′i )

(γr−1) u(P ′i )
1/(q/r)

(
σr(Nβ(Nβ(P ′i )))

)1/(p/r)′)q/r
×
(∫
Nβ(Nβ(P ′i ))

|f |pvidµ
)q/p

≤ C
(∫

Ω

χNβ(Nβ(P ′i ))
|f |p v dµ

)q/p
≤ C

(∫
Ω

|f |p v dµ
)q/p

,
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where the Remark 3.10 was applied in the last step. So the proof of the theorem is
complete. �

Now, in the context of partial differential equations, we consider X = Rn, en-
dowed with the Lebesgue measure, Ω an open subset of Rn and the m-Laplacian
operator, that is ∆m, where the notation means that we compose m times the
Laplacian operator in Ω.

For U a solution of the problem ∆mU = f , many estimates are known in the
context of classical weighted Sobolev spaces. Particularly, in the context of local
weights, we refer to [6], where the authors consider a version of weighted Sobolev
spaces that take into account the distance to the boundary. More precisely, with
d(x) as the distance from x to Ωc we denote

W k,p
d,ω(Ω) =

f ∈ L1
loc(Ω) : ‖f‖Wk,p

d,ω (Ω) =
∑
|α|≤k

‖d|α|Dαf‖Lp(Ω,ω) <∞

 .

For U as above they proved (see [6, Theorem 4.2]) that

(5.6) ‖U‖W 2m,p
d,ω (Ω) ≤ C

(
‖U‖Lp(Ω,ω) + ‖d2mf‖Lp(Ω,ω)

)
,

for any weight ω ∈ Aβp .

We now consider a similar result in the case of two different weights. We can
give an answer using (5.6) and Theorem 1.15.

Theorem 5.7. Let 1 < p ≤ q < ∞. For a pair of weights (u, v) satisfying the
hypothesis of Theorem 1.15, with u ∈ Aβ

q and U a solution of the problem ∆mU = f
in Ω we have

(5.8) ‖U‖W 2m,q
d,u (Ω) ≤ C

(
‖U‖Lp(Ω,v) + ‖d2mf‖Lp(Ω,v)

)
.

Proof. Since u ∈ Aβ
q we have by (5.6)

‖U‖W 2m,q
d,u (Ω) ≤ C

(
‖U‖Lq(Ω,u) + ‖d2mf‖Lq(Ω,u)

)
.

By the Lebesgue’s differentiation Theorem f(x) ≤ Mβf(x) for every locally
integrable function f . Then, by Theorem 1.15 we have

‖U‖Lq(Ω,u) ≤ C ‖MβU‖Lq(Ω,u) ≤ C ‖U‖Lp(Ω,v)

and

‖d2mf‖Lq(Ω,u) = ‖f‖Lq(Ω,ud2mq) ≤ C ‖Mβf‖Lq(Ω,ud2mq) ≤ C ‖d2mf‖Lp(Ω,v) ,

where we use the Theorem 1.15 for the pair of weights (ud2mq, v d2mp). The proof
will be complete if we show that this pair satisfies the hypothesis. But this is true
because for every ball B ∈ Fβ with center x0, we get that d(x) ' d(x0) for each

x ∈ B. Then, it is clear that u ∈ D(Fβ) and σ = v1−p′ ∈ D(Fβ\Fβ̃) implies that

ud2mq ∈ D(Fβ) and σ = (vd2mp)1−p′ ∈ D(Fβ\Fβ̃) respectively. Moreover, since(∫
B

u(x)d(x)2mqdµ(x)

)1/q ∥∥∥(vd2mp
)−1/p

∥∥∥
ψ,B

≤ C d(x0)2md(x0)−2m

(∫
B

u dµ

)1/q ∥∥∥v−1/p
∥∥∥
ψ,B

,

we get (1.17) for (ud2mq, v d2mp). �
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Also we can obtain the following embedding result.

Theorem 5.9. Let 0 < β < 1 and 1 < p ≤ q < ∞. Let u and v be weights such
that u ∈ Aβ∞, σr = v1−(p/r)′ ∈ D(Fβ\Fβ̃), with β̃ < β/4000, and

µ(B)1/n−1/p+1/q

(
1

µ(B)

∫
B

u dµ

)1/q

‖v−r/p‖1/rψ,B ≤ C ,

for all B ∈ Fβ, for some r > 1 such that r < n, where ψ be a doubling Young

function such that ψ̃ belongs to Bp. Then for g ∈W 1,p
d,v (Ω) we have

‖d g‖Lqu(Ω) ≤ C ‖g‖W 1,p
d,v (Ω).

Proof. The key is in the proof of Theorem 5.3 of [7], where the authors proved that,
for any x ∈ Ω, we have

(5.10) |g(x)| ≤ C
(

d(x)−1I
1/n
β (|g|(x)) + I

1/n
β (|∇(g)|(x))

)
,

where I
1/n
β is as in (1.27). Then, taking into account that (udq, vdp) satisfies the

same hypothesis as (u, v) (see proof of Theorem 5.7), applying the case m = 0 and
γ = 1/n of Theorem 1.30 we get

‖d g‖q
Lqu
≤ C

(
‖I1/n
β (|g|)‖q

Lqu
+ ‖d I1/n

β (|∇g|))‖q
Lqu

)
= C

(
‖I1/n
β (|g|)‖q

Lqu
+ ‖I1/n

β (|∇g|))‖q
Lq
udq

)
= ‖g‖W 1,p

d,v (Ω).

�

Remark 5.11. The inequality (5.10) is proved in [7] (see proof of Theorem 5.3) and
it does not require the condition 1

p = 1
q + 1

n since the weights are not involved in

it. The necessity of this condition appears when the boundedness of the fractional
maximal is applied. Here, we use another proof, which only requires 1 < p ≤ q <∞.
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