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From free to effective diffusion coefficients in fluorescence correlation spectroscopy experiments
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Diffusion is one of the main transport processes that occur inside cells determining the spatial and time
distribution of relevant action molecules. In most cases these molecules not only diffuse but also interact with
others as they get transported. When these interactions occur faster than diffusion the resulting transport can
be characterized by “effective diffusion coefficients” that depend on both the reaction rates and the “free”
diffusion coefficients. Fluorescence correlation spectroscopy (FCS) gives information on effective rather than
free diffusion coefficients under this condition. In the present paper we investigate what coefficients can be drawn
from FCS experiments for a wide range of values of the ratio of reaction to diffusion time scales, using different
fitting functions. We find that the effective coefficients can be inferred with relatively small errors even when
the condition of fast reactions does not exactly hold. Since the diffusion time scale depends on the size of the
observation volume and the reaction time scale depends on concentrations, we also discuss how by changing
either one or the other property one can switch between the two limits and extract more information on the system
under study.
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I. INTRODUCTION

Diffusion plays a key role for the transport of information
within and between cells. The mean square displacement of
a diffusing particle is proportional to the time elapsed. This
nonballistic transport is the result of the particle undergoing
many (nonreacting) collisions with other (solvent) molecules
(see, e.g., [1]). We identify this process as free diffusion
and we define the free diffusion coefficient as the constant
of proportionality that enters the ratio between the mean
square displacement and time. Free diffusion coefficients can
be written in terms of microscopic parameters such as the
thermal velocity and the particle mean free path. Intracellular
signaling agents, however, very rarely diffuse freely. Most
often, they also interact with intracellular components in
other ways such as binding and unbinding, i.e., they undergo
reactions. The mean square displacement of a particle that
diffuses freely and reacts is also proportional to the time
elapsed if diffusion occurs on a slower time scale than reactions
and the time elapsed embraces many reactive and nonreactive
collisions. In this case the constant of proportionality not only
depends on the parameters that characterize the microscopic
movement of the particles involved but is also a function
of the concentrations and reaction rates [2–4]. In this case
we talk about effective diffusion coefficients. The effective
diffusion coefficient dynamics is more complicated than that
of free diffusion. On one hand, the coefficients that describe
this transport depend on both parameters (free diffusion
coefficients and reaction rates) and variables (concentrations)
of the problem. The resulting evolution equation for the
concentration of the diffusing particles is nonlinear [2,4–6]
and is not exactly a diffusion equation [7]. Furthermore, it has
been shown in [3] that there is not a single effective diffusion
coefficient in this case. Even in the simple case with free
particles Pf that diffuse with coefficient Df and react with
another species S according to the scheme

kon←−
Pf + S Pb,−→

koff

(1)

where S is massive enough so that the S free diffusion
coefficient, DS , is the same as that of Pb and where [S] + [Pb]
is uniform and constant, two effective diffusion coefficients
characterize the dynamics near an equilibrium situation. They
are given by

Dt = Df + Seq

KD
DS

1 + Seq/KD

(2)

and

Du = Df + S2
eq

KDST
DS

1 + S2
eq/(KDST )

, (3)

where [S] = Seq , [Pf ] = Pf eq , and [Pb] = Pbeq are the con-
centrations at equilibrium, PT = Pf eq + Pbeq and ST = Seq +
Pbeq are the total concentrations of particles and binding sites,
and KD = koff/kon is the dissociation constant of the binding
reaction (1). As mentioned before, these effective coefficients
play a role when reactions occur on a faster time scale than free
diffusion. In such a case, following a single particle that can be
distinguished from the rest as it diffuses and reacts, one obtains
the result that Dt enters the constant of proportionality between
the mean square displacement and the time elapsed. Du, on the
other hand, gives the rate at which a small perturbation to the
equilibrium free particle distribution diffuses out with time [3].
Thus, Dt is a single-molecule effective coefficient that rules
the rate at which individual molecules diffuse in the medium.
Du is a collective effective coefficient that determines the rate
at which concentration inhomogeneities spread out with time.
The fact that S is significantly more massive than Pf implies
that DS < Df which, in turn, yields Dt/Du � 1. Remarkably,
given an equilibrium situation, this ratio can be arbitrarily
small depending on the values of the equilibrium concen-
trations and the dissociation constant [3]. When the species
P corresponds to messenger molecules, this implies that the
message can travel much faster than the individual messengers
[3]. For initial conditions that do not satisfy the conditions that
ST is uniform and constant, the decay back to equilibrium of
the system associated with the scheme (1) is characterized by
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three branches of eigenvalues (see the Appendix): two of them
are purely diffusive (they correspond to DS and Du) and the
third one can be split up into an exponential decay rate νuu and
a diffusive decay rate with coefficient Duu, where

νuu =
(

Seq

KD

+ ST

Seq

)
koff, (4)

Duu =
S2

eq

KDST
Df + DS

1 + S2
eq/(KDST )

. (5)

The fluorescent labeling of biomolecules or their expression
with fluorescent tags has opened up the possibility of assessing
the rate at which these molecules are transported inside
cells, with minimum disruption, using optical techniques. In
particular, fluorescence recovery after photobleaching (FRAP)
[8–10] and fluorescence correlation spectroscopy (FCS) and its
variants [11–20] are two techniques that have been widely used
to determine diffusion coefficients. As shown in [3,21,22] for
the model described before with the species Pf , Pb, and S that
diffuse and react according to the scheme (1), FRAP yields the
single-molecule effective diffusion coefficient Dt , under the
assumption of fast reactions as compared to diffusion. Under
the same assumption, FCS yields more than one coefficient,
namely, DS and Du if all Pf and Pb are fluorescent and DS ,
Dt , and Du if both fluorescent and nonfluorescent particles
coexist in the system [23]. In the present paper we investigate
what coefficients can be drawn from FCS experiments when
the condition of fast reactions does not hold. To this end we
consider again the simple model with Pf , Pb, and S and,
assuming that Pf and Pb are all fluorescent, we follow [23] to
derive the autocorrelation function (ACF) of the fluorescence
fluctuations within an observation volume. By varying the
ratio of reaction to diffusion time scales we show that, as
expected [15], the ACF gives the free diffusion coefficients
Df and DS in the limit of fast diffusion and determine how the
components become modified to yield Du and DS in the limit of
fast reactions. There are various ways by which the ratio of time
scales can be changed, among them, varying the observation
volume or the concentrations of the species involved. We then
discuss whether this variation of time scales may be achieved
experimentally and, in this way, derive both free and effective
diffusion coefficients in the same system. For this discussion
we use parameters that give similar results to those obtained
with FCS experiments performed in embryos of Drosophila
melanogaster [24]. The aim of these experiments was to
estimate the diffusion coefficient of the Bicoid protein [25], a
morphogen involved in the establishment of the dorsal-ventral
axis in flies [26].

II. METHODS

We consider the simple model represented by the scheme
(1) where we assume that both Pf and Pb are fluorescent.
The autocorrelation function of the fluorescence fluctuations
in an observation volume can be expressed as the sum of
three integrals. Each of these components is determined by
a branch of eigenvalues of the reaction-diffusion equations
that rule the dynamics of the system linearized around the
equilibrium solution [13,23] (also see the Appendix). In

TABLE I. Biophysical and photophysical parameters used to
generate the full ACF given by Eqs. (A7)–(A10). The dissociation
constant koff is varied within the range displayed in the table.
The values of kon are varied accordingly to keep KD fixed. This
guarantees that the effective diffusion coefficients of Eqs. (2), (3),
and (5) also remain fixed at Dt = 7.3 μm2 s−1, Du = 8.8 μm2 s−1,
and Duu = 10.6 μm2 s−1.

Biophysical parameters

Df 19 μm2 s−1

DS 0.38 μm2 s−1

PT 35 nM
ST 77 nM
KD 32 nM
koff ∈ [10−4 s−1,105 s−1]

Photophysical parameters
wr 0.4 μm
w 5
Veff 1.78 μm3

experiments, the fluorescence is measured, and the ACF is
computed and subsequently fitted to infer diffusion constants
and other parameters of interest. Here we compute numerically
the “full” theoretical ACF [Eqs. (A7)–(A10)] using an adaptive
Lobatto quadrature algorithm (the quadl function of MATLAB

[27]) and the parameters listed in Table I. These parameters
are compatible [28,29] with the results of FCS experiments
performed in embryos of D. melanogaster to estimate the
diffusion rate of the Bicoid protein, a key morphogen for the
establishment of the dorsal-ventral axis in this organism [24].
In this particular application, which should be considered
merely as a platform where a generic behavior can be studied,
Bicoid plays the role of the particles Pf . The values in Table I
were derived from an interpretation of the fitting parameters
of [24] in terms of the simple model given by Eqs. (A1).
This analysis does not give an estimate of koff [28,29].
Therefore, we explore a wide range of koff values keeping
KD fixed. By doing this, the effective diffusion coefficients
given by Eqs. (2) and (3) remain fixed at Dt = 7.3 μm2s−1

and Du = 8.8 μm2 s−1. With this exploration, on the other
hand, we can analyze the behavior of the ACF outside the
fast reaction limit. Although the simple model considered
here with the parameters of the table reproduces the ACF
obtained from FCS experiments in [24], assuming that all
Bicoid (Bcd) molecules are fluorescent is not realistic [28,29].
A better interpretation of the experimental results of [24] is
obtained when the simple model is extended to assume that
both fluorescent and nonfluorescent Bcd molecules coexist
in the system [29]. Thus, the simple model analyzed here
with the parameters of Table I should be mainly considered as
an illustrative example in which the behavior of the ACF in
different limits can be explored.

Once the full ACF G is computed we try to fit it
using different approximate expressions G̃, from which we
determine weights G̃oi

, diffusive times τ̃i , and, depending on
the expression, other fitting parameters. From the times, we
derive diffusion coefficients D̃i = w2

r /(4τ̃i), assuming known
values of wr , w, and Veff as listed in Table I.
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For the fitting we try forms that are often used to analyze
FCS data sets obtained from experiments. We first try a
superposition of two terms with the same τ dependence as
the one encountered in the case of free diffusion,

G(τ ) ≈ G̃(τ ) =
2∑

i=1

G̃oi(
1 + τ

τ̃i

)√
1 + τ

w2 τ̃i

(6)

because it embraces both the fast diffusion Eq. (A6) and the
fast reaction Eq. (A15) approximations. Being able to fit the
ACF with such an expression does not mean that free diffusion
is the only process that is taking place in the system. In fact,
in the fast reaction limit the ACF is of this form but with one
of the characteristic time scales corresponding to an effective,
not a free, diffusion coefficient.

We then try an expression of the form

G(τ ) ≈ G̃(τ ) = G̃o1(
1 + τ

τ̃1

)√
1 + τ

w2 τ̃i

+ G̃o2(
1 + τ

τ̃2

)√
1 + w2 τ

w2 τ̃2

+ G̃o3(
1 + τ

τ̃3

)√
1 + τ

w2 τ̃3

e−ν̃τ ,

(7)

where ν̃ is an additional fitting parameter. In this case, the
ACF has three components, two of which have a diffusive τ

dependence while the third one has in addition an exponen-
tially decaying factor. We have tried this combination because
it corresponds to the behavior encountered for the eigenvalues
of the linearized problem in the limit of small wave number
[see Eqs. (A13) and (A14)]. An ACF with the τ dependence
of Eq. (7), on the other hand, is the one used in [18] to analyze
a system in which the species undergo free diffusion and
reactions.

We have also probed a superposition of two components
such as the ones that are used for experiments in which the
fluorescent molecules undergo anomalous diffusion [30],

G(τ ) ≈ G̃(τ ) =
2∑

i=1

G̃oi[
1 + (

τ
τ̃i

)α̃i
]√

1 + w−2
(

τ
τ̃i

)α̃i

. (8)

with the α̃i’s free fitting parameters. We do not show the details
of the results obtained in this case.

Finally, we also seek to fit each of the three components of
the full ACF separately by an expression of the form

G̃i(τ ) = G̃oi(
1 + τ

τ̃i

)√
1 + τ

w2 τ̃i

e−ν̃i τ . (9)

Since we have an analytic expression for the first component
G1 [Eq. (A8)], we do not perform the fitting but directly set
G̃o1 = GoS

, τ̃1 = τs = w2
r /(4DS), and ν̃1 = 0.

In order to obtain the fitting parameters we minimize the
difference |G − G̃| using a nonlinear least squares method
for the minimization (a trust region reflective algorithm, the
lsqcurvefit function of MATLAB [27]). The goodness of the
fitting is evaluated by computing the χ2:

χ2 =
∑

j

[G(tj ) − G̃(tj )]2, (10)

with {tj } the times for which both G and G̃ are computed. The
total numbers of degrees of freedom in the three cases probed
are very similar (they are mainly determined by the number
of data points that we use for the fitting). Penalizing the χ2 in
view of the different numbers of fitting parameters does not
introduce noticeable changes and we do not take them into
account when comparing the goodness of the fit.

We also perform some stochastic simulations to mimic the
situation encountered in FCS experiments. More specifically,
we consider a rectangular volume of sides Lx , Ly , and Lz with
Ly = Lx = L and Lz = 5L, which we divide using the same
grid spacing �r in all directions. �r and the time step �t are
chosen as �t � τr ≡ 1/[koff(1 + Pf eq/KD + Seq/KD)] and
�t � �r2/(6Df ). The figures shown in this paper were drawn
using L = 10 μm, �t = 22 μs, and �r = 0.05–0.16 μm.
Given the volume of the simulation, we choose the total
number of particles of each species so that their concentrations
correspond to the values of Table I. The fraction of bound
particles and of bound traps is chosen so as to satisfy the
equilibrium conditions [Eq. (A2)]. All molecules are initially
distributed with uniform probability over the grid points. Each
molecule is moved to one of its six neighboring points with
equal probability every nD = �r2/(6D�t) time steps, where
D is the free diffusion coefficient of the molecule. We use re-
flecting boundary conditions at the border. At every time step,
after all the corresponding random walks are performed, the
occurrence of the binding reactions is decided for each pair of
free particles and free traps that are at the same grid point with
probability pon = (kon�t × 1021 μM μm3)/(�r3NA) where
NA is Avogadro’s number. Once a new bound particle Pb is
formed, the time it will remain bound (i.e., as Pb) is randomly
chosen from an exponential distribution of mean 1/koff . The
same procedure is applied at t = 0 with all bound particles.
This means that the simulation assigns a lifetime to every
bound particle. Thus, at each time step, after the decision on
the binding reactions is made, it is checked whether there are
any molecules Pb that are supposed to unbind at that particular
time and the unbinding is performed. All the simulations for
which results are shown in this paper were run for a total time
t = 200 s. Finally, the total fluorescence as a function of time
is computed according to

F (t) =
∫

QI (r){[Pf ](r,t) + [Pb](r,t)}d3r, (11)

with Q = 1, [Pf ](r,t) = ∑
if δ(r − rif (t)), and [Pb](r,t) =∑

ib δ(r − rib(t)), where rif (t) and rib(t) are the locations
of the free and bound particles at time t , respectively, and
I (r) the intensity distribution of the illumination spot which
is approximated as a three-dimensional Gaussian distribution.
Using the total fluorescence the ACF is computed as is done
with an experimental record. Notice that Q scales out from the
ACF so that its actual value is irrelevant for our purposes.

III. RESULTS

A. The full ACF in different limits

In order to study how the full ACF behaves outside the fast
reaction limit we computed it for the wide range of koff values
described in Table I. For the parameters used, the particle free
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FIG. 1. Full ACF computed numerically using the parameter
values of Table I and koff = 10−3 s−1 (solid line), koff = 10 s−1

(dashed line), koff = 100 s−1 (dotted line), and koff = 10−5 s−1 (dash-
dotted line). The ACFs for koff � 1/s are almost indistinguishable
from the one with koff = 10−3 s−1. Something similar happens for
those with koff � 1000/s and the one for koff = 105 s−1. These
extreme behaviors are associated with two different limits: the fast
diffusion limit (small koff ) and the fast reaction limit (large koff ).

diffusion time scale is τf = w2
r /(4Df ) = 2 × 10−3 s [or τf =

(wwr )2/(4Df ) = 5 × 10−2 s if we consider the characteristic
length scale wz = wwr along the axis of observation] while
the reaction time scale τr = 1/[koff(1 + Pf eq/KD + Seq/KD)]
varies between 3.23 × 10−6 and 3.23 × 103 s (τr = 0.32 k−1

off ).
In this way we go from the fast reaction to the fast diffusion
limit (τf � τr ). These two limits become clear in Fig. 1
where we have plotted four of the various curves obtained.
The existence of two time scales, one of which is of the
order of 10−1 s, seems apparent in the two limits. For the
scale of the figure, both limiting curves (koff = 105 s−1 plotted
with the dash-dotted line and koff = 10−3 s−1 plotted with the
solid line) are indistinguishable for τ > 10 s and τ < 10−4 s.
Furthermore, most of the curves obtained are well described by
either limit in the middle region 10−4 < τ < 10 s with a slight
discrepancy for τ ∼ 1 s (data not shown). The two curves that
do not seem to approach either of the two limits in the middle
region are the other two that we have plotted in Fig. 1, which
correspond to koff = 10 s−1 (dashed line) and koff = 100 s−1

(dotted line).
We then tried to fit the various curves using the models

described in Sec. II. We show the fitting parameters and
the corresponding χ2 values obtained in Tables II and III.
The weights are listed in terms of their fraction with re-
spect to their sum, G̃o, which satisfies G̃o = G̃(τ = 0). We
show the differences between the full and the fitted ACFs
for some values of koff in Fig. 2. As shown in Fig. 2(a),
the difference between the full ACF and the fitting function
given by Eq. (6) is negligible for large and small values of koff

(koff 	 100/s and koff � 10/s, respectively). For intermediate
values, 10/s � koff � 100/s, the fitting is not as good but the
difference never exceeds 10% of the full ACF in the relevant
region of τ (τ � 0.1 s). When looking at the values of the
fitting parameters (see Table II), we observe a transition from
a situation in which one of the estimated diffusion coefficients
is D̃2 ∼ 19 μm2/s to a situation in which it is D̃2 ∼ 8.5 μm2/s
as koff is increased. D̃1 does not vary significantly, D̃1 ∼
0.4 μm2/s, for most values of koff . D̃1 corresponds to the free

TABLE II. Parameters obtained using expression (6) to fit the
full ACF for various values of koff and corresponding χ 2 values. The
smaller the χ 2 the better the fitting is. In the limit of fast reactions,
koff > 100 s−1, the parameters agree with those of [23]. In the limit
of fast diffusion, koff � 10−1 s−1, the estimated diffusion rates are
similar to the free diffusion coefficients, Df = 19 μm2/s and DS =
0.38 μm2/s.

koff ( 1
s ) χ2

10−8 D̃1 ( μm2

s ) D̃2 ( μm2

s )
G̃o1
G̃o

G̃o2
G̃o

0.0001 1.26 0.38 18.95 0.63 0.37
0.001 1.28 0.38 18.96 0.63 0.37
0.01 1.70 0.38 19.00 0.63 0.37
0.1 18.0 0.40 19.43 0.64 0.36
1 320 0.50 22.31 0.67 0.33
5 645 0.82 27.92 0.72 0.28
10 495 1.08 30.96 0.75 0.25
25 177 1.59 33.10 0.79 0.21
50 249 2.00 28.20 0.79 0.21
100 587 1.16 7.82 0.39 0.61
250 126 0.31 6.36 0.14 0.86
500 320 0.31 7.10 0.15 0.85
1000 7.37 0.33 7.71 0.16 0.84
10000 0.73 0.37 8.57 0.18 0.82
100000 0.41 0.38 8.68 0.18 0.82

diffusion coefficient of the binding sites, DS = 0.38 μm2/s.
For large koff (i.e., for fast reactions), D̃2 ≈ Du = 8.8 μm2.
Both the times and the weights agree with those of the analytic
approximation in the fast reaction limit [23] (also see the
Appendix). For small koff , D̃2 ≈ Df = 19 μm2/s, the free
diffusion coefficient of the particles. In this case we recover
the results of the analytic approximation to the ACF in the fast
diffusion limit [15] (also see the Appendix). In between these
two limits the solution to the minimization problem gives a
value D̃1 that differs by up to a factor of 3 with respect to the
free coefficient of the binding sites. D̃2 stays close to either
one of the values Df and Du obtained in each limit for almost
all values of koff . The exception is koff = 10/s for which D̃2

TABLE III. Similar to Table II but using expression (7) to fit the
full ACF. All quantities measured with the same units as in Table II.

koff
χ2

10−9 D̃1 D̃2 D̃3 ν̃−1 G̃o1
G̃o

G̃o2
G̃o

G̃o3
G̃o

0.0001 8.12 18.95 0.38 28.54 0.00 0.37 0.63
0.001 8.02 18.95 0.38 28.51 0.00 0.37 0.63
0.01 6.98 18.94 0.38 25.93 0.00 0.37 0.63
0.1 2.32 18.96 0.38 11.00 0.00 0.36 0.64
1 4.70 0.39 19.10 0.37 0.76 0.21 0.36 0.43
5 11.5 0.48 19.72 0.31 0.15 0.26 0.35 0.39
10 14.5 0.56 20.33 0.25 0.08 0.31 0.34 0.36
25 18.1 0.60 21.66 0.21 0.03 0.31 0.31 0.38
50 23.5 0.60 23.73 0.51 0.02 0.31 0.26 0.43
100 35.0 0.61 28.55 1.54 0.02 0.31 0.19 0.50
250 51.2 0.62 54.14 4.30 0.02 0.32 0.06 0.62
500 49.1 0.61 140.8 6.28 0.02 0.31 0.01 0.68
1000 33.3 0.34 4.42 9.30 0.01 0.15 0.53 0.31
10000 2.65 0.38 8.34 0.18 0.80 0.02
100000 2.60 0.38 8.53 0.18 0.81 0.01
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FIG. 2. Difference �G between the full ACF and the approximated models with which we tried to fit it for koff = 0.001/s (solid line),
koff = 10/s (dashed line), koff = 100/s (dotted line), and koff = 105/s (dash-dotted line). (a) The model given by Eq. (6). (b) The model given
by Eq. (7). In all cases �G is negligible for small and large values of koff while for intermediate values the differences get larger although they
never exceed 10% of the full ACF for τ � 0.1 s.

is 1.5 times larger than Df . This value of koff corresponds
to τr ≈ 0.03 s which is of the order of the value of τf that
is obtained using the longest length scale of the observation
volume [τf = (wwr )2/(4Df ) = 0.05 s].

Fitting the full ACF with the model given by Eq. (7)
gives very small differences all across the range of koff values
that we tested [see Fig. 2(c)]. For koff � 104/s the weight
of the component with the exponential decay, Go3 , is zero
and the model coincides with the one given by Eq. (6). The
diffusion coefficients obtained in this case are the free diffusion
coefficient of the binding sites, DS , and the effective diffusion
coefficient, Du, as predicted by the fast reaction approximation
[23] (also see the Appendix). For koff � 0.1/s, the weight Go1

becomes zero. As may be observed in Table III, for koff � 0.1/s
the characteristic decay time ν̃−1 associated with the third
component of (7) is much larger than all the other characteristic
times [ν̃−1 	 τmax = w2

r /(4Dmin) ∼ 0.1 s]. Furthermore, it
corresponds to a time at which the ACF is about 10% of
its maximum value. Therefore, exp(−ν̃τ ) ≈ 1 for τ � 0.1 s
and the fitting function Eq. (7) is approximately of the same
form as Eq. (6) in the relevant region of τ . The diffusion
coefficients obtained for koff � 0.1/s are approximately equal
to the free coefficients Df and DS . For 0.1/s < koff � 1000/s
fitting the ACF with this model gives smaller errors than with
the other two models. However, the fitted diffusion coefficients
cannot always be related to an actual coefficient of the problem
(e.g., compare the values obtained for koff = 1000/s with those
described in the caption to Table I). Furthermore, although
for koff � 1/s or koff � 104/s a purely diffusive term with
the free coefficient of the trap is found with this fitting (it is
embraced by G̃3 for koff � 0.1/s, and it corresponds to G̃1

for koff = 1/s and koff � 104/s), no such term is found for
10/s � koff � 100/s. Such a term should always be present
as explained in the Appendix. It is found with a ∼10% error

at koff = 103/s, but the other coefficients are not meaningful.
For koff � 104/s this fitting gives the same results as those of
Eqs. (6) in the fast reaction limit with D̃1 ≈ DS and D̃2 ≈ Du.

B. Components of the ACF

In order to understand the transition from the fast diffusion
to the fast reaction limit, we analyzed the behavior of the
three components of the full ACF [see Eqs. (A8)–(A10)], for
different values of koff . As explained in more detail in the
Appendix, each component corresponds to the eigenvalue of a
linear problem and is characterized by a time scale. The first
of these eigenvalues does not depend on koff and its associated
component, for which we have an analytic expression, remains
unchanged for all values of koff . This does not hold for the
other two components for which we do not have an analytic
expression and which depend strongly on koff . To study their
behavior we determined them by numerical integration. We
show the results in Fig. 3 where we have plotted the three
components for increasing values of koff from Fig. 3(a) to
Fig. 3(d). We show in Fig. 4 the characteristic times and
weights obtained by fitting each component Gi separately
for each value of koff probed using the expression given by
Eq. (9). We observe that, in the fast diffusion limit [Fig. 3(a)],
both G1 and G2 have approximately the same correlation
time. This can be verified in Fig. 4(a) where we observe that
they are both characterized by the same diffusion coefficient,
which corresponds to the free coefficient of the binding
sites (D̃1 ≈ D̃2 ≈ DS) for koff � 1 s−1. The fit of the second
component G2 not only gives a diffusive time scale [shown in
Fig. 4(a)] but also a time scale associated with an exponential
decay [ν̃−1

2 displayed in Fig. 4(b)]. This characteristic time
scale is at least an order of magnitude larger than that of
diffusion (ν̃−1

2 � 0.78 s and τ̃2 ∼ 0.1 s for koff � 1 s−1). Thus,
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FIG. 3. Components of the full ACF for different values of koff

normalized to the sum of all the weights, Go ≡ ∑3
i=1 Gi(τ = 0):

G1/Go (solid line), G2/Go (dashed line), and G3/Go (dash-dotted
line). (a) koff = 10−3 s−1, which corresponds to the limit of fast
diffusion. G1 and G2 decay at approximately the same time so they
prescribe the same diffusion coefficient, which is the free coefficient
of the binding sites, D1 = D2 = DS . (b) koff = 10 s−1. In this case
the characteristic time of the component G2 is smaller than in (a).
(c) koff = 102 s−1. In this case, the relative weight of G2 is larger than
in (b) while that of G3 decreases. The characteristic time of G2 is
smaller than in (b). (d) koff = 105 s−1, which corresponds to the limit
of fast reactions. In this case the relative weight of the component G3

becomes negligible.

the decay of G2 is dominated by diffusion and it is the free
diffusion coefficient of the binding sites that determines the
characteristic time of this decay. This becomes clear in Fig. 3(a)
where we can observe that G2 is negligible for τ ∼ ν̃−1

2 (koff =
10−3 s−1) = 250 s. In this regard, something similar happens
to G3, for which ν̃−1

3 � 0.13 s while τ̃3 ∼ 2.1 × 10−3 s
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FIG. 4. Characteristic times and weights obtained by fitting each
component Gi of the full ACF separately using an expression of
the form (9). Since we have an analytic expression for the first
component (see the Appendix) we do not perform the fitting but
plot the corresponding parameter values directly. (a) Fitted diffusion
times τ̃1 (open circles), τ̃2 (crosses), τ̃3 (open squares), and analytic
diffusion times τS = w2

r /(4DS) (solid line), τu = w2
r /(4Du) (dashed

line), τuu = w2
r /(4Duu) (dotted line), and τf = w2

r /(4Df ) (dash-
dotted line). (b) Times that characterize the exponential decay, those
obtained from the fitted ν̃−1

2 (crosses) and ν̃−1
3 (open squares) and the

analytic one ν−1
uu given by Eq. (4) (solid line). (c) Relative weights

Go1/Go (solid line), Go2/Go (dashed line), and Go3/Go (dash-dotted
line) with their fitted values in marks.

for koff � 1 s−1. Thus, for koff � 1 s−1 the decay of G3 is
dominated by diffusion and the corresponding characteristic
time is that of the free particle diffusion coefficient Df , as may
be observed in Fig. 4(a). Therefore, for koff � 1/s, by fitting
each component separately we obtain that the ACF is basically
the sum of two purely diffusive components with the free
diffusion coefficients of the binding sites and of the particles.
This indicates that the fast diffusion limit holds up to koff = 1/s
for which τr = 0.32 s while τf = w2

r /(4Df ) = 2 × 10−3 s
[or τf = (wwr )2/(4Df ) = 5 × 10−2 s if we consider the
characteristic length scale wz = wwr ]. The situation described
so far apparently is not very different from the one encountered
for koff = 10/s, for which ν̃−1

2 = 0.12 s, τ2 = 0.075 s, ν̃−1
3 =

0.016 s, and τ3 = 0.002 s. This could be an indication that
the ACF could be fitted by the sum of two purely diffusive
terms characterized by the free diffusion coefficients DS and
Df . However, the χ2 obtained for the fit to G2 at koff = 10/s is
much larger than the ones obtained for koff � 1/s. In fact, when
we try to fit with two diffusive components the ACF obtained
for koff = 10/s we do not converge to the free diffusion coeffi-
cients (see Table II). As koff is increased (i.e., as the reactions
become faster), the characteristic decay time of G2 decreases
(the diffusion coefficient increases) while the relative weight
of this component increases (see Figs. 3(b), 3(c), and 4). For
koff = 100/s, fitting each component separately gives results
that are not purely diffusive. Namely, for both G2 and G3

the exponentially decaying term becomes relevant since the
corresponding characteristic times are not much larger than
those of diffusion (ν̃−1

2 = 6.7 × 10−2 s, τ̃2 = 1.4 × 10−2 s,
ν̃−1

3 = 2.95 × 10−3 s, τ̃3 = 1.74 × 10−3 s). On the other hand,
although D̃3 ≈ Df , D̃2 is different from all the coefficients
with which we can associate a biophysical meaning within the
model used. The χ2, however, is larger than for koff � 1/s.
Thus, the fitting is not as good. For koff � 103 s−1 the relative
weight Go3/Go is negligible [Figs. 3(d) and 4(c)] and G2 is
described by a purely diffusive term (τ̃2 ∼ 5 × 10−3 while
ν̃2 � 0.33 s) that is characterized by the effective diffusion
coefficient Du of Eq. (3), which satisfies DS � Du � Df as
shown in Fig. 4(a).

C. Dependence of the fitted diffusion
coefficients on concentrations

The ACF of the example considered here gives two
diffusion coefficients in the limits of fast diffusion and of fast
reactions. An important difference between the two limiting
cases is the type of coefficients that are obtained: they are both
free in the former and one of them is effective in the latter.
Effective diffusion coefficients depend on concentrations and
reaction rates. In order to check that this is the case for the
coefficients that we derive from the fitting, we computed the
ACF for the parameters of Table I using different values of PT

and koff . Given that the reaction characteristic time is given by
τr = (koff + konPf eq + konSeq)−1, varying the concentrations
can change the relationship between τr and the free diffusion
time τf = w2

r /(4Df ). The curves in Fig. 5 were obtained
choosing values of koff that allow the concentration of PT to
be changed, keeping the same type of relation between τf and
τr all across each subfigure. Namely, τf = 2 × 10−3 s for all
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FIG. 5. Diffusion coefficients derived by fitting ACFs obtained
for different values of PT and koff with an expression of the form
(6) (D̃1, open squares; D̃2, open circles) and characteristic diffusion
coefficients of the problem (DS , dashed line; Du, dash-dotted line;
Df , solid line). (a) koff = 10−5 s−1, which corresponds to the fast
diffusion limit. Neither D̃1 nor D̃2 varies with PT and they coincide
with the free coefficients of the problem. (b) koff = 10 s−1 and 3.1 �
τr/τf � 38. (c) koff = 100 s−1 and 0.31 � τr/τf � 3.8. (d) koff =
106 s−1, which corresponds to the fast reaction limit. D̃1 does not
change with PT and satisfies D̃1 ≈ DS . D̃2 does change with PT and
satisfies D̃2 ≈ Du.

subfigures while 6.2 × 102 � τr � 7.6 × 103 s in Fig. 5(a),
6.2 × 10−3 � τr � 7.6 × 10−2 s in Fig. 5(b), 6.2 × 10−4 �
τr � 7.6 × 10−3 s in Fig. 5(c), and 6.2 × 10−7 � τr � 7.6 ×
10−6 s in Fig. 5(d), with τr decreasing with increasing PT . We
show in Fig. 5 (with symbols) the diffusion coefficients derived
by fitting the ACFs obtained for different values of PT and
koff with an expression of the form (6). The plots of Figs. 5(a)
and 5(d) illustrate the fast diffusion and the fast reaction limits.
Figures 5(b) and 5(c) correspond to intermediate cases. We
observe in Fig. 5(a) that neither of the coefficients derived from
the ACF changes with PT , i.e., they are both free coefficients.
Furthermore, they agree with the expected values DS and Df

(shown with curves). We observe in Fig. 5(d) that D̃1 remains
constant (and approximately equal to DS) while D̃2 increases
with PT . We also observe that D̃2 ≈ Du for the whole range
of PT values explored. Both D̃2 and Du approach Df as PT

increases. This is so because, as PT increases, the binding sites
eventually become saturated and most of the particles diffuse
freely. This shows that, even in the fast reaction limit, the
free diffusion coefficient Df can be recovered, depending on
the relative concentrations of the reactants at work. We observe
in Figs. 5(b) and 5(c) that even outside the fast reaction limit
(when τf is slightly smaller than or of the order of τr ) fitting
the ACF with two diffusive components gives relatively good
estimates of DS and Du. This is so for PT � 0.15 μM in
Fig. 5(b), which corresponds to τr/τf � 10, and for PT �
0.04 μM in Fig. 5(c), which corresponds to τr/τf � 1.5. The
fitting is not good when τr/τf > 10 but not large enough as in
Fig. 5(b) for PT < 0.15 μM or in Fig. 5(c) for PT < 0.04 μM.
In this region, the fitting tends to overestimate the diffusion

coefficient D̃2 [e.g., the corresponding points in Fig. 5(c) fall
outside the frame of the figure].

D. Transition from free to effective diffusion
coefficients in experiments

The transition from the fast reaction to the fast diffusion
limit was explored so far by changing the off reaction rate koff .
Similar global changes in the ACF are obtained when other pa-
rameters that affect the ratio of time scales are changed [15,31].
For example, varying the volume of observation changes the
particle diffusion characteristic time τf = w2

r /4Df , and in
this way the best analytic approximation to the ACF can be
changed. In particular, we did obtain similar changes to the
ones discussed so far when the full ACF was computed using
the parameters of Table I, koff = 1 s−1 and 0.1 � wr � 20 μm
(data not shown). On fitting the obtained ACFs with Eq. (6),
the free particle diffusion coefficient Df was recovered for
w2

r koff � 0.25 μm2/s and the collective coefficient Du was
recovered for w2

r koff � 25 μm2/s (for which τf ∼ τr ) (data
not shown). The question arises of whether it is possible to
perform experiments with different values of wr and, in this
way, estimate both free and effective coefficients and derive
information on the reactions. Reduction in the observation
volume to reach the fast diffusion limit is not always possible.
Enlargement of the volume, on the other hand, is more
feasible and the fast reaction limit can also give meaningful
information. On the other hand, obtaining an ACF with a shape
that changes noticeably with the observation volume is per
se very informative. The question that arises then is to what
extent the volume can be enlarged and the autocorrelation
of the fluctuations can still be computed. According to the
exploration with varying wr described before the transition
to Du is observed for w2

r koff ∼ 0.25 μm2/s. This transition
point would correspond to wr ∼ 0.5 μm (a value of the order
of the typical one obtained with a confocal microscope)
for koff ∼ 100/s and to twice this value, wr ∼ 1 μm, for
koff ∼ 25/s. Given the concentrations of our example, the
number of fluorescent particles in the observation volume
5π3/2w3

r PT would then be 73 and 584, respectively, which
are adequate for FCS experiments (see, e.g., [32]).

In order to probe in a more realistic setting whether the
observation volume can be enlarged and still give rise to an
informative ACF we have performed stochastic simulations
as explained in Sec. II. We show the results in Fig. 6 where
we have plotted the ACFs obtained from these simulations
using koff = 35 s−1 and different values of wr (wr = 0.3,
0.5, 0.8, and 1.2 μm). There we observe that fluctuations are
large enough in all cases probed to allow computation of an
informative ACF. On introducing a rescaling factor so that all
curves span the same region of the plot, the transition between
two types of regimes is noticeable in Fig. 6(a). It then is clear
from Figs. 6(b) and 6(c), where we have plotted the ACF for
wr = 0.3 μm and wr = 1.2 μm, respectively, that the shortest
time scale that can be estimated with the fitting (τ1) changes
and can be extracted in both cases. Obtaining the longest time
scale (the one that corresponds to the free diffusion of the
traps) is more complicated for wr = 1.2 μm because the ACF
is very noisy in this region of τ . The values τ1 and τ2 shown in
Figs. 6(b) and 6(c) were obtained by fitting the “noiseless” ACF
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FIG. 6. Autocorrelation functions obtained from stochastic simulations performed with the parameters of Table I, koff = 35 s−1 and different
values of wr . (a) Rescaled ACFs G ≡ w3

r G(τ ), as functions of the rescaled “time’ τ ≡ τw2
r for wr = 0.3 μm (solid line), 0.5 μm (dashed

line), 0.8 μm (dotted line), and 1.2 μm (dash-dotted line). Three relevant times, τ f = 1/4Df , τu = 1/4Du, and τ s = 1/4DS are indicated
with arrows. (b) G(τ ) for wr = 0.3 μm. (c) G(τ ) for wr = 1.2 μm. τ1 and τ2 are the fitted times obtained by fitting the noiseless ACF
[Eqs. (A7)–(A10)] with Eq. (6). The transition between two types of regime as wr is increased is noticeable.

[given by Eqs. (A7)–(A10)] with Eq. (6), and this problem does
not arise. In any case, the stochastic simulations show that for
certain parameter values (koff ∼ 10–100 s−1 in our example)
one can infer whether the estimated coefficients are effective or
free by enlarging the observation volume from the typical value
in a confocal setup (with wr = 0.3 μm) to a larger one. Doing
these simulations we have also confirmed that the theoretical
expressions Eqs. (A7)–(A10) provide a good description of
the autocorrelation function for the problem under study: the
functions obtained with the stochastic simulations are noisy
versions of the ACF obtained using Eqs. (A7)–(A10) (data not
shown).

IV. DISCUSSION AND CONCLUSIONS

Diffusion is a key transport process inside cells. Having
reliable estimates of diffusion coefficients in situ is thus most
important. In the case of biological molecules, diffusion is
usually hindered by other processes such as reactive interac-
tions with binding sites. Depending on the relative time scales
involved, the net resulting transport may be approximately
diffusive but with “effective” (concentration-dependent) rather
than “free” diffusion coefficients. In such a case, the transport
rates estimated under certain conditions cannot readily be used
to infer at what pace transport will occur under others. In order
to overcome this problem one needs estimates of free diffusion
coefficients and reaction rates separately and a biophysical
model to eventually compute net transport rates under a variety
of conditions.

FCS provides a noninvasive method to infer diffusion
coefficients in situ and, in certain cases, reaction rates as
well [15,18]. In order to determine these quantities from
experiments it is necessary to have a simple parametrized
expression for the fluorescence ACF, something that is not
always possible when the fluorescent particles react with other
(unobservable) species. In [11] an analytic expression was
derived for the ACF in the fast reaction limit and when these

other species were in excess. The fast reaction limit was also
studied in [17,18,23] without the assumption that the binding
sites were in excess. The ACF can also be approximated
analytically under the assumption of fast enough diffusion [15]
in which case free diffusion coefficients can, in principle, be
derived. In [15] the two limiting cases were compared. In the
present paper we have explored the transition between the fast
reaction and the fast diffusion limits. We have also studied the
ACF in the fast reaction limit when the relationship between
the binding sites and the free particle concentrations varies
between a situation in which the binding sites are saturated
and another one in which they are barely occupied.

The studies reported in the present paper were performed
within the framework of a simple biophysical model but
their consequences can be extended to more complicated
ones. Based on this biophysical model in which fluorescent
particles diffuse and interact with a single type of binding
site, we computed numerically the theoretical ACF with no
approximations for a wide range of values of the reaction
rate koff . In this way we explored its behavior for different
ratios between the diffusion [τf = w2

r /(4Df )] and the reaction
[τr = 1/(koff + konPf eq + konSeq)] time scales (Fig. 1). We
subsequently tried to fit it with different expressions [Eqs. (6)–
(8)]. The results of all these fittings agreed with the fast
diffusion approximation [Eq. (6) with D̃1 = DS and D̃2 = Df

where DS and Df are the free diffusion coefficients of the
binding sites and the fluorescent particles, respectively] for
koff � 0.1/s (τf /τr � 6.23 × 10−4) and with the fast reaction
approximation [Eq. (6) with D̃1 = DS and D̃2 = Du with Du

the “collective” effective coefficient Du given by Eq. (3)]
for koff � 104/s (τf /τr � 62.3). In between the two extreme
situations, fitting the ACF with the superposition of three
components given by Eq. (7) gave the smallest differences.
However, this did not always mean an improvement in
the estimates of the diffusion coefficients. In particular, for
koff = 1000/s (τr/τf = 0.16) none of the coefficients obtained
with this fitting corresponded to an actual coefficient of the
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problem, while the results obtained with (6) or (8) agreed
with those of the fast reaction approximation. Furthermore
for 10/s � koff � 100/s the fitting with Eq. (7) failed to
find a term with the free binding site coefficient DS , which,
as explained in the Appendix, should always be present.
Fitting with two purely diffusive components [Eq. (6)], on
the other hand, always gave one meaningful coefficient D̃2,
which was either approximately equal to Df (for koff � 10/s
for which τr/τf � 16) or to Du (for koff � 100/s for which
τr/τf � 1.6). Therefore, the collective coefficient Du may be
derived from the ACF even if the reaction characteristic time
is of the same order as the diffusion one, τr/τf � 1.6. The
other coefficient obtained with Eq. (6) was of the order of DS

for all values of koff with the exception of koff = 10/s and
koff = 100/s (for which 1.6 � τr/τf � 16). Fitting with the
anomalous diffusion model, Eq. (8), on the other hand, gave
the worst results with regard to the meaning of the diffusion
coefficients.

In order to understand how the ACF reduces to a two-
component expression even though, as explained in the
Appendix, it is characterized by three eigenvalues, we analyzed
how its three components varied when going from one extreme
situation to the other (Fig. 3). We observed that, in the fast
diffusion limit, two of the components are characterized by the
same characteristic time (τ = w2

r /4DS). The other component
has the smallest correlation time, which is the one associated
with the particle free diffusion coefficient Df . In the fast
reaction limit the weight of the component with the smallest
correlation time becomes negligible, and we are left with two
terms with correlation times associated with DS and with the
effective diffusion coefficient, Du. The fast diffusion limit
holds while τr/τf � 160. The fast reaction limit holds while
τr/τf � 0.16. However, as we mentioned before, the free
particle diffusion coefficient (typical of the fast diffusion limit)
can be obtained for τr/τf � 16 and the effective diffusion Du

(typical of the fast reaction limit) can be obtained for τr/τf �
1.6 when fitting with two purely diffusive components.

An important difference between the coefficients that may
be derived in the fast diffusion and in the fast reaction limits,
Df and Du, is that the latter is concentration dependent while
the former is not. We confirmed this different behavior by
analyzing situations with different values of the concentration
of fluorescent particles PT (Fig. 4). We also showed that the
coefficient derived in the fast reaction limit is the collective
coefficient defined in Eq. (3). This differs from the weighted
average between Df and DS that defines the single-molecule
effective coefficient Dt given by Eq. (2). As described in
[3] Dt and Du can be arbitrarily different from each other.
Having the correct expression for the effective coefficient
is key to interpreting FCS results [29]. In a model like
the one we are analyzing here but where fluorescent and
nonfluorescent particles coexist, the ACF gives both Dt and
Du in the fast reaction limit [23]. This suggests that by partially
photobleaching the sample one could change the relative
weights of the different terms of the ACF and, in this way,
extract more information about the system under study. Our
exploration of the model for varying concentrations confirms
that even when τr is slightly larger than τf (τr/τf ∼ 1.5)
fitting with two diffusive components gives relatively accurate
information on the effective diffusion coefficient Du (see

Fig. 5). It also shows that, even in the fast reaction limit, the
free diffusion coefficient Df can be recovered, depending on
the relative concentrations of the reactants at work. As a result
of all these explorations we conclude that fitting with purely
diffusive components gives relatively accurate information on
meaningful diffusion coefficients even outside the conditions
for which the fast diffusion or the fast reaction limit holds.

The transition from the fast reaction to the fast diffusion
limit was first explored by changing the off reaction rate koff .
We then analyzed it by changing wr (i.e., the size of the
illumination volume). In recent years several modifications
to the traditional FCS setup have been explored [20], some
of which were aimed at reducing the observation volume, a
desirable goal since free rather than effective coefficients could
then be inferred. The observation volume can be reduced,
for example, using multiphoton excitation [12,14], metal-
lic nanoparticles that can locally enhance the illumination
intensity [33], or total internal reflection illumination [31].
However, these methods are not always readily applicable. In
order to study how the results of FCS experiments change
with the ratio of time scales and determine if effective or
free coefficients are estimated, one could also enlarge the
observation volume. We have explored this possibility using
both Eqs. (A7)–(A10) and stochastic simulations to compute
the ACF. From the former we concluded that the effective
diffusion coefficient is recovered for w2

r koff � 25 μm2/s.
From the stochastic simulations we concluded that for realistic
parameter values (i.e., those of Table I with koff ∼ 10–100 s−1)
the size of the beam waist wr can be enlarged from a typical
confocal value 0.3 μm to a larger one (also achievable in a
confocal microscope) wr ∼ 1.2 μm, and still obtain a set of
ACFs where the transition between the fast diffusion and the
fast reaction limits can be observed. Furthermore, the largest
coefficient (the one that goes from free to effective) can be
estimated in both cases. Thus, this gives a way to identify,
under certain conditions, whether the estimated coefficient is
free or effective and whether or not care should be taken in
using it under other concentration conditions. Another way by
which the relationship between the two relevant time scales can
be changed is by varying some concentration which changes
the reaction time scale. This is not always possible in real
systems. However, there are problems in which the substance
of interest is distributed nonuniformly in space. This is exactly
what happens in the case of the Bicoid protein in embryos of D.
melanogaster [34]. Namely, there is a gradient of Bicoid along
the embryo which is key to establishing the dorsal-ventral
axis. The rate at which Bicoid diffuses in the embryo has
been probed at the anterior pole by means of FRAP [25] and
FCS [24] experiments. The natural nonuniform distribution of
Bicoid provides a natural setting in which to explore changes
in the ACF and, from its fitting, derive more information on
the system under study [29].
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APPENDIX

We consider the simplest possible model with species that
diffuse and react, some of which are fluorescent. Namely, we
assume that there are three species: free particles Pf , “traps” or
binding sites S, and bound particles Pb that interact according
to the scheme given by Eq. (1) and diffuse with free coefficients
Df , DS , and DS , respectively. It is implicit in the latter that S is
massive enough so that the diffusion rate of a single S molecule
or of a bound particle Pb is the same. We further assume that
the species Pf and Pb are fluorescent. The evolution equations
for the concentrations [Pf ], [Pb], and [S] are then given by

∂[Pf ]

∂t
= Df ∇2[Pf ] − kon[Pf ][S] + koff[Pb],

∂[Pb]

∂t
= DS∇2[Pb] + kon[Pf ][S] − koff[Pb], (A1)

∂[S]

∂t
= DS∇2[S] − kon[Pf ][S] + koff[Pb].

In FCS experiments, fluctuations around an equilibrium
situation, Pf eq ≡ 〈[Pf ]〉, Pbeq ≡ 〈[Pb]〉, and Seq ≡ 〈[S]〉, are
analyzed. At equilibrium, the concentrations Pf eq , Pbeq and
Seq are uniformly distributed (for FCS it suffices that they be
uniform over the observation volume) and satisfy

Pf eqSeq = KDPbeq, Pf eq + Pbeq = PT , Seq + Pbeq = ST ,

(A2)

where KD ≡ koff/kon and PT and ST are the total concentra-
tions of particles and binding sites, respectively.

To determine the dynamics of the fluctuations, Eqs. (A1)
are linearized around the equilibrium solution. The solutions
to these linearized equations are then computed in Fourier
space and written in terms of branches of eigenvalues λ(q) and
eigenvectors χ (q), where q is the wave number vector, i.e., the
variable in Fourier space conjugate to the spatial coordinate
r [13,23]. The linearized dynamics also prescribes how, under a
small perturbation, the system decays back to the equilibrium
solution. In particular, at long times the dynamics of Pf is
dominated by the so-called “collective” effective diffusion
coefficient [3] given by Eq. (3). This is different from the
“single-particle” effective diffusion coefficient [3] given by
Eq. (2) which enters the constant of proportionality between
the mean square displacement of a single marked particle and
the time elapsed. Both coefficients play a relevant role when
reactions occur on a faster time scale than free diffusion. The
fact that S is significantly more massive than Pf implies
that DS < Df which, in turn, yields Dt/Du � 1. Given
an equilibrium situation, this ratio can be arbitrarily small
depending on the values of the equilibrium concentrations and
the dissociation constant [3].

FCS monitors fluorescence fluctuations in a small obser-
vation volume which is determined by how the sample is
illuminated. The intensity distribution of the illumination spot
is usually approximated by

I (r) = I (0)e−2r2/w2
r e−2z2/w2

z , (A3)

where I (0) is the illumination intensity at r = 0, (r,z) are
cylindrical coordinates with z the spatial coordinate along the

beam propagation direction, and r the radial coordinate in
the perpendicular plane. wz and wr are the sizes of the beam
waist along z and r , respectively; in general, wz > wr . The
fluorescence collected from the illuminated volume at any
given time, F (t), is then related to the number of fluorescent
molecules that are inside the volume at that time. To be more
specific, in the case of the simple model introduced in Sec. I,
F (t) is given by

F (t) =
∫

QI (r){[Pf ](r,t) + [Pb](r,t)}d3r, (A4)

if both free and bound particles have the same photophysical
properties. In (A4) the concentrations are computed at time t

and spatial point r, and the parameter Q takes into account the
detection efficiency, the fluorescence quantum yield, and the
absorption cross section at the wavelength of excitation of all
the fluorescent particles.

Fluctuations around the mean fluorescence 〈F (t)〉 are
characterized by the time-averaged autocorrelation function,
which is given by

G(τ ) = 〈δF (t)δF (t + τ )〉
〈F (t)〉2

, (A5)

where δF (t) = F (t) − 〈F (t)〉. If Pf and Pb were two inde-
pendent species that diffused freely with coefficients Df and
DS , respectively, and did not interact through the reaction (1),
G(τ ) would be of the form

G(τ ) = Gof(
1 + τ

τf

)√
1 + τ

w2τf

+ Gob(
1 + τ

τS

)√
1 + τ

w2τS

(A6)

with Veff = π3/2w2
r wz the effective sampling volume; τf =

w2
r /(4Df ) and τS = w2

r /(4DS) the characteristic diffusion
times of both species across the sampling volume; w = wz/wr

the ratio of widths along the axial and perpendicular directions,
respectively; and Gof

= Pf eq/VeffP
2
T and Gob

= Pbeq/VeffP
2
T

the weights. For the model considered here, for which the
dynamics is described by Eq. (A1), Eq. (A6) holds only in
the limit of fast diffusion (τ−1

r ≡ koff + konPf eq + konSeq �
τ−1
f ≡ 4Df /w2

r ) [15]. Outside this limit, it is usually im-
possible to have an algebraic expression for G(τ ). In such
cases it is useful to work in terms of the eigenvectors and
eigenvalues of the linearized version of Eqs. (A1) in order to
compute G(τ ).

Following [13] we assume that the correlation length is
much smaller than the distance between fluorescent particles
so that fluctuations in the concentrations of the fluores-
cent species (δC1 ≡ [Pf ] − Pf eq , δC2 ≡ [Pb] − Pbeq ) sat-
isfy 〈δCj (r,t)δCk(r,t)〉 ∝ δjkδ(r − r′), 1 � j, k � 2. Further-
more, assuming that fluctuations in the number of fluorescent
particles of a given species follow a Poisson distribution [13],
i.e., that 〈δCj (r,t)δCk(r,t)〉 = 〈Cj 〉δjkδ(r − r′), 1 � j,k � 2,
G(τ ) can be written as the sum of three terms each of
which corresponds to a different branch of eigenvalues of the
linearized version of Eqs. (A1). Namely, as shown in [23] G(τ )
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reads

G(τ ) = G1(τ ) + G2(τ ) + G3(τ ), (A7)

G1(τ ) = GoS(
1 + τ

τS

)√
1 + τ

w2τS

, (A8)

G2(τ ) = Pf eq

4hkoffP
2
T

∫
d3q

(2π )3
e−W (q)+λ̂2τkoff

×
(

2ν + √
. + ν2 − (DS − Df )2q4

√
.

)
, (A9)

G3(τ ) = Pf eq

4hkoffP
2
T

∫
d3q

(2π )3
e−W (q)+λ̂3τkoff

×
(

2ν − √
. − ν2 − (DS − Df )2q4

√
.

)
, (A10)

where

GoS
= P 2

beq

VeffP
2
T ST

, (A11)

with Veff the effective sampling volume and τS = w2
r /(4DS),

as before; W (q) ≡ w2
r q

2
r /4 + w2

zq
2
z /4 with qr and qz the

variables in Fourier space that are conjugate to r and z, re-
spectively, q2 = q2

r + q2
z is the wave number squared, {λ̂i}3

i=1
are dimensionless versions of the (branches of) eigenvalues of
the linearized reaction-diffusion problem that can be written
as

λ̂1 = −DS

koff
q2,

λ̂2 = −1

2

[
a + h +

(
DS

koff
+ Df

koff

)
q2

]
+ 1

2Df

√
., (A12)

λ̂3 = −1

2

[
a + h +

(
DS

koff
+ Df

koff

)
q̂2

]
− 1

2Df

√
.,

with √
. = [(DS − Df )2q4 + 2q2(DS − Df )koff(h − a) +

ν2]1/2, ν = koff(a + h), a ≡ Seq/KD , and h ≡ ST /Seq .
Assuming that the fluctuations do not initially obey the
Poisson statistics changes the weights but not the time
scales of the components. The time dependence, however, is
approximately diffusive only in certain limits.

Under the above mentioned assumptions, the value of
the ACF at τ = 0, Go ≡ G(τ = 0) = 1/(VeffPT ), i.e., it is
inversely proportional to the number of fluorescent particles
in the observation volume. Another property is that the term
corresponding to the first eigenvalue G1 can be integrated
analytically. It is a purely diffusive term with the free diffusion
coefficient of the binding sites, DS . The other two eigenvalues
do not correspond to a purely diffusive transport at all times or
length scales. However, one of them corresponds to diffusion
in the long time or long wavelength (q → 0) limits, while the
other one does not. Namely, from Eq. (A12) it is possible to
show that the dimensional eigenvalues satisfy

λ1 = −DSq
2, λ2 ≈ −Duq

2, λ3 ≈ −νuu − Duuq
2,

(A13)

with

νuu = (a + h)koff, Duu = aDf + hDS

a + h
, (A14)

as q → 0.
The limiting behavior expressed by Eqs. (A13) and (A14)

has been used in [23] to approximate the ACF by an analytic
expression the limit of fast reactions (i.e., τ−1

r 	 τ−1
f ). In this

limit the ACF can be approximated by [23]

G(τ ) = GoS(
1 + τ

τS

)√
1 + τ

w2τS

+ Goef(
1 + τ

τef

)√
1 + τ

w2τef

,

(A15)

where GoS
and τS are the same as before, τef = w2

r /(4Du),
and Goef

is given by

Goef
= 1

VeffPT

− P 2
beq

VeffP
2
T ST

. (A16)

We see in Eq. (A15) that the third component of the ACF
is lost in this limit. The two terms that remain have the same
functional form as those of Eq. (A6). The first term has
the characteristic time τS = w2

r /(4DS) which corresponds
to the binding site diffusion time across the sampling volume.
The second term has a time scale τef = w2

r /(4Du) associated
with the collective effective diffusion coefficient Du of
Eq. (3), which depends on the free diffusion coefficients of
particles and binding sites and on the reaction parameters.

[1] H. C. Berg, Random Walks in Biology (Princeton University
Press, Princeton, NJ, 1993).

[2] J. Wagner and J. Keizer, Biophys. J. 67, 447 (1994).
[3] B. Pando, S. P. Dawson, D.-O. D. Mak, and

J. E. Pearson, Proc. Natl. Acad. Sci. 103, 5338 (2006),
http://www.pnas.org/content/103/14/5338.full.pdf+html.

[4] D. E. Strier and S. P. Dawson, J. Chem. Phys. 112, 825 (2000).
[5] G. Smith, Biophys. J. 71, 3064 (1996).
[6] A. Duffy, J. Sneyd, and P. Dale, SIAM J. Appl. Math. 58, 1178

(2001).
[7] D. E. Strier, A. Chernomoretz, and S. P. Dawson, Phys. Rev. E

65, 046233 (2002).

[8] D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W.
Webb, Biophys. J. 16, 1055 (1976).

[9] K. Jacobson and J. Wojcieszyn, Proc. Natl. Acad. Sci. USA 81,
6747 (1984).

[10] P. Gribbon and T. E. Hardingham, Biophys. J. 75, 1032 (1998).
[11] D. Magde, E. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705

(1972).
[12] K. Berland, P. So, and E. E Gratton, Biophys. J 68, 694 (1995).
[13] O. Krichevsky and G. Bonnet, Rep. Prog. Phys. 65, 251 (2002).
[14] P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, Biophys. J

77, 2251 (1999).
[15] E. L. Elson, Traffic 2, 789 (2001).

022706-11

http://dx.doi.org/10.1016/S0006-3495(94)80500-4
http://www.pnas.org/content/103/14/5338.full.pdf+html
http://dx.doi.org/10.1073/pnas.0509576103
http://dx.doi.org/10.1063/1.480650
http://dx.doi.org/10.1016/S0006-3495(96)79500-0
http://dx.doi.org/10.1137/S0036139996305074
http://dx.doi.org/10.1137/S0036139996305074
http://dx.doi.org/10.1103/PhysRevE.65.046233
http://dx.doi.org/10.1103/PhysRevE.65.046233
http://dx.doi.org/10.1016/S0006-3495(76)85755-4
http://dx.doi.org/10.1073/pnas.81.21.6747
http://dx.doi.org/10.1073/pnas.81.21.6747
http://dx.doi.org/10.1016/S0006-3495(98)77592-7
http://dx.doi.org/10.1103/PhysRevLett.29.705
http://dx.doi.org/10.1103/PhysRevLett.29.705
http://dx.doi.org/10.1016/S0006-3495(95)80230-4
http://dx.doi.org/10.1088/0034-4885/65/2/203
http://dx.doi.org/10.1016/S0006-3495(99)77065-7
http://dx.doi.org/10.1016/S0006-3495(99)77065-7
http://dx.doi.org/10.1034/j.1600-0854.2001.21107.x


EMILIANO PÉREZ IPIÑA AND SILVINA PONCE DAWSON PHYSICAL REVIEW E 87, 022706 (2013)

[16] S. A. Kim and P. Schwille, Curr. Opin. Neurobiol. 13, 583
(2003).

[17] D. Grünwald, M. C. Cardoso, H. Leonhardt, and V. Buschmann,
Curr. Pharm. Biotechnol. 6, 381 (2005).

[18] E. Bismuto, E. Gratton, and D. C. Lamb, Biophys. J. 81, 3510
(2001).

[19] M. A. Digman, P. Sengupta, P. W. Wiseman, C. M.
Brown, A. R. Horwitz, and E. Gratton, Biophys. J 88, L33
(2005).

[20] E. Haustein and P. Schwille, Annu. Rev. Biophys. Biomol.
Struct. 36, 151 (2007).

[21] B. Sprague, R. Pego, D. Stavreva, and J. McNally, Biophys. J.
86, 3473 (2004).

[22] B. Sprague and J. McNally, Trends Cell Biol. 15, 84
(2005).

[23] L. Sigaut, M. L. Ponce, A. Colman-Lerner, and S. P. Dawson,
Phys. Rev. E 82, 051912 (2010).

[24] A. Abu-Arish, A. Porcher, A. Czerwonka, N. Dostatni, and
C. Fradin, Biophys. J. 99, L33 (2010).

[25] T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek, and
D. W. Tank, Cell 130, 141 (2007).

[26] T. Gregor, D. W. Tank, E.F. Wieschaus, and W. Bialek, Cell 130,
153 (2007).

[27] Computer code MATLAB, version 7.10.0 (R2010a) (The Math-
Works Inc., Natick, MA, 2010).

[28] L. Sigaut, Ph.D. thesis, Departamento de Fisica, FCEN, Univer-
sidad de Buenos Aires, 2011.

[29] L. Sigaut, J. E. Pearson, A. Colman-Lerner, and S. Ponce
Dawson (unpublished).

[30] D. S. Banks and C. Fradin, Biophys. J. 89, 2960 (2005).
[31] N. L. Thompson, P. Navaratnarajah, and X. Wang, J. Phys. Chem.

B 115, 120 (2011).
[32] S. Charier, A. Meglio, D. Alcor, E. Cogné-Laage, J. Allemand,
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