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Abstract A significant challenge in comparing and
contrasting regional reviews of non-native marine
species diversity is that evaluation methods vary
widely, resulting in highly inconsistent taxonomic,
habitat and historical coverage even in ostensibly
well-studied regions. It is thus difficult to interpret
whether strikingly different numbers of non-native
species in different regions reflect differential inva-
sion patterns or different assessment criteria and
capabilities. We provide a comprehensive guide to
the methods and techniques to assess the diversity
and timing history of non-native and cryptogenic
marine species. We emphasize the need to broaden
taxonomic and habitat breadth when documenting
invasions, to use a broader and deeper search term
menu (including using older terms), to thoroughly
access global systematic and invasion literature for
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local, regional records, and to delve deeper into inva-
sion timing to avoid the use of dates-of-publication to
assess invasion tempo and rates. Fundamental in all
invasions work is the reassessment of the status of
ostensibly native species which in fact may have been
introduced decades or centuries earlier. We expand to
14 categories the criteria for the recognition of non-
native species. Without thorough and vetted modern
and historical assessments of the scale of invasions
across temperate, subtropical, and tropical marine
ecosystems, our ability to look deep into marine com-
munity ecology, evolution, and biogeography is strik-
ingly compromised, as is our ability to frame robust
invasion policy and management plans.

Keywords Exotic - Alien - Non-indigenous -
Non-native - Cryptogenic - Inventory - Introduced -
Vector - Estuarine - Maritime - Range expansions

Introduction

Many regional reviews and assessments have appeared
around the world in recent decades seeking to docu-
ment the diversity of non-native marine species. A sig-
nificant challenge in comparing and contrasting these
studies—with a goal, for example, of identifying global
bioinvasion patterns—is that the methods employed to
evaluate non-native (and at times cryptogenic) species
diversity vary widely, resulting in inconsistent cov-
erage of taxonomic diversity, habitats and historical
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depth, even in ostensibly well-studied regions. It may
thus be difficult to interpret whether strikingly different
numbers of non-native marine species in different areas
of the world, or within the same taxonomic groups
across regions, reflect (1) differential invasion patterns
or (2) different assessment criteria and capabilities.
Spatial invasion patterns of interest may center
on invasion susceptibility and resistance, including
whether temperate marine regions are more invaded
compared to tropical regions (Hutchings et al. 2002;
Freestone et al. 2013; Giachetti et al. 2020) or to
high-latitude regions (de Rivera et al. 2011), whether
at the same latitudes there are asymmetric invasion
patterns across oceans (Torchin et al. 2021), whether
invasions differ between regions influenced by mari-
time versus continental climates (Ruiz et al. 2000,
2015), or whether some habitats are more suscepti-
ble to invasions than others (Wasson et al. 2005; Ruiz
et al. 2011, 2015). Similarly, temporal patterns of
invasions may be of interest, to assess invasion rates
or the effectiveness of management strategies (Byers
et al. 2015; Seebens et al. 2017; Bailey et al. 2020).
However, the accuracy of species’ first collection or
detection dates provided in such assessments is often
highly variable as well, varying from coarse- to fine-
grained, creating potential challenges for resolving
clear patterns and making global comparisons.
Differences in the breadth, depth, and accuracy of
the assessment of invasion diversity may result from a
number of different factors and approaches. A number
of authors have discussed the potential limitations, chal-
lenges, and errors inherent in assembling inventories
of non-native species (Wasson et al. 2000; Ruiz et al.
2000; McGeoch et al. 2012; Rocha et al. 2013; Ojaveer
et al. 2014a, b; Marchini et al. 2015; Marchini and
Cardeccia 2017; Katsanevakis and Moustakas 2018;
Albano et al. 2021). Many studies do not (1) acknowl-
edge the diversity of understudied taxonomic groups
(such as protists, flatworms, nemerteans, nematodes,
sponges, hydroids, polychaetes, bryozoans, and many
others) which may have not been assessed thoroughly
(if at all) for the presence of non-native species. Many
studies also do not (2) appear to capture the full extent
of the regional historical biodiversity literature, result-
ing in overlooking a potentially large number of earlier
records if not earlier invasions. Further, independent
of historical work, by not considering the potential (3)
phyletic (even if well studied) and (4) habitat breadth
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that might include or support non-native species, many
invasions documented in more modern literature in
a region may also be simply overlooked. Critically,
most studies do not appear to (5) employ the reassess-
ment techniques available to expose the diversity of
non-native species that may have long been incorrectly
regarded as native.

Thus, simply reviewing and summarizing data-
bases and selected literature on previously reported
invasions for a given region in order to produce
a working list of non-native species may result in
overlooking a substantial fraction of the non-native
biota. Concomitantly, accepting at face value species
reported without sufficient justification as being non-
native may be problematic. More challenging may be
a widespread but rarely stated assumption that online
databases that provide lists of non-native species are
both comprehensive and have been expertly vetted.
Finally, the advent of molecular techniques as a tool
by which to assess invasion diversity, in the absence
of expert morphological taxonomic confirmation of
the results obtained from sequencing, may lead to sig-
nificantly inaccurate reports of non-native species, as
discussed below.

By employing an extensive suite of research
techniques that we detail here, work in the Hawai-
ian Islands resolved the previous recognized num-
ber of marine bioinvasions from 90 to 333 (Carlton
and Eldredge 2009, 2015), in the Galapagos Islands
from 5 to 53 (Carlton et al. 2019) and in Argentina/
Uruguay from 29 to 129 (Schwindt et al. 2020). Nev-
ertheless, and despite the significant expansion in
recognition of the actual scale of non-native species
present in these locations, these assessments remain
incomplete relative to historical and cryptic inva-
sions. The biogeographic status of many of these
newly-recognized non-native species was often not
discussed in the pertinent regional literature, because
they were long assumed, in the absence of systematic
investigation, to be native species.

Our objective is to present a comprehensive guide
to the methods and techniques that we have developed
and applied over the past 50 years to assess the diver-
sity of non-native and cryptogenic marine species and
to either resolve or estimate the timing of first detec-
tion of such species. Many of these approaches are
also applicable to investigations in freshwater and
terrestrial systems. We discuss the following topics,
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summarized in Fig. 1, that permit a deeper unveiling
of the often remarkable, but hidden, diversity of non-
native species and their potential detection dates.

Preamble I: Definitions and Terminological Con-
siderations

Preamble II. The Sine Qua Non of a Robust and
Reliable Taxonomic Foundation

Establishing A Br

I. Establishing Target Taxonomic and Habitat
Breadth

IA. Phyletic Diversity
IB. Habitat Diversity

rching for Invasion

II. Literature Surveys

ITA. Regional Invasion and Taxonomic Litera-
ture, and the Need for Search Term Diver-
sity

IIB. Global Taxonomic and Invasion Literature
with “Hidden” Invasion Records

III. Reassessment of the Status of “Native’” Spe-
cies

IITA. Targeting Candidate “Native” Species for
Re-Evaluation of Biogeographic Status

IV. Field Surveys and Sampling

IVA. Colonization Substrates (Passive Sampling)

IVB. Rapid Assessment Survey (RAS)

IVC. Extended Site Surveys

IVD. eDNA Metabarcoding and gPCR Surveys

IVE. Invited Experts: Focus on Specific Taxonomic
Groups

Filtering the Record

V. Criteria for Recognition of Non-Native Spe-
cies

VA. Species to be excluded from calculations of
regional marine invasion diversity

VB. Review of criteria for recognition of non-
native species

VC. Retention in invasion assessments of species
not recently reported

VD. Type localities are not default native regions

Establishine Invasion Ti

VI. Methods for Establishing the Timing of Inva-
sion Records, and the Importance of Not
Using Publication Dates

VIA. Methods for Determining Earlier Dates of
Collection or Detection

Not treated in depth in the present essay are meth-
ods by which to determine (1) the known or prob-
able geographic origin of a recognized invasion—that
is, the presumptive native (indigenous or endemic)
region, and (2) the known or probable vectors involved
in transporting a species of concern to a new location.

Preamble I: definitions and terminological
considerations

Community species diversity generally changes in
three ways. Species populations increase and decrease,
new species arrive, and species disappear. Our con-
sideration here focuses on species arrivals—the addi-
tions—to communities over space and time. A core
question in community ecology and evolution is how
the addition of novel species may alter community
structure and function, in terms of the abundance and
distribution of resident species, predator—prey and par-
asite-host dynamics, competitive networks, and energy
flow, among other phenomena.

Additions to marine communities may occur in
two ways: species may be transported by, for example,
ocean currents or birds, or be transported by human
activity. In ecological and evolutionary literature, both
are considered biological invasions. For example,
Braun (1921), Lindroth (1957), and Simberloft (1976)
described the natural processes of historical plant
movements, the arrival in Iceland of certain beetle and
moth species, and the experimental colonization of
mangrove islands, respectively, as invasions. Chapter 2
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Timing

Result

Fig.1 Schematic workflow by which to assess the diversity
and history of marine bioinvasions and cryptogens. The first
step is to consider candidate species across the fullest possi-
ble taxonomic and habitat breadth to search for species from
four different literature and field sources. The second step is to
filter the resulting species inventory with the criteria for recog-

of Charles Elton’s 1957 “The Ecology of Invasions by
Animals and Plants” is devoted to examples of natural
species range expansions (Elton 1957). MacArthur and
Wilson (1967) described the “fundamental process”
of biogeography as “dispersal, invasions, competition,
adaptation, and extinction.” Carlton (1987) noted that
“Biological invasions in marine communities occur
through two processes, range expansions and introduc-
tions.” Williamson (1996) wrote that “Biological inva-
sion happens when an organism, any sort of organism,
arrives somewhere beyond its previous range,” and,
“Invasions have been an important component of the
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INVENTORY OF INVASIONS

AND CRYPTOGENS

nition of non-native species, which will produce the first draft
of an invasions and cryptogen assessment. The third step is to
perform a deeper exploration of invasion timing, resulting in a
vetted inventory of the diversity, history, and timing of bioin-
vasions and cryptogens for the region under consideration

evolutionary process throughout geological history.”
Vermeij (1996) emphasized that, “By invasion I mean
the geographical expansion of a species into an area
not previously occupied by that species. Invasions may
occur as the result of climatic and tectonic changes as
well as through introduction by humans.”

Historic and geological movements of species have
also long been described as invasion, invading, and
invader phenomenon (Linderg 1991; Vermeij 1991).
The Great American Biotic Interchange (GABI)—
the late Cenozoic range expansion of diverse spe-
cies between North America and South America
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following the creation of the Isthmus of Panama—has
been framed for decades as a textbook model of bio-
logical invasions (di Castri 1989; Leite et al. 2014).
Knapp et al. (2021) delve into paleogenetic tools rela-
tive to “ancient biological invasions.”

However, commencing in the early 2000s, the con-
cept of “invasion” became restricted, relative to “alien
flora,” to “where the distribution and abundance of
plants changes as a result of human activity” (PySek
et al. 2004). In essence, the definition of biological
invasions changed to a focus on the vector. This re-
definition gained subscription in the years to follow
(for example, Wilson et al. 2016; Blackburn et al. 2020;
Robinson et al. 2020; Hulme 2021; Convention on Bio-
logical Diversity (https://www.cbd.int/invasive/Whata
relAS.shtml, accessed August 2023)).

Anchored by fundamental interests in community
dynamics, and the ecological, evolutionary, eco-
nomic, and other consequences of species additions,
we continue here the long-standing definition that
biological invasions include both human-mediated
introductions and range expansions.

Biological invasions, or in shortened form, bioinva-
sions, thus refer to the process of species arriving by
any vector and establishing reproducing populations
in a geographic region where they did not exist in his-
torical time. Bioinvasions may also be defined as those
species found outside of their native range, usually
thus having transgressed one or more physical or cli-
matic barriers to dispersal. However, for a great many
marine species it may be challenging if not impossible
to unequivocally assess accurately the true boundaries
of their native, natural ranges. Anthropogenic move-
ment of many marine species began centuries if not
millennia prior to the onset of biological studies (Carl-
ton 1999b; Ojaveer et al. 2018) and thus the assumed
native range of a potentially large number of species is
in reality not known. Through archeological, historical,
genetic or other evidence it may be possible to deline-
ate prehistoric ranges before human-mediated transport
commenced, but in the absence of such data, the pur-
portedly extraordinarily broad latitudinal and longitu-
dinal (especially “pantropical”) ranges of many marine
species should not be assumed to be natural (Carlton
1987; Darling and Carlton 2018).

For historical biogeographers, paleoecologists
(Webb; 2006; Bacon et al. 2015) and ecologists
(Mooney and Drake 1986), a fundamental interest
in bioinvasions is how a community may respond to

the arrival of novel species, in terms of, for exam-
ple, potential changes in resident species’ abundance,
diversity, distribution and interactions. For the public
and government, including environmental managers,
interest may further focus on how invasions do or will
impact the quality of ecosystem services, the viability
of rare and endangered native species, cultural val-
ues, the economy, and public health, as well as how to
institute potential pre-invasion or post-invasion man-
agement strategies (Ruiz and Carlton 2003; Veitch
et al. 2011; Wan et al. 2017; Giakoumi et al. 2019;
Zengeya and Wilson 2020; Simberloff 2021).

We note that invasion (defined above), invasive (a
non-native species that “spreads” or has some meas-
ure of “impact”) and invasiveness (“The features of
an alien organism, such as their life history, traits and
modes of reproduction that define their capacity to
invade, i.e., to overcome various barriers to invasion”
(Richardson et al. 2011)) are three distinct concepts
and are not synonyms.

Introduced species (synonyms and related terms
are treated below in Section “IIA. Regional invasion
and taxonomic literature, and the need for search term
diversity”) are those which have been transported by
human activities into a region where they were previ-
ously absent and which have become established as
evidenced by the presence of self-sustaining repro-
ducing populations. Introductions have occurred for
many reasons over millennia and result in a vast array
of impacts ranging, along imperceptible gradations,
from difficult to detect (in the absence of experimen-
tal or pre-invasion quantitative evidence) to significant
changes in the recipient community. We note that the
lack of reports of impact is not equivalent to the lack
of impacts. Introductions are facilitated by a long list
of anthropogenic vectors (Ruiz and Carlton 2003; Wil-
liams et al. 2013; Grosholz et al. 2015; Fowler et al.
2016; Ojaveer et al. 2018), including, now, rafting
marine debris (Carlton et al. 2017; Rech et al. 2018a,
b; Haram et al. 2021).

While we suggest no fixed before-after dates by
which to recognize a species as transported by human
activity, we note the following examples that would
all be considered introduced species from both an
ecological and evolutionary point of view: the intro-
duction of dingoes into Australia by humans more
than 3500 years ago (Fillios and Tacon 2016; Cairns
2021), the plants and animals introduced to Britain
by Romans (AD 43-AD 410; Webb 1985; Witcher
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2013) as well as the introduction by Polynesians
(commencing circa AD 1000-1100; Athens et al.
2014) of plants and animals to the Hawaiian Islands.
Webb (1985) succinctly captured this concept: “The
frequent practice of treating long-established aliens
as equivalent to natives gives rise to confusion in dis-
cussions of phytogeography or quaternary history:
the former may be hard to distinguish from natives,
but they are aliens none the less.” Crees and Turvey
(2015) provide examples of even older introductions.

In concert with this, we do not find compelling
ecological or evolutionary support for distinguish-
ing, as archaeophytes and neophytes, human-medi-
ated introductions that occurred in Europe before
and after, respectively, Columbus’ first voyage in
1492 (Richardson et al. 2000; Essl et al. 2018), long
after transatlantic anthropogenic introductions had
commenced (Dugmore et al. 2005; Essink and Oost
2019). We note that certain regional cultural, social,
economic, political, or legal—but not scientific—per-
spectives may regard some earlier introductions as
“native”.

Native (indigenous, endemic, autochthonous) spe-
cies are those that have been historically present in
a region, as determined by paleontological, archeo-
logical, biogeographic, molecular, and other evi-
dence (see Crees and Turvey 2015) for a nuanced and
extended discussion).

Cryptogenic species are taxa of a known identity (to
varying taxonomic levels, as discussed below) whose
evolutionary and biogeographic origins are poorly
described or not yet known, and thus cannot yet be
resolved as either non-native or native (Carlton 1996).
As noted by Carlton (2009), cryptogenic species are
not (1) non-native species of uncertain geographic ori-
gin, (2) cryptic invaders, or (3) introductions whose
mechanism of transport is uncertain. We underscore
the latter: Evans et al. (2020) inaccurately extended
the definition of cryptogenic to “include species for
which uncertainty exists as to whether their introduc-
tion was human-mediated or not,” and thus calculated
the number of “true newcomer” fish in the Mediterra-
nean that were “cryptogenic.” The term “polyvectic”
(below) correctly covers this concept. Cryptogenic spe-
cies are also not (4) non-native species represented by
both native and introduced genes (Yund et al. 2015),
(5) species whose introduction occurred long ago and
were not witnessed (Zenetos et al. 2005), nor (6) spe-
cies whose type locality (the location where a species

@ Springer

was originally described) is outside of the region under
study. Critically, assigning a species cryptogenic status
should (7) not mean that they should be evaluated as if
they were not-native (Blackburn et al. 2014) or imply
that “it is guilty of being introduced until it is proven
otherwise” (Campbell et al. 2018). By definition, a
cryptogenic species is one that has not yet been deter-
mined to be non-native or native.

It is important to emphasize that in some cases
species may be considered, based upon biogeographic
or other evidence, as non-native or cryptogenic even
if only resolved to family or genus level. That is, taxa
that cannot be resolved to species level do not auto-
matically default to an unassigned status. Biogeogra-
phers regularly recognize taxa, unresolved to lower
taxonomic levels, as members of clearly allochtho-
nous clades that are demonstrably not, or unlikely to
be, native to a given continent or ocean (Carlton and
Eldredge 2009). Cryptogenic (and introduced) spe-
cies may also include undescribed taxa, as discussed
below (Sections “III. Reassessment of the status of
“native” species” and “VD. Type localities are not
default native regions”).

Unassigned taxa are insufficiently resolved taxo-
nomically to be assigned a status of non-native, cryp-
togenic, or native. These taxa are also referred to as
unresolved, undetermined, indeterminate, uncatego-
rized, unidentified (sensu Carlton 2009) or data defi-
cient (sensu Essl et al. 2018).

Range expansions typically refer (in a marine con-
text) to the movement of species along shore, shelf,
or island corridors, as well as to poleward movements
in the open ocean, into regions where they were pre-
viously absent. Rare possible non-corridor excep-
tions exist, such as the ostensibly natural transoce-
anic dispersal of the cattle egret (Bubulcus ibis) from
Africa to South America (Cele and Downs 2020).
Range expansions include both the movements of
recent introduced species whose post-introduction
ranges expand to their natural physiological limits,
and native species or older introduced species that
are responding to environmental changes (such as
habitat alterations or climate shifts). The phrase range
extension is used in the literature, often without dis-
tinction, for two distinct phenomena: (1) range expan-
sions as defined here, and (2) the discovery that a spe-
cies’ presumed native range is more extensive than
previously known. Such discoveries may be due to
increased sampling effort, to the development of new
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sampling techniques, or to exploration of new areas
(Lonhart 2009), rather than the establishment of new
populations.

Once a species has arrived and established, further
range expansions may be facilitated by both natural
vectors (such as currents, winds, and birds) and by
anthropogenic vectors (Richardson et al. 2011, the
latter thus constituting introductions as well as range
expansions.). Thus, after a species is introduced to a
region, both (for example) coastal currents and ships
(or other human vectors) may move it to a new region
within a biogeographic province or between adjacent
provinces.

Similarly, many native species responding to cli-
mate change and expanding poleward may potentially
do so both by currents and by human vectors that are
transporting them to regions which were historically
not amenable to colonization. Indeed, such species may
have been transported for centuries to higher latitudes,
only now to find warmer temperatures now suitable for
reproduction. Rather than assuming that species mov-
ing poleward are doing so naturally, the relative roles
of natural dispersal versus anthropogenic transport
must be determined and documented if possible. If evi-
dence suggests that both natural and human-mediated
vectors may be in play relative to the movement of a
species, these would be considered polyvectic species
(Carlton and Ruiz 2005, who note that “polyvectism is
a significant management challenge”). We emphasize
that if it is not known if a range-expanding species has
been moved by, for example, ocean currents or vessel
hull fouling, the assignable vector is not “unknown’:
possible vectors are often in fact well known, but
which vector(s) is or are responsible for a given intro-
duction event may not be resolved (Carlton and Ruiz
2005). The term unknown vector (cryptovectic) is
reserved for those very rare instances where no known
dispersal mechanism explains the arrival of a new col-
onist (Carlton and Ruiz 2005). In the absence of data,
however, the default is not natural dispersal.

Regardless, a vast number of species have been,
are, and will be expanding their ranges poleward in
both hemispheres as a result of warming waters due
to human-induced climate change. These species are
thus not in the category of fundamentally “natural”
expansions uninfluenced by human actions, even if
transported by ocean currents or birds. While some
species may be dispersing naturally, those responding

to anthropogenic habitat and climate change are not
expanding naturally. Species responding to climate
change and moving poleward, whether by natural or
anthropogenic means, are not native in the regions
which they have newly colonized and where they
were historically absent.

The fact that range expansions of species may not
be accommodated in legal, policy, or other definitions
of introduced (alien, non-native) species in regional
or international protocols does not mean they should
be disregarded. To omit range expansions in treat-
ments of regional invasions discounts their potentially
significant impacts (see, for example, Ling et al. 2009;
Strain and Johnson 2009, 2013; Henry and Sorte
2021). Our concerns relative to potential economic,
societal, or ecological repercussions relative to the
arrival and establishment of historically absent spe-
cies remain fundamentally the same, whether a spe-
cies is from overseas, or moving naturally poleward
from lower latitudes, or is a human-transported native
species from an adjacent region. The fact that species
invading from adjacent provinces may (but not neces-
sarily) have deeper ecological and evolutionary rela-
tionships with resident species in the invaded region
(Sorte et al. 2010) versus with species from distant
provinces, while of no small interest, does not remove
the former from the category of biological invasions.

Preamble II: the sine qua non of a robust
and reliable taxonomic foundation

Nearly all of the analytical methods that we describe
below operate at the mercy of taxonomy—that is,
the presumption of a robust and reliable taxonomic
foundation, whether analyzing phyletic or habitat
diversity of invasions, re-assessing a species’ bio-
geographic history, or in biological survey data. A
working assumption is typically that the identifica-
tions of species being considered and lists of spe-
cies being analyzing have been expertly vetted to
the extent that our current understanding permits
(acknowledging that molecular genetics and finer-
grained morphological work may reveal that many
taxa now under the umbrella of one scientific name
are in fact species complexes; Darling and Carlton
2018). Thus, establishing at the outset the quality
of both past and present taxonomic work, relative
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specifically to identifications of non-native species,
is extremely critical. This said, given that the ability
of non-specialists to assess taxonomic quality assur-
ance and quality control may be limited (or non-
existent), a path of least resistance is to simply take
on faith the reported species names. The fundamen-
tal assumption of presumptive taxonomic expertise
may be reflected in part by the fact that some genetic
databases (discussed below) do not require reporting
the name of the person who identified the species in
question.

The detailed means by which ecologists, geneti-
cists, biogeographers, modelers, and others could
judge the taxonomic quality of a body of work is
beyond the scope of the present work. However, we
note several basic steps that can be taken. In the pro-
cess of attempting to determine the identity and num-
ber of non-native species in a given area, regional and
local species lists (see Section “II. Searching for inva-
sions: literature surveys”) based on biodiversity or
ecological surveys may be useful. Researchers should
seek evidence that taxonomic experts were involved
in such lists and surveys, either in the authorship or
acknowledgments. If none of the authors are special-
ists in any of the taxonomic groups considered, and
if the methods refer solely to the use of local keys or
guides, if voucher specimens have not been archived
in a recognized depository, and if no experts are
acknowledged for the taxa considered, then accept-
ance of the identifications of the species, and cer-
tainly key species of interest, must proceed carefully
(Bortolus 2012a, b). Researchers should pay special
attention to reports of species otherwise previously
known only from another ocean or another hemi-
sphere and newly reported by non-specialists for the
first time. Such reports would require verification
by taxonomic experts through direct examination of
specimens. Indeed, for key species of interest, re-
examination and verification by experts may be of
value. We discuss “verification” of species identifica-
tions by genetic analyses below.

Matches with DNA (nucleic acid)-Based Species
Databases may not yield the correct identification

The availability of public databases with molecular
sequences of “identified” species has often proven to
be of exceptional value in potentially yielding the sci-
entific names, based on genetic data, of unidentified
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specimens, especially if morphological taxonomists
are not available, if the material in hand alludes mor-
phological identification, if species complexes are
involved, or in eDNA metabarcoding of whole com-
munity samples or species-specific gPCR assays (Sec-
tion “IVD. eDNA metabarcoding surveys and qPCR
assays”). Newly generated molecular sequences (from
whatever sources) are compared with online sequences
deposited by others to produce a purported identifica-
tion. Non-specialists may thus assume that a 99-100%
(or sometimes lower) “match” produces a “correct”
identification of the material in hand, resulting in com-
mon statements in the literature such as “identification
was confirmed by molecular analysis.” This said, it is
critical to remember that all first-time species entries
in genetic databases are based on morphological iden-
tifications, identifications which may or may not have
been made by expert taxonomists.

The reliability of GenBank, as an example, as a
tool for verifying species identifications has gener-
ated a number of discussions (see Leray et al. 2019,
2020; Locatelli et al. 2020; Dupérré 2020; Ricciardi
et al. 2021; Hayes 2021; Sigwart et al. 2021). To add
sequences to GenBank does not require sequence pro-
viders to document the name of the person who iden-
tified the species, a photograph of specimens, or the
institutional deposition of specimens, nor details about
the collection site (GenBank Submissions Handbook
https://www.ncbi.nlm.nih.gov, accessed August 2023).
The iBOL alliance however requires saving the speci-
men from which a DNA sample was taken, a photo,
and the name and contact of the person who identified
the specimen. However, most sequences are uploaded
to GenBank; critical baseline taxonomic and curatorial
information may or may not be in a supporting publi-
cation. At least in the marine systematics community
it is widely discussed, often privately, that many spe-
cies in genetic databases are either known or prob-
able misidentifications. Better of course is published
evidence in the peer-reviewed literature that mistakes
have been made, although only those who deposited
the original sequences can then correct the identifica-
tion. Fehlauer-Ale et al. (2015) stipulated the GenBank
numbers for three species of marine bryozoans that
were incorrectly identified in that database, and pro-
vided the correct identifications. As of August 2023,
none of these identifications had been changed in Gen-
Bank. Sigwart et al. (2021) noted that more than 6%, or
62 of 942 sequences deposited in GenBank for species
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of the oyster genus Magallana “represent identification
errors,” while Fort et al. (2021) found that up to one-
third of all deposited sequences in GenBank of foli-
ose species of the green alga Ulva were misidentified.
Gauff et al. (2023) note that for species in the bryozoan
genus Watersipora, there are ‘“‘pervasive erroneous
identifications in GenBank, which in turn perpetuate
further errors in recent studies.”

The extent to which the use of GenBank can influ-
ence identifications is reflected in an increasing num-
ber of papers that report improbable or impossible
records of species, based solely on “confirmation” to
matched sequences. Thus, molecular genetic “identifi-
cation” alone, absent expert morphological confirma-
tion, of remarkably disjunct species occurrences, may
result in the mis-identification and thus mis-reporting
of species. As an example, the Asian barnacle Megaba-
lanus rosa was reported, based on a molecular match
in GenBank, as established in the rocky intertidal of
southern California, but in fact was the native Califor-
nia barnacle Megabalanus californicus (Hagerty et al.
2018, and Corrigendum; Hagerty et al. 2019). Ardura
et al. (2021) have listed many cold-water species as
invasions from French Polynesia, based solely on
genetically-based identifications, which we comment
on further below.

We are aware of the challenges of verifying genetic
matches with expert identifications based on mor-
phology. The dearth—or complete unavailability—of
taxonomists for many marine taxa in many regions is
well-known. For those taxonomists who are available,
the queue to obtain an expert opinion may be very
long. In many areas of the world there are no schol-
arly taxonomic guides to the marine fauna or flora
in general, nor to many specific taxonomic groups.
However, none of these situations mean that genetic-
only identifications should automatically be consid-
ered valid, especially when they produce eyebrow-
raising names of species previously known only from
another ocean or another continent, or with serious
climatic mis-matches, unaccompanied by a museum-
deposited specimens or even a photograph. Erroneous
identifications may have further consequences rela-
tive to the understanding of ecological interactions as
well as in management decisions (Bortolus 2008).

With these preambles considered, we outline here
suggested “best practices” approaches that would per-
mit more thorough and accurate assessments of bioin-
vasion diversity.

I. Establishing target taxonomic and habitat
breadth to be assessed

IA. Phyletic diversity

An attempt should be made to capture the broadest
possible range of marine and maritime taxa in reviews
of bioinvasion diversity. We review below the histori-
cal and taxonomic impediments that may make it chal-
lenging to do so. Examples of inventories that have
attempted to include a broad range of taxa include
Carlton and Eldredge (2009, 2015, Hawaiian Islands),
Carlton et al. (2019, Galapagos Islands), Schwindt
et al. (2020, Argentina and Uruguay), Mead et al.
(2011a, b, South Africa), Katsanevakis et al. (2020,
Mediterranean Sea), Galil (2009, Mediterranean Sea),
and Minchin et al. (2013, British Isles).

Examples of the range of taxa that could be cap-
tured in invasion inventories are shown in Table 1.
Documented marine invasions include viruses, bacte-
ria, fungi, a wide range of additional microorganisms
(including foraminiferans, ciliates, dinoflagellates),
algae, seagrasses and salt marsh halophytes, many
invertebrate phyla, and fish, birds, and mammals (we
discuss below the inclusion of introduced mammals
in marine invasion inventories). Invasion inventories
omit many of these groups, not necessarily because
of the lack of reports of such invasions (which we
discuss below), but because the authors may not have
investigated whether invasions were in fact already
reported in many taxa, and, as we further discuss
below, because authors may lack taxonomic resources
and expertise.

The desire to assess invasions across a wide range
of marine taxa also quickly encounters long-term and
long-discussed critical challenges in the adequate
censusing of many groups of marine organisms,
challenges which are often linked to the “taxonomic
impediment” (Carlton and Fowler 2018; Dupé-
rré 2020; Ricciardi et al. 2021). Carlton and Fowler
(2018) listed examples of 29 phyla and classes of
marine invertebrates and fish that are currently sub-
ject to global and coastal transportation by a wide
range of anthropogenic vectors. Of these, they noted
that a review of the past 20 years of surveys sug-
gest that 27 of these 29 groups appear to be “glob-
ally under-reported as invasions.” These under-repre-
sented groups, all marked by a serious and growing
lack of taxonomic expertise world-wide, range from
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sponges and hydroids to flatworms, nemerteans and
polychaetes, as well as to many groups of small crus-
taceans and bryozoans.

Thus, the breadth and depth of capturing invasion
diversity varies strikingly by location, and in many
cases will mirror local interest and available taxo-
nomic expertise. Non-native marine copepods and
mysids have been well explored in San Francisco
Bay, California (Orsi and Walter 1991; Orsi and Oht-
suka 1999; Slaughter et al. 2016) and in the American
Pacific Northwest (Cordell et al. 2007a, b, 2008) but
in many regions of the world no introduced copepods
or mysids are reported at all, reflecting the lack of
investigation, rather than a lack of invasions.

Similarly, despite the fact that a reasonable
assumption would be that many species of diatoms
and dinoflagellates (among many other microbial
groups) have been transported and successfully intro-
duced by ballast water for more than 150 years, their
recognition as non-native species in marine coastal
systems around the world is highly variable and
often absent. Wyatt and Carlton (2002) remarked that
“most modern phytoplankton invasions have simply
been overlooked,” detailing evidence for this sug-
gestion. Long-standing complexities of diatom and
dinoflagellate taxonomy, the lack of historical data
bases, the existence of dinoflagellate resting cysts
that may remain undetected for long periods of time,
and the boom-and-bust cycles of many phytoplank-
ton species, among other challenges, have all served
to obfuscate the detection and verification of phy-
toplankton invasions. Perhaps no better example is
found in San Francisco Bay, California, USA, which
hosts nearly 300 non-native species of algae, inver-
tebrates, and fish (Carlton 2009). The Bay also sup-
ports 500 distinct phytoplankton taxa, with 396 iden-
tified to species level—none of which are recognized
as non-native species by phytoplankton researchers,
although many of the same species bear cosmopolitan
names, have been found in ballast water, and are not
known from ocean currents (Carlton 2009). We fur-
ther note below (Section “VB. Review of criteria for
recognition of non-native species”) the “smalls” rule
of invasion biology—the inverse correlation of body
size with the ability to be recognized as non-native
(Carlton 2009). Nevertheless, we encourage research-
ers to consider the potential for, at least, cryptogenic
phytoplankton taxa in the communities in which they
work.
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The way forward: how to embrace phyletic diversity
of invasions

To more fully clarify or investigate the phyletic diver-
sity of invasions under consideration, researchers
should,

e Taxonomic Lacunae Explicitly discuss the taxo-
nomic groups that are missing from the regional
treatment, in order to weigh the potential scale
of invasion underestimation. Thus, if a regional
marine invasion inventory considers no poly-
chaetes or amphipods, these lacunae should be
clearly flagged as a lack of knowledge of the bio-
geographic history of taxa in the study area (if
such is the case), rather than the implication that
such taxa have been investigated and no non-
native species are present.

e FEarlier Non-Invasion Literature Search regional
taxonomic and natural history literature which did
not appear in searches using invasion terms, par-
ticularly searches that use more “modern” words
(such as invasion, invasive, or non-indigenous) for
non-native species. Earlier literature may refer to
non-native species as “introduced,” or simply sug-
gest that a species was historically transported by
ships to the present location.

e Tap Specialist Knowledge Consult with both local
and global taxonomic specialists to determine if
they are aware either of literature that does or may
contain records or suggestions of non-native spe-
cies in the region in question, or of species that
they themselves consider certain or likely non-
native candidates, regardless of whether the bio-
geographic status of such species in a given region
has been previously published.

e Mining Non-Regional Literature Search in global
taxonomic, and particularly monographic, litera-
ture. As we review below (Section “II. Searching
for invasions: literature surveys”), non-native spe-
cies present in a given region may be reported as
such in non-regional literature.

IB. Habitat diversity
Few invasion inventories explore the full range of

potential habitat diversity occupied by marine and
estuarine non-native and cryptogenic species (Table 2).



The assessment of marine bioinvasion diversity and history

247

Non-native species have invaded virtually every marine
habitat (Table 2), including the deep sea (Carlton 2002,
2003), in many habitats prominently so. We consider
22 habitats which support non-native species, grouped
under Water Column, Intertidal (including Dunes and
Supralittoral), Sublittoral, and Deep Sea.

Water Column, Marine and Estuarine

Coastal (neritic) waters
Oceanic neuston-pleuston (neopelagic)

Dunes, Supralittoral, and Intertidal, Marine and
Estuarine

Maritime sand dunes

Supralittoral (strand zone)

Maritime wharves

Rocky intertidal (exposed coast)

Rocky intertidal (protected coasts and estuaries)
Other hard-bottom intertidal (e.g. oyster reefs,
serpulid tubeworm reefs)

Soft-bottom intertidal (e.g. mudflats, sandflats,
clay-peat banks, sandy beaches, mixed sedi-
ments),

Sandy beaches and surf zones (exposed coast)
Salt marshes

Rocky salt marshes

Mangroves

Coral reefs (intertidal)

Subtidal (Sublittoral)

Fouling (intertidal and subtidal)

Wood-boring (largely in harbors and ports)
Hard-bottom subtidal to shelf (including rocky,
to 200 m)

Soft-bottom subtidal to shelf (mixed sediments,
to 200 m)

Seagrasses

Kelp beds

Coral reefs (subtidal)

Deep Sea

Deep Sea mixed bottoms (>200 m)

Only 3 of these 22 habitats involve human-created
environments (acknowledging that all of the other
habitats have sustained human modification)—mari-
time wharf communities, intertidal and subtidal foul-
ing communities, and wood-boring communities,
largely in harbors and ports. Bays and estuaries are
typically highly invaded (Table 2), and include water
column, natural hard-bottom and soft-bottom inter-
tidal and subtidal substrates, mangroves, intertidal
and subtidal fouling and wood-boring communities
and seagrass (including eelgrass) communities. As
many of these are studied as distinct habitats within
bays and estuaries, and given that there has been a
concentration of work on artificial substrates, some
of these habitats may remain largely unexplored for
invasions (or, if invasions are reported in such envi-
ronments, as we note below, may be overlooked in
invasion reviews).

Importantly, non-native species found in three of
the above habitats—maritime (ocean) sand dunes,
supralittoral zones, and salt marshes—may often be
either overlooked or intentionally omitted in assess-
ments of marine invasion diversity. We argue for their
inclusion in assessments of marine bioinvasion diver-
sity based upon ecological and evolutionary physi-
ological grounds, given that species in these habitats
typically require an ocean—that is, a saline—envi-
ronment in order to reproduce, feed, grow and sur-
vive. For example, the European beachgrass (marram
grass) Ammophila arenaria is a member of the non-
native maritime beach dune community on the Pacific
coast of North America and the North American
cordgrass Spartina alterniflora is a prominent non-
native species in salt marshes in countries around the
world. Both plants require a salt-based environment
to exist. Salt marshes are inundated by tidal ocean
waters daily, and non-native species occurring in this
habitat thus qualify as members of the marine bioin-
vasion community, rather than terrestrial ecosystems.

Similarly, often under-reported globally are inva-
sions in the marine supralittoral zone, also known as
the strand-line, wrack-line, drift-line, and maritime
community. Terrestrial entomologists and botanists
recognized as early as the 1700s that rock, shingle,
sand, and shore debris ballast transported in ocean-
going ships had begun the movement of coastal
insects and plants around the world (Lindroth 1957,
Mack 2003). Despite Roux’s early (1828) mention of
the probable transport of a non-native shore isopod

@ Springer



248

J. T. Carlton, E. Schwindt

(Ligia exotica) in a ship’s hold (Carlton 2011), rec-
ognition lagged behind in marine literature that a
great many other littoral invertebrates were also likely
dispersed for centuries in “solid” ballast. Examples
of the latter include talitrid amphipods (‘“beach-
hoppers,” “marsh-hoppers” and “sand-hoppers”),
halophilic oniscoid isopods, insects, and gastropods.
Importantly, even well-recognized non-native mari-
time plants and insects are often omitted in treatments
of marine bioinvasions—and may also be omitted
in treatments of terrestrial invasions! Supralittoral
animal and plant species are included in bioinva-
sion reviews for South Africa (Mead et al. 2011a,
b), Argentina (Schwindt et al. 2020), the Galépa-
gos Islands (Carlton et al. 2019), and the Hawaiian
Islands (Carlton and Eldredge 2009) (Table 3), but
are generally absent in marine invasion reviews.

We further argue that certain non-native species
of birds and mammals, albeit not requiring the ocean
for reproduction or survival, should be critically con-
sidered for inclusion in coastal invasion inventories
based upon their ecological roles in marine communi-
ties. The roles of non-native birds and mammals as
consumers and predators in marine environments may
often be overlooked by marine invasion researchers.
In fact, non-native terrestrial mammals (Carlton and
Hodder 2003) and non-native birds (below) utilize
and may impact coastal marine and estuarine com-
munities. The marine invasion inventories for Chesa-
peake Bay (Ruiz et al. 1999) include introduced ter-
restrial mammals utilizing salt marshes. In contrast,
the same introduced mammals invasions are omitted
from the treatment of introduced aquatic and marine
species in the Great Lakes and the North and Baltic
Seas (De Lafontaine and Costan 2002; Reise et al.
1999; Gollasch et al. 2009). The non-native duck
Anas platyrhynchos is included in the inventory of
marine bionvasions of the Hawaiian Islands (Carlton
and Eldredge 2015) because these birds feed in brack-
ish water habitats on Oahu. Similarly, the Eurasian
mute swan Cygnus olor is included among marine
bioinvasions of New England (Williams 2007) and
British Columbia (Levings et al. 2002), where it is
a common consumer in coastal waters. We regard
these and other species as members of marine inter-
tidal communities, and include them in lists of marine
bioinvasions, as discussed earlier.

However, resident non-native species that neither
rely on a marine environment for reproduction, nor
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regularly act as competitors or predators in marine
communities, should, in general, not be treated as
members of marine or brackish ecological com-
munities. A great many species of terrestrial plants,
for example, live in a broadly-defined “sea spray” or
“salt spray” zone (but not the wave splash zone), and
many of these same plants are found well inland in
cities, gardens, roadsides, grasslands, and farms, far
from the ocean. Anton et al. (2019) included well-
known terrestrial plant invaders, such as Australian
pine (Casuarina equisetifolia), velvet grass (Holcus
lanatus), bitou bush (Chrysanthemoides monilifera)
and turf grass (buffalo grass, St. Augustine grass)
(Stenotaphrum secundatum), the latter a common
lawn grass, in their review of the “global ecologi-
cal impacts of marine exotic species,” because these
plants appeared in studies that included “environ-
ments getting sea spray,” and in searches with the
word “coastal.” While we do not doubt the abundance
and potential ecological engineering roles of these
and many other terrestrial species that tolerate but do
not require a saline habitat, marine bioinvasion ecol-
ogy would be fundamentally redefined by extending
an umbrella over these species.

A broad suite of open ocean habitats have sus-
tained invasions, include near-shore planktonic eco-
systems (by diatoms and dinoflagellates, jellyfish,
and fish), soft-bottom subtidal communities, kelp
beds, open coast sandy beaches, coral reefs and deep
sea. For the latter, Voight et al. (2012) have offered a
sobering example of how scientific equipment used
to study deep-sea hydrothermal vents has the abil-
ity to transport species between vent systems. Like-
wise there have been newly-detected invasions of the
high seas by coastal species colonizing plastic marine
debris (e.g., Haram et al. 2021). In particular, exposed
rocky intertidal shores support (and in some areas have
long supported) highly abundant invaders in regions
as widespread as Europe, the Western North Atlantic,
Argentina, Chile, and the Hawaiian Islands (Table 2).
In contrast is an older view, as expressed by Zevina and
Kuznetsova (1965), that “an open coast is not suited to
the introduction of new organisms. Only closed inlets
and bays, from which the larvae will not be carried into
the open sea, and in which they will be able to set in
close proximity to each other, are suitable.”

Certain habitats that appear to support few inva-
sions may have simply not benefitted from focused
study on their invasion history, a hypothesis that, as
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far as we can determine, has not been tested. The
absence of reports of large number of invasions from
any given habitat (such as open coast sandy beaches
or deeper ocean waters) should not be interpreted as
a general dearth of invasions (see Preisler et al. 2009;
Bumbeer and Rocha 2016), even if some habitats are
less invaded than others. As we comment earlier in
this essay, phytoplankton invasions may be exten-
sively underreported globally.

Perhaps again because of the general focus on inva-
sions in port and harbor habitats, there appear to be
few global reviews of the presence and impact of non-
native species in most of the habitats and communities
shown in Table 2. The exceptions include Williams’
(2007) review of invasions in seagrass ecosystems, a
brief review of selected zooplankton invasions (Bol-
lens et al. 2002), a brief review of animal invasions
in salt marshes (Byers 2009), and a review of certain
invasions in mudflats (Ruesink 2018).

The way forward: how to embrace habitat diversity
of invasions

To more fully clarify or investigate the habitat diver-
sity of invasions, researchers should,

e Habitat Lacunae Explicitly identify those habi-
tats that are missing from the regional treatment,
in order to weigh the potential scale of invasion
underestimation. Thus, if a regional marine inva-
sion inventory fails to consider supralittoral, salt
marsh, or mud-sand habitats, these omissions
should be clearly flagged as being uninvestigated,
rather than the implication that such habitats have
been investigated and no non-native species were
found to be present.

e Habitat-Specific  Literature  Search  specific
regional habitat literature—such as the literature
on salt marshes or soft-sediment infauna—if these
habitats do not surface using (in parallel to the
above phyletic considerations) search terms for
non-native species.

e Tap Specialist Knowledge Consult with both local
and global habitat specialists to determine if they
are aware of either literature that does or may con-
tain records or suggestions of non-native species
in the region in question, or of species that they
themselves consider certain or likely non-native

candidates, regardless of whether the biogeo-
graphic status of such species in a given habitat
has been previously published.

I1. Searching for invasions: literature surveys

It is critical to recognize at the outset of reviewing
regional invasion literature that many researchers,
including systematists, biogeographers, and ecolo-
gists, still do not recognize the trichotomy of native,
non-native, and cryptogenic species, despite the intro-
duction of the cryptogenic concept more than 25 years
ago (Carlton 1996). Thus, a researcher is often faced
with lists of “native” or “non-native” species, a result
of the general long-term default in biogeography and
ecology to categorize species as native even if the evo-
lutionary and distributional history of a given species
is not known (Carlton 2009). We address this situation
in Section “III. Reassessment of the status of “native”
species”. Linked to this is that the nineteenth century
concept of natural “cosmopolitanism” of shallow-water
coastal species remains alive and well in the hearts of
many scientists working with many small-bodied and
poorly known taxa (Darling and Carlton 2018; this,
too, remains one of the greater challenges in resolving
invasion diversity. We address both of these topics in
further detail below as well (Section “IIl. Reassess-
ment of the status of “native” species”).

Here we present the multiple ways in which litera-
ture, often from many different sources, can be criti-
cally evaluated.

ITA. Regional invasion and taxonomic literature, and
the need for search term diversity

Taxa reported in regional (in-country) invasion lit-
erature and databases typically yield the first work-
ing lists of non-native and cryptogenic species. If the
desire is to publish an authoritative, scholarly review
of regional marine invasions, all records derived from
both regional and global databases should be verified
by examination of primary original sources. While
this can be both time-consuming and challenging
(if not annoying), doing so will avoid errors passed
down from one secondary source to another.

A standard approach is to use web-based search
systems, such as Web of Science, SciELO, BIOSIS
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Citation Index, CABI, Scopus, and ASFA. We note
however, that users should be aware that these data-
bases do not cover all languages, and thus sites
such as Google Scholar may be important to find
more regional non-English literature. Researchers
may often unnecessarily restrict their use of search
terms and search combinations. We emphasize that
it is important to use a broad range of search terms,
given that standardized terminology in invasion sci-
ence is far from stabilized (Occhipinti-Ambrogi and
Galil 2004; Falk-Petersen et al. 2006; Richardson
et al. 2011). We further emphasize that ceasing one’s
search, after using multiple search terms and standard
databases, may result in overlooking many invasions,
as we detail in the sections below.

If the resources to do so are available, the follow-
ing terms (not a selection of them) should be used in
searches, in pertinent combinations, in order to reveal
previously reported invasions in a given region. Natu-
rally, these words should be translated into appropri-
ate languages and any additional common regional
terms should also be included.

Invasion terms adventitious, adventive, alien,
allochthonous, biopollution, climate migrant, colo-
nist, colonization, colonizing, cosmopolitan, cryp-
togenic, exotic, extralimital, foreign, hitchhiker,
immigrant, imported, introduced, introduction,
invaded, invader, invasive, migrant, naturalization,
naturalized, neobiota, neocosmopolitan, neophyte,
neozoa(n), non-indigenous, nonindigenous, non-
native, nonnative, pseudoindigenous, stowaway,
tramp, transfer, translocated, transplant, transported,
waif, weed, xenodiversity

Biogeography terms cosmopolitan, cryptogenic,
expand, expansion, extension, “first discovery”,
“first record”, new, “new record”, northward, novel,
poleward, range expansion, range extension, south-
ward, spread, spreading

Vector terms aquaculture, aquarium industry, bal-
last, biofouling, biological supply, canals, fisheries,
Fouling, habitat restoration, mariculture, marine
debris, marine litter, oil and gas drilling platforms,
rafting, seafood, ship, vessel

Habitat terms aufwuchs, biofouling, brackish,
coastal, estuarine, estuary, fouling, marine, mari-
time, ocean, sea; see also Table 2
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IIB. Global taxonomic and invasion literature with
“hidden” invasion records

McGeoch et al. (2012) noted that the significance of
incomplete information searches in alien species list-
ing is “assumed to be small where significant effort
is invested in thorough searches,” which presumes
that the searcher knows how and where to search. In
contrast, non-native species may be reported in global
taxonomic and invasion literature, unbeknownst to
regional researchers who may not be aware that the
species in question even exists in their country. For
example, Herbert (2012) noted that the European salt
marsh snail Myosotella myosotis was a non-native
species in South Africa, but that “this information,
published in a taxonomic revision of western Atlan-
tic Ellobiidae ... escaped the attention of the South
African marine science community”’—although the
record was published in 1996 and this snail had been
present there since the 1880s. Myosotella myosotis is
a global invader that was inadvertently re-named as a
new species many times after its introductions around
the world (Martins 1996; Carlton 2009). It has simi-
larly been overlooked as an invasion in Peru, where
it has been present since the 1830s, and in Bermuda
(Martins 1996).

We provide additional examples of such hidden
records in Table 4, in three categories:

(1) Taxonomic literature with hidden invasion
records in which the authors indicated that the
species in question is introduced elsewhere, but
these records largely appear to have gone unno-
ticed in the regions indicated,

(2) Invasion literature with hidden invasion records
for other countries or regions,

(3) Taxonomic literature with invasion records not
identified as such in the cited references (but are
so suggested in Table 4, as examples)

The way forward: how to address hidden invasion
records

To investigate potentially “hidden” records of inva-
sions, researchers should,

o Search Other Regional Invasion Literature Using
the local region or country name, search invasion
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inventories in other regions for species that have
been flagged as non-native in parts of their known
range.

e Search Regional or Global Systematics Literature
Using the local region or country name, search
papers and monographs that review the taxon-
omy and distribution of selected marine taxa on
an ocean-wide basis if not global basis, for spe-
cies that have been flagged as non-native in parts
of their known range. The depths to which such
records may exist but can be overlooked are frus-
trating: for regions that we know well, such as
Argentina and the Hawaiian Islands, we have no
doubt that buried in the other invasion literature or
taxonomic literature are records of non-native spe-
cies that we have not yet discovered.

o Tap Specialist Knowledge As suggested above,
relative to embracing taxonomic and habi-
tat diversity, consult with experts in specific
taxonomic groups that often encompass large
numbers of non-native taxa. Examples include
corophiid and caprellid gammarid amphipods,
sphaeromatid isopods, balanoid barnacles, cam-
panulariid hydroids, diadumenid anthozoans,
spionid and serpulid polychaetes, bugulid bryo-
zoans, and ascidians.

II1. Reassessment of the status of “native’ species

Many hundreds, and perhaps thousands, of species
of marine protists, invertebrates, fish, algae, and
maritime and marsh higher plants were transported
around the world long before scientific investigations
commenced (Carlton 1987, 2003, 2009; Ojaveer
et al. 2018). Thus, in any given coastal marine com-
munity there may be scores or hundreds of species
whose biogeographic status as native has never
been questioned, a situation underlain by the “shift-
ing baseline” assumption that species first recorded
at a location, especially in the 1700s, 1800s or early
1900s, were native (Carlton 2009; Ojaveer et al.
2018). Heavily layered upon this assumption was the
common (and in a surprising number of cases still
enduring) usage of the same scientific name for spe-
cies occurring in far-reaching locations around the
world, leading to a persistent view that literally thou-
sands of coastal species of marine animals and plants
were (or are) “naturally cosmopolitan” (Darling and

Carlton 2018). Carlton (2009) has reviewed in detail
the consequences of these assumptions and views
relative to the multi-century obfuscation of the scale
of invasions. In reviewing an earlier suggestion that
“nearly 1000 coastal species” may have been over-
looked as invasions (Carlton 2003), Carlton (2009)
suggested that, “in retrospect, the number 1000 now
seems too low.”

While global invasions commenced prior to the
1500s, a great many invasion inventories report the
oldest known invasions as beginning only in the
mid-1800s, with rare earlier records. Despite this
temporal disconnect of several centuries between
the apparent onset of invasions and their first detec-
tion, there has been an overall reluctance, as noted
above, in most invasion inventories to re-assess the
biogeographic status of ostensibly “native” species
(Table 3). As examples, of 22 study regions in four
oceans (North and South Atlantic and North and
South Pacific) representing 11 continental margins
or island systems, only 8 studies re-assessed selected
“native” species and re-assigned some of these to
a non-native status (9 did the same for cryptogenic
species) (Table 3). We know of no studies (includ-
ing our own) that attempt a “deep dive”’—a daunting
task—into even a significant number of candidate
taxa deserving biogeographic re-assessment relative
to how many may represent earlier invasions. For the
8 study areas noted here that have benefitted from
some re-examination of the native biota, re-assess-
ment is typically limited to relatively few taxa or tax-
onomic groups, leaving the bulk of the “native” biota
unquestioned. In turn, identification of cryptogenic
species, foraged from ‘“native” lists, are, without
exception, only examples of cryptogens, with most of
the marine biota similarly remaining biogeographi-
cally unexcavated.

Beyond the shifting baseline, several additional
reasons may account for this reluctance to re-consider
species’ indigenous (or even endemic) status:

(1) A general hesitancy to challenge “conventional
wisdom,” as held by senior in-country zoologists
or botanists, including reluctance to question the
biogeographic status of “iconic” native species
(see for example Bortolus et al. 2015 relative to
the history of the understanding of the biogeog-
raphy of the marsh grass Spartina alterniflora in
South America).
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(2) An assumption that re-constructing the origin and
dispersal history of a species that may have been
subject to centuries of human-mediated disper-
sal may be nearly impossible (a resistant belief
now potentially set aside, in part, by the advent
of molecular genetics that could tease apart a
species’ history over time and space, such as
the work resolving the origin of the widespread
supralittoral isopod Ligia exotica as being in East
and Southeast Asia Hurtado et al. 2018), and
work resolving the octocoral Carijoa riisei, for-
merly thought to be native to the Caribbean (from
where it was first described in 1860), as native to
the Indo-West Pacific (Concepcion et al. 2010)).

(3) The assumption that a species’ type locality
(which may be in the study area in question) is
the native region (see Section “VD. Type locali-
ties are not default native regions”, below).

and,

(4) What may simply appear to be the daunting
knowledge required of the obscure and com-
plex systematic and biogeographic literature of
a taxon, often under older species names and in
multiple languages, accompanied by a similar
complex and unsynthesized literature on his-
torical anthropogenic vectors applicable to the
potential historic movement of any one species.

Yet, abundant evidence suggests that a great many
non-native species may be hidden under an indige-
nous-endemic umbrella. As Carlton (2009) outlined,
many non-native species are pseudoindigenous, hav-
ing been, (a) mistakenly re-described as new in the
introduced region (i.e., already described in their
native regions), (b) first described as new (with the
presumption they were native) where they were actu-
ally introduced, and then later discovered in their
native regions, and (c) described as new after being
introduced (as determined post-description by other
researchers, by the application of criteria discussed
below), but nevertheless remain unknown elsewhere.

Pseudoendemic is an unrelated term, having been
introduced independently multiple times, including
meaning a population largely dependent on constant
immigration (Redfield and Beale 1940), a species
found only in one sampled location (although known
to occur in other locations), as opposed to the number
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of species common to two or more sampled loca-
tions (Balinsky 1967), endemic species whose range
has been inadequately or unevenly sampled (Daniels
et al. 1995), species “already known from other coun-
tries or not being genuinely distinct species” (Fraser-
Jenkins 2008), and species “now confined to one or
a few islands, but that had much larger ranges (prior
to) human contact” (Steadman 2006), among other
meanings.

Relative to the three pseudoindigenous categories
noted above, Carlton (2009) provided 94 examples
of species in category (a); in many cases, species
were redescribed as new in different regions (up to
11 times for one species), for a total of 159 cases of
mistaken re-description amongst these 90-some spe-
cies alone. Carlton (2009) also provided examples of
21 species in pseudoindigenous category (b), and 7
species in category (c), the latter, as defined above,
thus being sui generis designations as introductions
by later work. Soledade et al. (2013) have described
cases in category (a) as a “precautionary tale when
describing species in a world of invaders.”

Descriptions of non-native species as new spe-
cies in the above categories were not recognized by
authors as introduced at the time of description (Carl-
ton 2009), a situation that continues to the present
day (Soledale et al. 2013; Aguilar et al. 2022). How-
ever in a small number of cases, authors recognized
that a species, albeit apparently undescribed, was not
likely native (Carlton 2009, Table 2.4): as examples
of species recognized at the time of their description
(or mistaken redescription) as non-native, Carlton
(2009) offered examples of 7 species in category (a),
5 species in category (b) and 7 species in category
(c). Recognition of marine species as undescribed but
introduced dates back to at least the 1870s. Cooper
(1872), in describing the brackish-water snail Alexia
setifer as a new species from San Francisco Bay (now
known as Myosotella myosotis, the same species
long-overlooked in South Africa as discussed above)
noted that the Bay had been searched for mollusks
“for more than twenty years,” and concluded that it
might not be native, speculating that it may have been
brought from China on ship hulls, or “as ova in damp
nets or otherwise.” Authors recognizing non-native
species at the time of their description have used triv-
ial names such as aliena, alienense, enigmatica, and
exotica (Carlton 2009) nomadica (Galil et al. 1990),
invadens (Reise et al. 2011), perambulata (Louis
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and Menon 2009), and ingressus (Engin et al. 2018),
among others.

An important derivative from these examples is that
a number of demonstrably non-native species remain
known only from where they have been introduced
(Carlton 2009 Tables 2.3 and 2.4-C). Of course, some
of these species may yet be found to be described else-
where, with earlier descriptions (and thus names) not
yet being matched to the satellite populations of these
species. However, in many if not most cases, it appears
likely that the biota in the native or presumptive native
regions of these taxa (as judged by criterion 6 in Sec-
tion “V. Criteria for recognition of non-native species”)
is simply not sufficiently known, and that these species
have come to light only by being introduced to regions
under greater investigation, or by the vagaries of for-
tuitous encounters (such as the discovery of a new spe-
cies of bryozoan, Bugula tsunamiensis, known only (at
this time) from rafting debris in the North Pacific, but
for reasons detailed in McCuller et al. (2018) appears
to find its origin in Honshu, Japan). The scale of pseu-
doindigenous diversity is unknown, but as a phenom-
enon it further contributes to the strong likelihood that
the number of “endemic” or “indigenous” species mis-
categorized as such is under-estimated—and thus that
the number of introductions in any one region is likely
higher than estimated.

In contrast to the earlier lack of recognition of new
species as potential candidates for having been intro-
duced, an increasing number of undescribed or poten-
tially undescribed marine invertebrate species from
well-studied shallow-water areas are now recognized as
being non-native at the time of discovery and descrip-
tion, a sign of greater awakening of an understanding
of the scale of invasions. We provide examples of these
in Section “VD. Type localities are not default native
regions”, below.

In addition, non-native species have been initially
misidentified as already-described native species,
with well-known cases including mistaking the Japa-
nese seastar Asterias amurensis for a native seastar
in Tasmania (Buttermore et al. 1994), the Western
Atlantic comb jelly Mnemiopsis leidyi for a native
ctenophore in The Netherlands (Faasse and Bayha
2006), and the Mediterranean mussel Mytilus gallo-
provincialis, mis-identified as the native mussel Myti-
lus edulis (now Mytilus trossulus) for many decades
in southern California (Geller 1999). It is unlikely
that all such cases have been recognized.

In sum, while the most common approach in creat-
ing invasion inventories is to rely on species already
reported as non-native, as discussed above, in reality
the historical biogeographic status of many species in
a given region may not have been properly assessed,
if assessed at all. Jaric et al. (2019) have categorized
the underestimation of non-native species diversity as
“crypticity in biological invasions,” encompassing the
multiple challenges of undescribed species, taxonom-
ically difficult species complexes, pseudoindigenous
species, cryptogenic species, and undetected species.

IITA. Targeting candidate “native” species for
re-evaluation of biogeographic status

Of hundreds or thousands of species in a regional
biota, which taxa or taxonomic groups potentially
representing overlooked invasions would bear inves-
tigation? Put another way, in which taxa should con-
siderable time and effort be invested to tease out those
species which may have been introduced long before
formal scientific work began?

While we have argued (above, and Table 2) that
non-native species are found in a broad range of
marine habitats, the following specific groups and
habitats bear early consideration. We recognize that
our considerations here overlap with our admonitions
to more fully explore both phyletic and habitat diver-
sity of non-native species:

(1) “Native” species that occur largely or primarily in
habitats known to support well-recognized non-
native species. Such species fall under one of the
criteria for recognizing non-native species (Sec-
tion “V. Criteria for recognition of non-native
species”), that is, close association with known
invaders. Thus—again noting our emphasis of the
wide habitat diversity of invasions—low-hanging
fruit includes re-consideration of species in local
biofouling communities that have not been previ-
ously considered as possible non-native taxa.

(2) Habitats and thus taxonomic groups not previ-
ously considered in a given region as supporting
possible or probable invasions, such as supralit-
toral maritime amphipods and isopods (often
omitted in considerations of marine bioinvasions)
and teredinid shipworms and limnoriid isopods.

(3) Taxonomic groups such as campanulariid
hydroids and shipworms that have been his-
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torically dismissed as “naturally cosmopolitan”
because of unfounded assumptions of “natu-
ral rafting” (see Carlton 1999a; Carlton and
Eldredge 2009).

(4) Symbionts, commensals, and parasites of recog-
nized invaders. These may include host invader
taxa supporting (a) species-specific symbiotic
and commensal ciliates, (b) folliculinid ciliates
found with limnoriid isopods (“gribbles”) and
other hosts, (c) commensal isopods such as lais
spp. found with their sphaeromatid isopod hosts,
or (d) host-specific marine fungi associated with
non-native maritime plants, such as mangroves.

Species that thus come under consideration as
potential invaders are then analyzed through the
lenses of the criteria outlined in Section “V. Criteria
for recognition of non-native species”.

IV. Field surveys and sampling

If no field surveys for non-native species have been
conducted for more than 5 years, efforts should be
made to deploy standard assessment methods (below)
to determine if any new invasions have occurred. This
requires access to taxonomic expertise across as many
phyla as possible, which may be challenging within
country. Despite the abundance and diversity of, for
example, sponges, flatworms, hydroids, polychaetes,
bryozoans, ascidians and other taxa in marine com-
munities, there may be no in-country experts to iden-
tify specimens, or, as discussed earlier, available
experts may not have the time to examine material. In
this case, effort should be made to contact taxonomic
experts in other countries who may be available.

Whether in-country or not, taxonomists are invited
to be co-authors of papers resulting from the sur-
vey work (that is, rather than being simply acknowl-
edged). Unfortunately, funds are rarely available to
engage professional for-hire taxonomists or taxo-
nomic consulting companies, and we acknowledge
that those involved in those trades are rarely inclined
to exchange their services for the honor of co-author-
ing papers. Regardless, we have commented earlier
that in the absence of the availability of morphologi-
cal taxonomists, genetic analyses must not be substi-
tuted in foto to generate identifications.
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We outline here some standard survey methods,
which may variously be quantitative, qualitative, or a
mixture of the two. Applying more than one method
will increase the detection of non-native and crypto-
genic species (Schwindt et al. 2014). Campbell et al.
(2007) provide an overview of selected methods.

We note the rapidly expanding and highly benefi-
cial role of the public (“citizen scientists”), social net-
work sites such as iNaturalist (https://www.inatural-
ist.org/), and the increasing availability of reporting
applications in documenting the occurrence of novel
invasions, the spread of older invasions, and invasion
diversity in general (Pearson et al. 2019; Martinez-
Laiz et al. 2020; Hermoso et al. 2021; Kaminas et al.
2022; Howard et al. 2022).

IVA. Colonization substrates (passive sampling)

Standardized plates (panels), made of a wide variety
of materials, are deployed to capture the recruitment
of both sessile and mobile species in different sites, in
different locations within sites, different habitats and
depths, and over varying lengths of time (Bumbeer
and Rocha 2012; Schwindt et al. 2014; Maraffini et al.
2017; Ramalhosa et al. 2021; Loureiro et al. 2021;
Leclerc et al. 2021; Chebaane et al. 2022). Substrate
deployments have a rich history (Jarvis 1853; Parker
1924; Visscher 1928; Coe and Allen 1937; Miyazaki
1938; Edmondson and Ingram 1939; McDougall
1943; Edmondson 1944; Millard 1952), with these
earlier studies often providing an important base-
line for fouling community diversity. Holmes and
Callaway (2020) experimented with a “mixed mate-
rial survey” (MMS) (substrates of different materials
deployed simultaneously) to assess non-native species
colonization; the MMS attracted a greater proportion
of non-native species compared to the deployment
of standard acrylic settlement plates. Plates may be
deployed in different configurations, including verti-
cally- and horizontally-oriented panels, the latter lead-
ing to algae and/or sediment accumulation on upper
surfaces but providing shading for negatively photo-
tactic species on lower surfaces. Some deployments
employ both methods (Collin et al. 2015), given that
larval settlement may be influenced by (among many
phenomena) physical factors such as light, gravity,
and water flow. Plates may also be caged to exclude
predators accompanied by uncaged (open) treatments
(Freestone et al. 2013; Oricchio et al. 2016; Giachetti
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et al. 2020), noting that unattended biofouling on
cages can alter the treatment, and that predators may
recruit into (and be trapped in) cages. Once retrieved,
plates may be sampled at various intensities (all taxa
or selected taxa, and for morphological and/or genetic
analyses). Expert taxonomists may be involved at the
time of plate retrieval (for live analysis) or later.

IVB. Rapid assessment survey (RAS)

An RAS consists of typically assembling a team of
taxonomic experts and support personnel to sample a
series of sites and habitats along a length of coastline
over a defined period of time (Pederson et al. 2021).
In a marina-based RAS, for example, about 15 small
boat harbors may be sampled along a distance of
400 km over a period of 7 days by a team of 15 to
20 personnel. As with all survey methods, RASs have
limitations, including restricted temporal and spa-
tial coverage, that may result in underestimating the
number of non-native species present (Rohde et al.
2017). RASs have been conducted since the 1990s
in a number of countries, including, for example, the
following sites, with the referenced works providing
extensive details of sampling and analytical methods:
the United States Pacific coast (Cohen et al. 2005,
and earlier surveys reviewed therein), the U.S. New
England coast (Mathieson et al. 2008; Pederson et al.
2021, as well as earlier surveys reviewed therein)),
England (Arenas et al. 2006), Scotland (Ashton et al.
2006; Nall et al. 2015; Collin et al. 2015), Ireland
(Minchin 2007, based on a one-person survey extend-
ing over 18 months), Brazil (Marques et al. 2013) and
Korea (Park et al. 2017). The first RAS known to us
was conducted in June 1970 in San Francisco Bay
(California) by James T. Carlton and the late Neil A.
Powell.

This method is similar to bioblitzes, which are also
intensive time and space limited surveys, but differ
in assembling teams of observers, collectors and tax-
onomists at one site, who may then fan out across a
relatively small region and bring specimens back to a
central processing area (Ashton et al. 2020).

We note that taxon-specific (target taxa) surveys
can also be conducted (Minchin 2012; Minchin et al.
2016). These conceivably could further focus on
detecting species in the wild that have been docu-
mented to date only on arriving or regional vessels
(for example, Meloni et al. 2020) or known to be

released into local waters, such as the same species
repeatedly released in a port or bay (Carlton and Gel-
ler 1993). “Watch lists” for potential invaders are
common throughout much of the world, but often
highlight species not actually known to be arriving
on specific vectors into a given region. Concentrat-
ing on species known to have arrived (and potentially
(via vessel biofouling) or likely (via ballast water)
released), or known to be present on in-country ves-
sels may be lower-hanging fruit.

IVC. Extended site surveys

Extended surveys may be conducted over time involv-
ing multiple sites (and potentially multiple habi-
tats), either within a region (Rohde et al. 2017), or
throughout country (Campbell et al. 2007). The
resulting greater sampling and necessarily increased
taxonomic effort would typically require greater fund-
ing resources. Examples include marine bioinva-
sion surveys conducted around the Australian conti-
nent (Campbell et al. 2007, with multiple sampling
strategies), along the coast of Patagonia, Argentina
(Schwindt et al. 2014), and around the United States
(Bastida-Zavala et al. 2017, employing fouling plate
deployments).

IVD. eDNA metabarcoding surveys and qPCR assays

Increasingly advanced molecular genetic techniques
are permitting the early detection, and monitoring the
spread of, non-native species using water, sediment
and marine debris samples (Zaiko et al. 2015; Bor-
rell et al. 2017; Holman et al. 2019; Pearman et al.
2020; Suarez-Menendez et al. 2020; Ibabe et al. 2019,
2021). eDNA or gPCR sampling may also permit
species-specific detection and monitoring (for exam-
ple Jerde et al. 2011; Willis et al. 2011; Gargan et al.
2022). Agersnap et al. (2022) and Miya et al. (2022)
have presented models for combining citizen science
or community-based collection of water samples with
eDNA or gPCR monitoring. As discussed above, lim-
itations center on correct species identifications, even
with 99-100% sequence matches, given that identifi-
cations mounted on genetic bank websites may not be
correct or that the nearest matches may still not rep-
resent the species sequenced. As noted above, Ardura
et al. (2021) reported apparently in error a large

@ Springer



256

J. T. Carlton, E. Schwindt

number of North Atlantic Ocean cold-water species
in tropical Pacific Islands based only on genetically-
based identifications. Other limitations include only
partial sampling of non-native species present using
metabarcoding (Couton et al. 2022), a limitation of
course with all sampling methods. Metabarcoding
surveys do not completely replace visual surveys nor
collections of actual specimens that would permit
morphological confirmation of identifications made
through DNA assays.

IVE. Invited experts: focus on specific taxonomic
groups

It may prove fruitful to invite expert taxonomists to a
country or a region to work on a specific taxonomic
group to determine regional richness, with a focus on
assessing or resolving the presence of non-native spe-
cies. Rationales for funding such work include resolv-
ing the scale of native vs. non-native diversity in
severely under-reported groups (Carlton and Fowler
2018), establishing a biodiversity baseline by which
to detect future invasions in understudied regions (for
example, the Arctic and Antarctic), as well as, criti-
cally, determining which species, if any, that have
been the subject of key ecological research (such as
studies on ecological engineers) may in fact not be
native, despite presumptions to that effect.

V. Filtering the Records: Criteria for recognition
of non-native species

The majority of non-native species yielded by stand-
ard literature searches (IIA) do not, in general, require
re-assessment as to their invasion status, having been
(presumably) vetted repeatedly. Exceptions are those
species which are listed as introductions but fail to
meet minimum criteria of residency in marine waters,
are not established in the wild, and other eliminat-
ing considerations, as outlined below (Section “VA.
Species to be excluded from calculations of regional
marine invasion diversity”’). For the re-evaluation of
species thought to be native but which may be intro-
duced, robust distinguishing criteria are required,
which we review below (Section “VB. Review of cri-
teria for recognition of non-native species”). These
same criteria may be applied to newly described spe-
cies whose native status is uncertain but which may
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fall within the realm of new species that have been
recognized as non-native at the time of their descrip-
tion (Section “VD. Type localities are not default
native regions”).

VA. Species to be excluded from calculations of
regional marine invasion diversity

The following categories of species should not be
included in the calculations of the total number of
non-native marine species in a given region. In par-
ticular, we strongly discourage (as noted below) list-
ing species held only in mariculture (aquaculture)
facilities as being resident non-natives, no more than
species found solely in zoos or botanical gardens
should be included. In summary, the categories dis-
cussed below are,

e Species indicated as non-native without support-
ing evidence

e Native species mistaken as introductions
Species intercepted on incoming vectors, found
only in aquaculture, mariculture or aquarium facili-
ties, or demonstrably not established in the wild
Species not found alive
Temporary range expansions
Failed invasions

Species indicated as non-native without supporting
evidence

Not all species categorized as non-native (or cryp-
togenic) in the literature should be accepted at face
value. Without supporting evidence, such taxa should
be excluded from non-native diversity calculations
pending evaluation. For example, Moro et al. (2003)
assigned hundreds of species of marine plants and
animals in the Canary Islands to the following cat-
egories, but none of these assignments are accompa-
nied by supporting literature reference or other data:
Nativo Seguro, Nativo Probable, Nativo Posible,
Introducido Seguro No Invasor, Introducido Seguro
Invasor, Introducido Probable (the “probable” and
“possible” assignments would be considered cryp-
togenic in invasion literature). Similarly, Subba Rao
(2005) reported more than 200 species as introduced
post-1960 to Indian Seas, the majority without spe-
cific evidence as to their non-native status. While
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such lists are of potential value to highlight possible
non-native species, the history and status of each spe-
cies would require investigation.

Native species mistaken as introductions

As Carlton (2009, Sect. 2.5, “The Overestima-
tion of Invader Diversity”) noted, mis-categorizing
native species as introduced is relatively rare, in part
because, as discussed earlier (Section “Il. Searching
for invasions: literature surveys”) a default in bioge-
ography is to consider a species native. Application
of the criteria detailed here (Section “V. Criteria for
recognition of non-native species”) may highlight
such cases, but the scale of misconstruing natives as
introductions is unknown.

Examples include three species previously treated
as non-native in the Hawaiian literature re-assigned to
native status (Carlton and Eldredge 2009): the marine
snails Bulla vernicosa (a sporadically-blooming
native species first thought to be a World War II-era
introduction from Guam) and Vitularia miliaris (also
thought to be a WWII-era introduction, but in fact a
previously overlooked native species long resident
in the Islands and in the Hawaiian fossil record), and
the mantis shrimp Gonodactylellus hendersoni (now
G. demanii) a relatively small and easily overlooked
species. The copepod Centropages maigo, initially
thought to be a ballast-water introduction in Japan, is
more likely native (Ohtsuka et al. 2007).

Yund et al. (2015) resolved that the ascidian Bot-
ryllus schlosseri, previously often considered as
introduced in the Northwest Atlantic, appears to be
primarily composed of native populations. Villalo-
bos-Guerrero and Carrera-Parra (2015) demonstrated
that what was thought to be the introduced North
Atlantic polychaete Alitta succinea in the Eastern
Tropical Pacific is a regional endemic species. The
bryozoan Membranipora rustica (Florence et al.
2007), a native species in South Africa, was formerly
thought to be the non-native North Atlantic species
Membranipora membranacea, Carlton (2009) further
reviewed the curious case of the misinterpretation of
the history of the native xanthid crab Pilumnoides
rubus in South Africa.

In the above cases, a combination of biology, ecol-
ogy, natural history, biogeography, genetics or higher
resolution taxonomy served to resolve these cases, all
at the heart of the criteria laid out in Section “VB.

Review of criteria for recognition of non-native
species”.

Species intercepted on incoming vectors, found
only in aquaculture, mariculture or aquarium
facilities, or demonstrably not established in the wild

A large number of regional records of non-native
species may be in hand that are not, or are not likely,
based upon established wild populations. These
include, (i) species arriving on, in, or with vectors,
even if released into the environment (Marchini et al.
2015), although, as noted above, such species provide
fodder for taxa-specific searches; (ii) species released
into the environment with no evidence of establish-
ment; (iii) species held solely in captivity; and (iv)
species raised in mariculture operations but showing
no evidence of wild, established reproducing popula-
tions (for example, Sherwood and Carlile 2012, rela-
tive to a red alga in Hawaii), even if occasional volun-
teers are found outside of aquaculture sites. Examples
of the latter are the common occurrences of non-cul-
tured non-native oysters attached to natural substates
within a several kilometer halo of oyster farming
operations in regions around the world.

Species not found alive

These include dead specimens that may have arrived
with vectors, such as species that may have fallen
off ships, or arrived with marine debris. These are
of interest and should be recorded, but not listed as
non-native species (Marchini et al. 2015). For exam-
ple, the marsh snail Myosotella myosotis was incor-
rectly reported as non-native in Uruguay, but these
records were based only on empty shells (Orensanz
et al. 2002), and only years later it was found alive
(Schwindt et al. 2020).

Temporary range expansions

Ephemeral expansions of species beyond their normal
documented ranges and that do not result in perma-
nently established reproducing populations should be
excluded. Such expansions may be related to aperi-
odic phenomena such as Pacific Decadal Oscillations
(PDOs), El Nifio—Southern Oscillations (ENSOs) and
other marine heat waves, and La Nifia events (Victor
et al. 2001; Montagne and Cadien 2001; Lluch-Belda
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et al. 2005; Lonhart 2009; Goddard et al. 2018; San-
ford et al. 2019; Lonhart et al. 2019), or to cyclonic
weather systems, such as hurricanes.

Fuailed invasions

Non-native species that failed to become estab-
lished (for many reasons; see Simberloff and Gib-
bons 2004; Miller et al. 2007; Miller and Ruiz 2009;
Zenni and Nuiiez 2013; Bosso et al. 2022) should not
be included in invasion diversity calculations. Failed
invasions are defined as non-native species popula-
tions (F1 generation or more) either known to have
(1) been reproducing, or (2) transiently settled in the
wild from spawning adults on an arriving vector, but
in either case are then documented by survey work
to no longer be present. Examples of (1) include the
establishment of a European sea anemone (Sagartia
sp.) in Massachusetts from 2000 to 2010 (Wells and
Harris 2014) and the presence of the Atlantic quahog
(clam) Mercenaria mercenaria in a Southern Califor-
nia lagoon from the 1960s to the 1980s (Burnaford
et al. 2011). Examples of (2) include the transient
settlement of the mussel Mytilus galloprovincialis
in Pearl Harbor, Hawaii, spawned from adult mus-
sels arriving on a vessel from the State of Washing-
ton (Apte et al. 2000; Carlton and Eldredge 2009),
and the transient settlement of the southern serpulid
worm Hydroides elegans in Eel Pond, in Woods Hole,
Massachusetts (Bastida-Zavala et al. 2017), spawned
from adult populations arriving on a visiting vessel.

It is difficult to interpret many occasional discov-
eries, often bundled under a ‘“failed invasion” cat-
egory, including whether these may have represented
transient reproducing populations, were collected off
a visiting vessel (without mention of such), or rep-
resented recruits spawned from the biofouling on
an arriving vessel. While these occurrences may be
of interest in terms of prospective invasions, such
records do not constitute new records for, nor addi-
tions to, the local biota, nor should they be treated as
additions to the list of marine bioinvasions. Exam-
ples include the discovery of a single specimen of
the Australasian barnacle Austrominius modestus on
an experimental panel in Cape Town in 1949 (Sandi-
son 1950, published in Nature in more halcyon days),
admitted to the list of South African invasions in Rob-
inson et al. (2020) and the Western Pacific ascidian
Styela plicata, long admitted to the lists of Uruguayan
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biota, although based on a sole 1880s record (Traust-
edt 1883; Scarabino et al. 2018).

Failed invasions do not include the discovery of
single or a few adult individuals of a species that
likely are the result of direct release, whether acci-
dental (such as the one-off occurrences of green crabs
Carcinus maenas around the world, particularly in the
1800s Carlton and Cohen 2003) or intentional (such
as the discovery of the Atlantic blue crabs Callinectes
sapidus in Hawaii, Carlton and Eldredge 2009), in
the absence of evidence of successful reproduction.
Nevertheless, scattered one-time records of Carcinus
around the world, including in tropical waters where
they cannot live, were long included in inventories of
where the green crab had invaded.

VB. Review of criteria for recognition of non-native
species

Criteria for the often difficult task of distinguishing
native from non-native species have been proposed
and discussed by Lindroth (1957), Carlton (1979),
Webb (1985), Chapman and Carlton (1994), Essl
et al. (2018), Campbell et al. (2018) and others. Quell
et al. (2021) have proposed a series of biological
traits which may characterize some non-native marine
invertebrates, but such traits do not function as crite-
ria to distinguish native from non-native species. In
Table 5 we define 14 criteria, provide caveats and cri-
tiques for each, and identify examples of non-native
species fitting each criterion.
In outline these criteria are,

(1) Prior absence in region of concern/interest:
Absence from the historical, archeological, or
recent fossil record

(2) Global Biogeography: Globally disjunct distri-
butions

(3) Global Biogeography and Temporal History

(4) Regional Biogeography: Highly restricted dis-
tribution

(5) Regional Biogeography: History of geographic
expansion

(6) Allochthonous (exotic) evolutionary origin

(7) Limited Natural dispersal potential for transo-
ceanic and interoceanic colonization

(8) Anthropogenic Dispersal Potential

(9) Invasion Founder Effect: Reduced genetic vari-
ation
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(10) Invasion Founder Effect: Reduced morphologi-
cal or physiological variation

(11) Invasion Founder Effect: Reduced variation in
reproductive strategies

(12) Ecology: Predatory, symbiotic, commensal, or
parasitic association with non-native species

(13) Ecology: Prevalence or restriction to disturbed,
anthropogenic habitats (including artificial sub-
strates) often with concentrations of non-native
species

(14) Ecology: Rapid increase in population size

The application of these criteria is highly depend-
ent on the taxon and location in question, the history
and depth of regional biodiversity investigation, and
the quality and quantity of biological, genetic, physi-
ological, and ecological data available. Thus which,
and how many, criteria are applied and applicable
will vary considerably. As an example, if the well-
known Asian crab Hemigrapsus sanguineus, a rec-
ognized invader of the North Atlantic Ocean, should
be introduced and become established in Argentina,
if correctly identified, then criterion (1) would be suf-
ficient to recognize it as non-native to South America.

Robust evidence of prior absence, in particular, is
one of the strongest criteria for recognizing a non-
native species, especially for large, conspicuous spe-
cies unlikely to have been overlooked for decades
or centuries in well-studied areas. The Indo-Pacific
octocoral Carijoa riisei’s appearance in the 1960s in
the Hawaiian Islands is a classic example of a promi-
nent, easily recognized species not detected in the
Archipelago since scientific collections began in the
1800s. Although species can be missed in ecological
and biodiversity surveys, no evidence suggests that C.
riisei would fall into such a “missed” category. First
thought to be found in Hawaii in 1972, it was later
determined to have been photographed in Hawaii in
1966, leading Concepcion et al. (2010) to conclude
that this 6-year gap “demonstrates that lack of prec-
edence is a weak foundation for classifying” non-
native species. Lack of precedence, in fact, remains
one of the strongest foundations; it is not uncommon
to discover that species were found by members of
the public years before occurring in scientific samples
(Carlton 2008). There is, further, thus no evidence
that C. riisei is cryptogenic in the Hawaiian Islands,
as suggested by Salimi et al. (2021).

An instructive lesson in the synergism between
the ability to establish prior absence in a region, and
enduring assumptions about the probability of natu-
ral colonization (dispersal) of species from a source
area, is the history of the introduction of two marine
species from the South American mainland to the
Galédpagos Islands (Carlton et al. 2019). A baseline
barnacle survey was conducted in the Islands in 1964,
and baseline crab surveys in the 1930s. In 1966 a
large barnacle from the South American mainland,
Megabalanus coccopoma, was discovered in fouling
communities in the Gal4dpagos, introduced by ves-
sel traffic (Carlton et al. 2019). The edible mangrove
crab Cardisoma crassum, common in Ecuador, was
found in the wild on Santa Cruz Island in 1993, with
local knowledge establishing that it was intentionally
introduced that year (Carlton et al. 2019). Both spe-
cies remain established today in the Islands. A critical
lesson here is that had the barnacle been first found
in the Galapagos in 1964 or earlier, or had the crab
been introduced (without anyone knowing) intention-
ally half-a-century earlier, Galapagos biogeographers
would assume that both species had naturally dis-
persed from the mainland. Other than these 2 species
all remaining marine species that are found both on
the mainland and in the Islands are considered natural
colonists in the Galdpagos (Carlton et al. 2019).

As Carlton et al. (2019) concluded, anthropogenic
movements of marine species from South America
to the Gal4dpagos may be underestimated, as it would
appear highly unlikely that the only two marine spe-
cies to be transported accidentally or intentionally
from the mainland to the Archipelago happen to be
species that arrived since the 1950s. In fact, the dis-
tance between South America and the Galdpagos,
although less than 1000 km, may exceed the dispersal
capabilities of many species, although such dispersal
is consistently invoked.

Other species (Table 5) are recognized as prob-
able introductions based solely on criterion (12).
For some species, the application of various criteria
may change over time and result in finer-scale reso-
lution. For example, as noted earlier, Roux (1828)
invoked prior absence (our criterion 1) to recognize
that the littoral isopod Ligia exotica was not native
to the Mediterranean, but it was work 90 years later
(Hidalgo et al. 2018) that resolved its origin as the
Indo-Pacific through criterion (9).
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For a great many species, data for criteria 5, 9, 10,
11, and 14 may simply not be available without exten-
sive historical study or laboratory and field research.
For many soft-bodied species with no preservable hard
parts, application of the archeological or recent fossil
record is inapplicable. For very small, including micro-
bial, inconspicuous and historically undersampled (or
never sampled) species, criterion (1) may especially
not be applicable, although the inability to establish
prior absence has led in some circumstances to the
application of the “smalls rule”—an assumption that
small species, in general, are naturally very widely dis-
tributed (see Carlton 2009).

The above aside, whenever possible, as many
applicable criteria should be mustered to bolster the
case that a given species is or may be non-native; con-
versely, not all criteria must be met to do so (Bortolus
et al. 2015; Miranda et al. 2018). For many species,
the data may at this time be insufficient to resolve a
species status; such species are thus cryptogenic.

VC. Retention in invasion assessments of species not
recently reported

How long to continue to retain species not recently
re-reported on inventories of non-native species is an
unresolved question in invasion science. Ruiz et al.
(2000) noted that the “population status was con-
sidered unknown for introductions with no records
within the past 20-30 years.” Robinson et al. (2016)
set aside records for South Africa for species not
recorded “in the past 25 years.” For larger, well-
known macroscopic species—for example, large gas-
tropods and bivalves, or large crabs—no records for
several decades may indeed suggest that the species
is no longer present. Intensive expert searching in the
same habitat in the same sites for species not reported
for decades, regardless of species size, would also
suggest that the species be removed from the register
of currently recognized established invasions.

While the above scenarios provide evidence of
absence, a fixed time period for confirming the pop-
ulation status for a great many cryptic, small, and
especially taxonomically challenging species may
inadvertently imply that there is a probability that
the species is no longer present, when in fact there
may have been no attempts to confirm such—nor, for
many species, would it be expected that there would
have been such searches. For example, a number of
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commensal and symbiotic ciliophorans were reported
between the 1920 and 1940s from only introduced
molluscan and crustacean hosts in San Francisco
Bay, California (Carlton 1979), but there are no sub-
sequent records. In this case, however, there is no
evidence of absence, and as all the hosts in question
remain in San Francisco Bay, there are no reasons to
suspect that these potentially host-specific symbionts
are absent.

We suggest that species that have not been specifi-
cally searched for again, and which are not likely to
be encountered in sampling programs without a tar-
geted search (accompanied by taxonomic expertise)
be retained in invasion inventories (while noting
that recent details of their distribution or population
size are not known). This approach would both serve
to restore species to lists and to potentially promote
interest in focused searches. Environmental DNA
(eDNA) or qPCR samples might serve to reveal the
continued presence of certain non-native species not
collected in recent years, although many cryptic and
small taxa of concern may not have been sequenced.

VD. Type localities are not default native regions

A great many species of marine, freshwater, and
terrestrial invaders were first described from a non-
native region, with a number of these still remaining
unknown elsewhere, but are nevertheless unques-
tionable introductions (Carlton 2009, and above in
Section “III. Reassessment of the status of “native”
species”).

Table 6 presents 15 recent (since 2005) examples
of new species recognized at the time of their descrip-
tion as probable non-native species. That awareness
is now increasing that non-native species can be both
undescribed and unknown in their native regions is
perhaps indicative of the generally greater recogni-
tion of bioinvasions but also perhaps the unsurprising
scale of increasing human-mediated dispersal. These
examples capture Western Europe and the Medi-
terranean, regions with deep and robust baselines
that permit detection of novel macroscopic species,
as well as North and South America, the Hawaiian
Islands, and the Indian Ocean, and taxa as diverse
as flatworms, sponges, cnidarians, worms, bryo-
zoans, fish, and seaweeds. Of these few examples,
only 2 have yet to be discovered in their homeland.
We suggest that the spectacular occurrence of the
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previously undescribed red seaweed Chondria tumu-
losa in the Hawaiian Archipelago, although initially
categorized as cryptogenic (Sherwood et al. 2020), is
certainly an invasion and is not native to the Islands.
Similarly, although not shown in Table 6, the amphi-
pod Corophium urdaibaiense (Marquiegui and Perez
2006) found in the Bay of Biscay, France in 2004,
and described from (and still only known in) France,
was very unlikely to be overlooked in a country with
a very long history of extensive study on these small
crustaceans.

VI. Methods for establishing the timing
of invasion records, and the importance
of not using publication dates

The resolution of the date of first collection or detec-
tion may appear to be a matter of generally minor
concern. However, a good deal of attention in inva-
sion science, as well as invasion management, is
focused on the pattern and pulse of invasions over
time, and whether invasions can be related to, for
example, the history of a particular vector (its begin-
ning, its peak, and, perhaps, its demise), to environ-
mental or other changes in the donating or receiving
environment (Carlton 1989), or to other phenom-
ena and processes. For example, Byers et al. (2015)
employed data on “time since introduction” to exam-
ine whether there was a positive relationship between
time since arrival and current (as of 2012) range size
of marine invaders, and whether distributional equi-
librium had been reached.

Here we identify methods by which to estab-
lish when a species was first discovered in a given
region. Faced with apparently no or few recourses,
many studies simply use the publication date of a
paper to mark the first record of a species in a given
region. Such a demarcation date is to be avoided if
at all possible. The publication date of a record is
often a poor substitute to establish invasion chronol-
ogy, if the goal is to correlate invasion patterns with
vectors, environmental changes, and post-invasion
range expansion. Instead, time and effort should be
invested in discovering if data may be available by
which to establish when the species was in fact first
detected or collected.

We distinguish here resolving the date of first
collection from when a species may have first

become established as reproducing populations.
Many species may have arrived and become estab-
lished in a given region years or decades (and in
some cases centuries) before being first collected.
This said, the known timing of relevant vector
activity may help establish potential invasion tim-
ing baselines. For example, Hartman (1936) made
many of the first collections of Atlantic polychaete
worms in San Francisco Bay, California in the
1930s, many of which species were likely intro-
duced beginning in the 1870s with the importation
of Atlantic oysters (Carlton 1979). In this case, the
first detection of these species is an artifact of the
arrival of a taxonomic specialist (see also discus-
sion in Macan 1974), and thus Cohen and Carl-
ton (1998) elected to not include Hartman’s 1930s
records of Atlantic worms in San Francisco Bay in
calculating invasion rates of the Bay, since their
introduction may have occurred as much as 50 or
more years earlier. In some regions, the scale of
collection biases may be difficult to detect: Robin-
son et al. (2020) note that only 4 non-native species
were collected in South Africa prior to 1900 (none
recognized at the time as introductions), whereas
between 1900 and 2000 another 65 non-native spe-
cies were recorded, although many of the latter
(such as hydroids, polychaetes, isopods, amphi-
pods, bryozoans, and others) may have arrived in
the 1800s if not earlier. Thus the commensal folli-
culinid protist Mirofolliculina limnoriae, an estab-
lished non-native species in South Africa whose
host is the non-native wood-boring isopod Limno-
ria tripunctata, while first noticed in Cape Town
Harbor in 2008, may well have arrived centuries
ago. A disconnect between a probable era of intro-
duction and the first date of detection appears not
to be recognized or acknowledged in many studies.

VIA. Methods for determining earlier dates of
collection or detection
We suggest several avenues, often low-hanging

fruit, by which to avoid using publication dates as
dates of first detection.
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Accessing station data

Many species reports in taxonomic literature provide
only a station number (of an expedition or a collec-
tor) with no collection date. Station data should
then be sought in other sources, although these may
require considerable mining to discover. For example,
Osburn (1950, 1953) reported the Indo-West Pacific
bryozoan Synnotum aegyptiacum and the North
Atlantic bryozoan Anguinella palmata, respectively,
from Peru based upon collections made at Velero sta-
tion 847-38. Osburn did not provide a reference for
obtaining station data details. Velero station data can
be recovered from Fraser (1943), producing a 1938
collection date for this station.

Museum specimens and museum records

Museum specimens may provide unpublished collec-
tion data. We offer several compelling examples:

(1) The ascidian Polyandrocarpa zorritensis was
described from Peru by Willard Van Name in
1931 (Van Name 1931), without a collection
date; it is now regarded as introduced to South
America (Carlton et al. 2019). The type mate-
rial was deposited at the Yale University Peabody
Museum of Natural History, whose on-line cata-
logue (accessed October 2021) provides a col-
lection date of 1866, setting the record back 65
years.

(2) The Australasian ascidian Asterocarpa humilis
was reported as a new introduction in Chile in
2000, based upon 1997 collections (Clarke and
Castilla 2000). However, a synonym of A. humi-
lis is Cnemidocarpa robinsoni Hartmeyer, 1916
(Turon et al. 2016) described from Robinson
Crusoe Island, Chile; the type material was said
by Hartmeyer to be deposited in the Natural His-
tory Museum in Berlin. Inquiry of the Museum
revealed that the specimens were still extant, but
bore only a collector’s name (“Plate”) and no col-
lection date or further data (Carsten Liiter, per-
sonal communication, 2021). Plate is the German
zoologist Ludwig Hermann Plate who spent two
months on Robinson Crusoe Island in 1894 (Plate
1896), setting the record for this ascidian back
103 years in Chile.
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(3) The Western Pacific amphipod Incisocalliope
derzhavini was first identified in San Francisco
Bay, California in 1971 (Chapman 1988, as Para-
pleustes derzhavini). However, study of preserved
hydroids collected in San Francisco Bay and held
at the Smithsonian Institution and the Yale Pea-
body Museum of Natural History revealed that /1.
derzhavini had been in San Francisco Bay since
at least 1904 (Chapman 1988), setting the record
back 67 years.

(4) The North Atlantic amphipod Monocorophium
acherusicum was first identified from Yaquina
Bay, Oregon, in 1987 (Chapman 1988). Exami-
nation of epibiota on shells of the Atlantic oys-
ter Crassostrea virginica from Yaquina Bay in
the Smithsonian Institution (received from F.
L. Washburn in 1905, revealed the presence of
(dried) specimens of M. acherusicum (Carlton
1979), setting the record back 66 years. Atlan-
tic oysters were imported from the Atlantic coast
and planted in Yaquina Bay between 1897 and
1899 (Washburn 1900).

Discussion

The study of marine bioinvasions is in its infancy:
the field did not exist prior to the 1970s. This young
field, much of which work began in earnest only in
the 1990s, would thus not be expected to catch up
quickly with more than 500 years of invasion history.
We identify in this essay, and suggest means by which
to address, critical gaps in the global resolution of the
diversity and history of marine bioinvasions. These
gaps have arisen in part by profound differences in the
range of taxonomic groups covered in regional inva-
sion assessments, and in part limited rare attempts
to question the presumed nativeness of many species
that may have been introduced over prior centuries.
Coupled with this are largely coarse-grained attempts
to establish invasion timing, such that frequently
the date of publication of a paper is used as the first
record, or the date of collection is taken as the date of
introduction, even when evidence may be at hand that
the latter is an artifact of specialized investigation of a
particular taxonomic group.

As we posed at the start of this essay, without tak-
ing into account differential levels of exploration and
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study, it is difficult to address fundamental questions
in invasion science such as whether the strikingly dif-
ferent numbers of marine invasions reported around
the world reflect varying propagule pressures (as
mediated by many pulsating vectors over time), the
differential susceptibility or resistance of communi-
ties and habitats to the colonization of new species
(“invasibility”), to the characteristics of the poten-
tially invading species (“invasiveness”), or to some
combinations of these.

We close this essay by exploring current
approaches to understanding the scale of marine
bioinvasions in tropical waters.

Wells and Bieler (2020) argue that the consistently
low numbers of non-native marine species reported
from Guam, Pilbara (Western Australia), Singapore,
and southern Florida, as well as work comparing
tropical and temperate Australian ports, ‘“strongly
suggests that the relative paucity of non-indigenous
marine species in the studied environments is not due
to a lack of study or inability to detect NIMS [non-
indigenous marine species] caused by poor taxonomic
knowledge, but rather by increased biological interac-
tions in a biodiverse environment.” The potentially
lower number of marine invasions in tropical waters
have been discussed for some years (Hutchings et al.
2002). Relative to the goals of this essay, we address
this conclusion briefly, and specifically probe Singa-
pore as a model system.

None of the studies noted by Wells and Bieler
address the large number of marine taxa that have
never been studied relative to their biogeographic his-
tory, nor do these studies attempt a re-assessment of
the history of ostensible native species in well-known
taxa, nor do they plumb the depths of the potential
scale of cryptogenic taxa. For Singapore, Wells et al.
(2019), in listing 22 non-native marine species, noted
that there had been “no comprehensive non-indig-
enous marine survey in Singapore,” but cited Jaafar
et al. (2012) as an “extensive” study. In turn, Jaafar
et al. (2012) state that they conducted “an exhaustive
review to determine the status of marine and estua-
rine non-indigenous species in Singapore,” which
review produced the names of three non-native spe-
cies (two bivalves and one worm); they did not ques-
tion the native designations of thousands of marine
species recorded for Singapore. Wells et al. (2019),

while acknowledging that the suggestion of Yeo et al.
(2011) that “part of the explanation (for the low num-
bers of non-native species) may be that species were
introduced in centuries before marine studies began”
was “soundly based,” nevertheless reached the con-
clusion that there was “strong evidence” for the rel-
atively lower numbers of non-native species in the
Indo-West Pacific tropics, and that these numbers are
“neither due to a lack of knowledge nor an absence of
sampling.”

The phylum Arthropoda is represented in the cur-
rent non-native species list for Singapore (Wells et al.
2019) by one species of amphipod and two species
of barnacles; the phylum Annelida is represented
by one species of serpulid tubeworm. No Singapore
hydroids, sponges, or ascidians, among many other
taxonomic groups, are considered relative to their
non-native status. The situation is reminiscent of
Angola, where marine Arthropoda invasions are rep-
resented solely by two species of barnacles (Pestana
et al. 2017), although certain taxonomic groups omit-
ted in the Singapore treatment, including sponges,
hydroids, and ascidians, are recognized as non-native
in Angola. Critically, Yeo et al. (2011) listed 127 (sic)
species of crabs in Singapore that were cryptogenic—
i.e., that could not be confirmed as native. Wells et al.
(2019) acknowledge that analyzing the histories of
127 crab species would require a good deal of work.
Wells et al. (2019) further argued that “taxonomists
would have been looking for non-indigenous marine
species in their marine studies but have found very
few.”

In fact, taxonomists involved in survey work rarely
if ever look for non-indigenous species: they seldom
address the critical historical biogeographic consid-
eration that now widespread species may in fact not
have been so, prior to human activity in the oceans.
Further, in our experience, taxonomists identifying
species not previously recorded in a location often do
not consider whether such taxa might be non-native,
but default to concluding that a previously undetected
species may have been overlooked, or rare, or mis-
identified earlier by non-specialists. Thus, taxono-
mists working in Singapore (and elsewhere in tropi-
cal waters) may be aware of non-native species that
are newly reported but rarely retrospectively question
the distributions of the species they identify, which
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distributions, for hundreds if not thousands of species,
are often said to range from the Red Sea and East
Africa to the South China Sea and southern Japan
and to the Hawaiian Islands. This lack of questioning
is influenced in part by the fundamental assumption
that such distributions are natural, despite a thousand
and more years of potential mixing by coastal ves-
sels transporting hull fouling organisms and ballast
through the South Seas, the Central Pacific, and the
Indian Ocean.

Given the lack of historical perspective, given
the large number of species-rich taxonomic groups
remaining largely or entirely unstudied, and given
the number of regions around the world remaining
largely uninvestigated, producing global “heat maps”
documenting the number of marine invasions by
country and region may overestimate the quality of
the available data. Seebens and Kaplan (2022), using
filtered (“cleaned”) data from GBIF (Global Biodi-
versity Information Facility) and OBIS (Ocean Biodi-
versity Information System), produced a color-coded
global map of the number of “recorded alien taxa”
for marine and brackish taxa, scaled from 0 to> 140
taxa in intervals of 20. Broad swaths of the globe are
plotted as having 0-50 invasions, with Seebens and
Kaplan (2022) acknowledging that “the distribution
of records is highly biased toward a few well-sampled
regions such as Europe, North America, Australia,
and New Zealand.” However, simply reporting more
invasions than elsewhere does not mean that these
regions are well-sampled or well-understood, sug-
gesting that, at this time, global maps of marine inva-
sions may be better presented as the relative scale of
selective study of some non-native species, rather
than as the “number of recorded” non-native species.
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Global maps can be interpreted or used for many pur-
poses outside academia, and may have a strong influ-
ence in setting priorities in research, with funding
agenda, or in management decisions. Global maps,
if used at all, should be accompanied by strong cau-
tions about weaknesses and the scale of missing data
in order to avoid misinterpretations about the status of
bioinvasions.

Thus, the reporting of more non-native species
in some regions of the world than others should not
be interpreted to mean that better-studied areas have
addressed the lacunae identified here. While See-
bens and Kaplan (2022) correctly commented that
“distinctly higher numbers of marine alien taxa than
reported can be expected for most marine ecore-
gions,” we cannot yet state, as they do, “except for
European and North American coastal waters”—
waters that we judge to be critically undersampled for
invasions in a vast array of taxa and over deeper his-
torical time.

Without thorough and vetted assessments of the
scale of invasions in marine ecosystems over time,
our ability to look deep into marine community
ecology and evolution and into both ecological and
evolutionary biogeography is limited, as is our abil-
ity to frame robust invasion management plans. At
the beginning of the twenty-first century, science
and management may be better served by recogniz-
ing the scale of what we may be overlooking, rather
than conclude that the data are sufficient to render
strong conclusions about where invasions have or
have not been successful. This approach may more
powerfully set the stage for anticipating, if not pre-
dicting, the scale of future invasions in the world’s
oceans.
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Table 2 Habitat diversity to be considered for marine bioinvasions assessments

Habitat (Bold face italics: artificial habitat/
anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical
Regions (taxon and examples of regions or
countries invaded; many species occur in
noted habitats in many other regions)

References (for Species x Habi-
tat X Location)

Water column (marine and estuarine)

Coastal (neritic) waters

Oceanic neuston-pleuston (neopelagic)

Examples of zooplankton_(holoplankton)
(see also Bollens et al. 2002; Dexter and

Bollens 2020)
Temora turbinata (Cp, Brazil)

Acartia spinicauda (Cp, South Africa)
Eurytemora americana (Cp, Argentina)

Mnemiopsis leidyi (Ct, Caspian Sea)

Pleopis schmackeri (Cl, Brazil)

Pseudodiaptomus inopinus (Cp, NE Pacific)
Tortanus dextrilobatus (Cp, NE Pacific)
Sinocalanus doerrii (Cp, NE Pacific)
Limnoithona tetraspina (Cp, NE Pacific)

Examples of phytoplankton:

Dinophysis acuminata (D, Argentina)
Coscinodiscus wailesii (A, North Sea)
Alexandrium catenella (D, Western Aus-

tralia)

Alexandrium minutum (D, South Africa)

Trieres chinensis (Di, North Sea)

Thalassiosira punctigera (Di, North Sea)

Gymnodinium microreticulatum (D, Por-

tugal)

Examples of nekton:

Alepes djedaba (F, Sea of Marmara)
Oncorhynchus tshawytscha (F, Argentina)

Omobranchus punctatus (F, Brazil)

Lutjanus gibbus (F, Hawaii)

Oreochromis mossambicus (F, Palau)

Fistularia commersonii (F, Eastern Mediter-

ranean Sea)

Palaemon macrodactylus (De-Sh, Argen-

tina)
Morone saxatilis (F, NE Pacific)

Phyllorhiza punctata (Sc, Gulf of Mexico)
Rhopilema nomadica (Sc, Gulf of Mexico)
Aglaophenia pluma (Hy, North Pacific

Ocean)

Anthopleura sp. (An-Sa, North Pacific

Ocean)

Stenothoe gallensis (Am, North Pacific

Ocean)

Muxagata and Gloeden (1995)
Jerling (2008)

Hoffmeyer et al. (2000)
Aladin et al. (2002)

Marazzo (2002)

Bollens et al. (2002)

Bollens et al. (2002)

Cordell et al. (2008)

Cordell et al. (2008)

Fabro et al. (2018)
Reise et al. (2002)
Dias et al. (2015)

Pitcher et al. (2007)
Reise et al. (2002)
Diirselen and Rick (1999)
Amorim et al. (2001)

Artiiz and Kubang (2014)
Ciancio et al. (2005)

Soares et al. (2011)

Carlton and Eldredge (2009)
Campbell et al. (2016)
Kalogirou et al. (2007)

Vazquez et al. (2012)

Goertler et al. (2021)
Verity et al. (2011)
Giallongo et al. (2021)
Haram et al. (2021)

Haram et al. (2021)

Haram et al. (2021)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/

anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical

Regions (taxon and examples of regions or

countries invaded; many species occur in
noted habitats in many other regions)

References (for Species X Habi-
tat X Location)

Dunes, Supralittoral, and Intertidal (marine and estuarine)

Maritime sand dunes

Supralittoral (strand zone)

Maritime wharf

Rocky intertidal (exposed coast)

See also: Steneck and Carlton (2001) (New

England, USA); Wasson et al. (2005),
Zabin et al. (2018) (California, USA)

Ammophila arenaria (P, South Africa)
Carex kobomugi (P, NW Atlantic (USA))
Carpobrotus edulis (P, Spain)

Tamarix ramosissima (P, Argentina)

Anisolabis maritima (1, NE Pacific
(USA))Cafius xantholoma (1, South
Africa)

Littorophiloscia culebrae (Is, Hawaii)
Porcellio lamellatus (Is, Cuba)
Halophiloscia couchii (Is, Hawaii)
Cafius xantholoma (I, South Africa)

Telmatogeton japonicus (1, North and Baltic

Seas)

Gyrohypnus angustatus (1, Atlantic Canada)

Philonthus varians (I, Atlantic Canada)
Cakile maritima (P, Uruguay)
Spergularia media (P, Australia)
Nacerdes melanura (I, Tristan da Cunha)
Ligia exotica (Is, Uruguay)

Littorina littorea (G, NW Atlantic (USA,
Canada))

Sargassum muticum (A, NE Atlantic
(Spain)

Hemigrapsus sanguineus (De-Cr, NW
Atlantic (USA))

Carcinus maenas (De-Cr, NW Atlantic
(USA))

Petrolisthes elongatus (De-Cr, Tasmania)
Balanus glandula (Ci, Argentina)

Chthamalus proteus (Ci, Central Pacific
Ocean)

Mpytilus galloprovincialis (B, South Africa)
Codium fragile subsp. fragile (A, Norway)

Grateloupia turuturu (A, Portugal)
Pyura praeputialis (T, Chile)
Botrylloides violaceus (T, NW Atlantic)
Isognomon bicolor (B, Brazil)
Anemonia alicemartinae (T, Chile)
Watersipora spp. (Br, California)
Eleutheria dichotoma (Hy, Australia)

Istiblennius meleagris (F, Israel)

Hertling and Lubke (1999)
Charbonneau et al. (2020)
Novoa et al. (2013)

Natale et al. (2010)
Langston (1974)

Taiti and Ferrara (1986)

Jass and Klausmeier (2006)

Taiti (1999)

Stenton-Dozey and Griffiths (1983)
Brodin and Anderson (2009)

Majka et al. (2008)

Majka et al. (2008)

Alonso Paz and Bassagoda (2003)
Adams et al. (2008)

Chown and Convey (2016)
Giambiagi de Calabrese (1931)
Petraitis (1989)

Olabarria et al. (2009)
Brousseau and Goldberg (2007)
Lohrer and Whitlatch (2002)

Gregory et al. (2012)
Schwindt (2007)
Zabin and Hadfield (2002)

Erlandsson et al. (2006)

Armitage et al. (2014)

Freitas et al. (2016)

Castilla et al. (2014)

Eddy and Roman (2016)
Breves-Ramos et al. (2010)
Hiussermann and Forsterra (2001)
Zabin et al. (2018)

Fraser et al. (2006)

Rothman et al. (2020)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/
anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical
Regions (taxon and examples of regions or
countries invaded; many species occur in
noted habitats in many other regions)

References (for Species X Habi-
tat X Location)

Rocky intertidal (protected coasts and
estuaries)

Other hard-bottom intertidal (e.g. oyster
reefs, serpulid tubeworm reefs)

Soft-bottom intertidal (e.g. mudflats,
sandflats, clay-peat banks, sandy beaches,
mixed sediments)

See also: Ruesink (2018)

Sandy beaches and surf zones (exposed
coast)

Austrominius modestus (Ci, Ireland)
Littorina saxatilis (G, California)
Littorina littorea (G, NW Atlantic)
Sphaeroma quoianum (Is, Oregon)
Balanus glandula (Ci, Argentina)

Hemigrapsus takanoi (De-Cr, Wadden Sea)
Crassostrea gigas (B, Ireland)

Mptilicola orientalis (Cp, NE Pacific)
Urosalpinx cinerea (G, England)
Ocinebrellus inornatus (G, Denmark)
Ficopomatus enigmaticus (Po, Baltic Sea)
Isognomon bicolor (B, Brazil)

Musculista senhousia (B, NE Atlantic)
Charybdis helleri (De-Cr, Brazil)
Petrolisthes armatus (De-Cr, NW Atlantic)

Batillaria attramentaria (G, NE Pacific
(California))

Gracilaria vermiculophylla (A, NW Atlan-
tic (South Carolina))

Mpya arenaria (B, NE Pacific (Alaska))

Ruditapes philippinarum (B, Mediterranean
Sea (Turkey))

Gemma gemma (B, NE Pacific)
Ensis leei (B, Wadden Sea)

Carcinus maenas (De-Cr, NE Pacific (Cali-
fornia))

Sphaeroma quoianum (Is, NE Pacific)
Ampithoe valida (Am, Portugal)
Haynesina germanica (Fo, Argentina)
Corophium volutator (Am, Canada (Atlan-
tic))
Musculista senhousia (B, New Zealand)
Crassostrea gigas (B, NE Pacific)
Ficopomatus enigmaticus (Po, Argentina)
Spartina anglica (P1, NE Pacific, USA)
Attheya armata (Di, NE Pacific)
Ensis leei (B, Western Europe)

Gallagher et al. (2016)
Carlton and Cohen (1998)
Steneck and Carlton (2001)
Davidson et al. (2007)
Schwindt (2007)

Landschoff et al. (2013)
Joyce et al. (2021)

Chew et al. (1965)

Cole (1942)

Liitzen et al. (2012)

Hille et al. (2021)

Lépez et al. (2014)
Bachelet et al. (2009)
Frigotto and Serafim-Junior (2007)
Hollebone and Hay (2007)
Byers (2000)

Byers et al. (2012)

Powers et al. (2006)
Genez et al. (2015)

Carlton (1992)
Van der Heide et al. (2014)
Grosholz et al. (2000)

Davidson (2008)

Cunbha et al. (1999)
Calvo-Marcilese and Langer (2010)
Barbeau et al. (2009)

Creese et al. (1997)
Ruesink (2018)
Schwindt et al. (2001)
Hacker et al. (2001)
Lewin and Norris (1970)
Gollasch et al. (2015)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/
anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical

Regions (taxon and examples of regions or

countries invaded; many species occur in
noted habitats in many other regions)

References (for Species X Habi-
tat X Location)

Salt marshes
See also: Byers (2009)

Rocky salt marshes

Mangroves

Myosotella myosotis (G, South Africa)
Assiminea parasitologica (G, NE Pacific)
Nematostella vectensis (An-Sa, England)
Spartina alterniflora (P, SW Atlantic)
Spartina patens (P1, Spain)

Phragmites australis (P1, North America)
Diadumene lineata (An-Sa, Argentina)
Batis maritima (P1, Hawaii)

Crassostrea talonata (B, Argentina)
Spergularia marina (Pl, Australia)
Nuttallia obscurata (B, British Columbia)

Balanus glandula (Ci, Argentina)
Balanus glandula (Ci, Argentina)
Ampithoe valida (Am, Argentina)

Monocorophium insidiosum (Am, Argen-
tina)

Melita palmata (Am, Argentina)
Rhizophora racemosa (P1, Hawaii)

Laguncularia racemosa (P1, China)

Sphaeroma terebrans (Is, Tropical Western

Atlantic)
Phallusia nigra (T, Jamaica)
Xylomyces rhizophorae (Fu, Hawaii)

Kappaphycus alvarezii (A, Caribbean
(Panama))

Cardisoma crassum (De-Cr, Galapagos Is.)

Mayaheros urophthalmus (F, Florida
(USA))

Oreochromis mossambicus (F, Australia)

Beania klugei (Br, Galapagos Is.)

Herbert (2012)
Laferriere et al. (2010)
Reitzel et al. (2008)
Bortolus et al. (2015)
SanLeoén et al. (1999)
Meyerson et al. (2000)
Molina et al. (2009)
Carlton and Eldredge (2009)
Cavaleiro et al. (2019)
Saintilan (2009)

Chan and Bendell (2013)

Schwindt et al. (2009)

Sueiro et al. (2011, 2012)
Sueiro et al. (2011, 2012)
Sueiro et al. (2011, 2012)

Sueiro et al. (2011, 2012)
Carlton and Eldredge (2009)
Fazlioglu and Chen (2020)
Brooks and Bell (2005)

Goodbody (2003)

Kohlmeyer and Volkmann-Kohlmeyer
(1998)

Sellers et al. (2015)

Carlton et al. (2019)
Lawson et al. (2017)

Adame et al. (2019)
McCann et al. (2019)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/
anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical
Regions (taxon and examples of regions or
countries invaded; many species occur in
noted habitats in many other regions)

References (for Species X Habi-
tat X Location)

Coral reefs (intertidal)
See also: Eldredge (1987)

Subtidal (Sublittoral)
Fouling (intertidal and subtidal)

Charybdis helleri (De-Cr, Caribbean
region)

Eualetes tulipa (G, Singapore)
Gonodactylaceus falcatus (St, Hawaii)
Phoronis hippocrepia (Ph, Hawaii)
Lutjanus fulvus (F, Hawaii)

Cephalopholis argus (F, Hawaii)

Hypnea musciformis (A, Hawaii)
Acanthophora spicifera (A, Hawaii)
Erythropodium caribaeorum (An-C, Brazil)
Tubastraea spp. (An-C, Brazil)

Rochia nilotica (G, SW Pacific islands)

Ciona robusta (T, Chile)

Bugulina stolonifera (Br, Aegean Sea)
Bugula neritina (Br, Argentina)
Ectopleura crocea (Hy, East China Sea)
Amphibalanus amphitrite (Ci, Azores)
Jassa marmorata (Am, California)
Paracerceis sculpta (Is, Argentina)

Hydroides elegans (Po, Eastern Tropical
Pacific)

Mpytilus galloprovincialis (B, Eastern Rus-
sia)

Ophiactis savignyi (Op, South Africa)

Ficopomatus enigmaticus (Po, NE Pacific)

Diadumene lineata (An-Sa, South Wales
(UK))

Tricellaria inopinata (Br, NW France)

Caprella mutica (Am, NW Atlantic
(Canada))

Styela clava (T, British Columbia, Canada)
Botrylloides violaceus (T, Maine, USA)

Felder et al. (2010)

Tan et al. (2021)

Kinzie (1968)

Bailey-Brock and Emig (2000)
Coles et al. (2006)

Carlton and Eldredge (2009)
Coles et al. (2006)

Carlton and Eldredge (2009)
Carpinelli et al. (2020)
Miranda et al. (2016)

Bour (1990)

Figueroa et al. (2021)
Kocak (2008)

Giachetti et al. (2020)

Lin Heshan et al. (2017)
Torres et al. (2012)
Needles and Wendt (2013)
Rumbold et al. (2018)
Bastida-Zavala et al. (2016)

Zvyaginstev et al. (2011)

Peters et al. (2017)
Bastida-Zavala et al. (2017)
Holmes and Callaway (2021)

Bishop et al. (2015)
Collin and Johnson (2014)

Gartner et al. (2016)
Tyrrell and Byers (2007)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/
anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical
Regions (taxon and examples of regions or
countries invaded; many species occur in
noted habitats in many other regions)

References (for Species X Habi-
tat X Location)

Wood-borers, largely in, but not restricted
to, harbors and ports

Hard-bottom subtidal to shelf (including
rocky, to 200 m)

See also: Bumbeer and Rocha (2012, 2016)
(Brazil)

Redekea sp. (O, California, USA)
Taenioplana teredini (Pol, Hawaii)

Mirofolliculina limnoriae (Cil, South
Africa)

Caecijaera horvathi (Is, Hawaii)

Limnoria tripunctata (Is, United Kingdom)
Teredicola typica (Cp, New Zealand)
Teredo navalis (B, Japan)

Teredo bartschi (B, Turkey)

Teredo furcifera (B, Galapagos Is.)

Teredothyra dominicensis (B, E Mediter-
ranean Sea)

Lyrodus pedicellatus (B, SW Atlantic)
Bankia gouldi (B, Galapagos Is.)

Martesia striata (B, Hawaii)

Codium fragile subsp. fragile (A, NW
Atlantic)

Undaria pinnatifida (A, SW Atlantic)

Pleurobranchaea maculata (G, SW Atlan-
tic)

Pyromaia tuberculata (De-Cr, New Zea-
land)

Ascidiella aspersa (T, Argentina)

Styela clava (T, NW Atlantic)

Carijoa riisei (An-C, Tropical East Pacific)

Balanus trigonus (Ci, NW Atlantic
(Florida))

Botrylloides violaceus (T, NE Pacific)
Chromonephthea braziliensis (An-C, Brazil)
Pennaria disticha (Hy, Galapagos Is.)

Watersipora subtorquata (Br, off southern
California)

Carlton (1979)
Edmondson (1945)
Mead et al. (2011a, b)

Cooke (1977)

Jones (1963)

McKoy (1975)
Tsunoda (1979)
Borges et al. (2014)
Cruz (1996)

Shipway et al. (2014)

Balech (1972)
Cruz (1996)

Carlton and Eldredge (2009)
Harris and Jones (2005)

Irigoyen et al. (2011)
Battini et al. (2019)

McLay (2009)

Tatian et al. (2010)
Simkanin et al. (2012)
Cardenas-Calle et al. (2021)
Werner (1967)

Simkanin et al. (2012)
Ferreira et al. (2009)
Calder et al. (2021)
Goddard and Love (2010)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/
anthropogenic structures)

Examples of Bioinvasions from Brackish
to Marine Habitats, in Polar to Tropical
Regions (taxon and examples of regions or
countries invaded; many species occur in
noted habitats in many other regions)

References (for Species X Habi-
tat X Location)

Soft-bottom subtidal to shelf (mixed sedi-
ments, to 200 m)

See also: Edelist et al. (2013) (Mediter-
ranean)

Seagrasses
See also: Williams (2007)

Kelp beds

Philine auriformis (G, NE Pacific)
Rapana venosa (G, Black Sea)

Crepidula fornicata (G, west coast Great
Britain)

Callinectes sapidus (De-Cr, Turkey)
Caulerpa taxifolia (A, Mediterranean Sea)
Codium fragile subsp. fragile (A, Tunisia)
Ensis leei (B, North Sea)

Maoricolpus roseus (G, New Zealand)

Didemnum vexillum (T, NW Atlantic —
Georges Bank)

Udotea argentea (A, Hawaii)
Marenzelleria arctia (Po, Baltic Sea)

Cryptocentrus steinhardti (F, Israel)

Halophila stipulacea (P1, Mediterranean
Sea)

Zostera japonica (Pl, NE Pacific)
Sargassum muticum (A, NE Pacific)
Gonionemus vertens (Hy, France)
Mercenaria mercenaria (B, Great Britain)
Mya arenaria (B, Baltic Sea)

Didemnum vexillum (T, NW Atlantic)

Botrylloides violaceus (T, Canada (east
coast))

Streblospio benedicti (Po, NE Pacific)
Ampithoe valida (Am, NE Pacific)
Jassa slatteryi (Am, Korea)
Charybdis helleri (De-Cr, Venezuela)

Membranipora membranacea (Br, NW
Atlantic (Maine))

Hymeniacidon perlevis (Por, NE Pacific)

Mpytilus galloprovincialis (B, South Africa)

Codium fragile subsp. fragile (A, NW
Atlantic (Maine))

Sargassum horneri (A, NE Pacific (Cali-
fornia))

Ciona robusta (T, Chile)

Colpomenia peregrina (A, NE Pacific
(California))

Cadien and Ranasinghe (2003)
Shalovenkov (2017)
Bohn et al. (2015)

Daban et al. (2016)
Boudouresque et al. (1995)
Cherif et al. (2016)
Gollasch et al. (2015)
Allmon (1988)

Lengyel et al. (2009)

Bailey-Brock and Magalhaes (2010)
Maximov (2011)

Goren and Stern (2021)
Cormaci et al. (1992)

Baldwin and Lovvorn (1994)
White and Orr (2011)
Marchessaux et al. (2017)
Eno et al. (1997)

Bostrom and Bonsdorff (1997)
Carman and Grunden (2010)
Wong and Vercaemer (2012)

Posey (1988)

Posey (1988)

Jeong et al. (2006)
Bolaiios et al. (2011)
Harris and Tyrrell (2001)

Turner (2020)
Lindberg et al. (2020)
Levin et al. (2002)

Sullaway and Edwards (2020)

Almanza et al. (2012)
Devinny and Kirkwood (1974)
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Table 2 (continued)

Habitat (Bold face italics: artificial habitat/  Examples of Bioinvasions from Brackish References (for Species X Habi-
anthropogenic structures) to Marine Habitats, in Polar to Tropical tat X Location)

Regions (taxon and examples of regions or

countries invaded; many species occur in

noted habitats in many other regions)

Coral reefs (subtidal) Pterois spp. (F, Bahamas) Albins (2015)
Tubastraea spp. (An-C, Brazil) Creed et al. (2017)
Carijoa riisei (An-C, SE Pacific) Cérdenas-Calle et al. (2021)
Nemalecium lighti (Hy, Galapagos Is.) Banks et al. (2009)

Leiosolenus aristatus (B, Galapagos Is.) Reaka-Kudla et al. (1996)

Symbiodinium trenchii (D, Caribbean) Pettay et al. (2021)
Deep Sea
Deep Sea mixed bottoms (> 200 m) Paralithodes camtschaticus (De-Cr, Barents  Jgrgensen and Nilssen (2011)
Sea)

Chionoecetes opilio (De-Cr, Barents Sea) Agnalt and Jgrstad (2010)
Etrumeus golanii (F, Mediterranean Sea) Galil et al. (2020)
Champsodon nudivittis (F, E Mediterranean Galil et al. (2020)

Sea)
Nemipterus randalli (F, Mediterranean Sea) Galil et al. (2020)
Pterois spp. (F, Honduras) Gress et al. (2017)
Lutjanus kasmira (F, Hawaii) Randall (1987)

See Supplementary File S1 for References

Listed are examples (generally up to 15 species) per habitat type, but this does not mean that all habitats are comparably invaded,
nor that the same habitats are equally invaded in different areas of the world. Many species shown here occur in the same habitat
around the world, and many of the species occur in multiple locations globally (we present only examples of species X habitat X loca-
tion). Taxonomic Abbreviations: A: Alga, Am: Amphipod, An-C: Anthozoa-coral, An-Sa: Anthozoa-sea anemone, B: Bivalve, Br:
Bryozoa, Ci: Cirripedia, Cil: Ciliate, Cl: Cladocera, Cp: Copepod, Ct: Ctenophore, D: Dinoflagellate, De-Cr: Decapod-Crab, De-Sh:
Decapod-Shrimp, Di: Diatoms (Bacillariophyceae), F: Fish, Fo: Foraminifera, Fu: Fungi, G: Gastropod, Hy: Hydroid, I: Insect, Is:
Isopod, M: Mysid, O: Ostracod, Op: Ophiuroid, Ph: Phoronid, PI: Plant, Po: Polychaete, Pol: Polycladid, Por: Porifera (sponges) Py:
Pycnogonid, Sc: Scyphozoa, St: Stomatopod, T: Tunicate (ascidian). See Supplementary File S1 for References
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Table 3 Examples of non-native marine species inventories conducted largely since 2000, and whether the biogeographic status of
“native” species was re-assessed

Country or region

Reference(s)

Biogeographic status of selected
“native” species re-assessed?

Re-assigned
to non-native

Re-assigned
to cryptogenic

Cryptogenic species
mentioned from the
literature

Number of non-native
marine species reported
in reference(s) cited

status status
Northeast Atlantic Ocean
Britain Minchin et al. (2013) No No No 58
Mediterranean Sea Galil (2009), Galil No No No 573
et al. (2020),
Katsanevakis et al.
(2020)
Macaronesia (Canary Castro et al. (2022) No No Yes 144
Islands, Azores,
Madera, Cabo
Verde)
Northwest Atlantic Ocean
Canada: Atlantic Chapman et al. (2002) No No No 17
coast
United States: Atlan-  Ruiz et al. (2000) No Yes Yes 108
tic coast
Mexico: Atlantic Leon-Gonzalez etal. No No Yes 15
coast (2021)
Venezuela Pérez et al. (2007), No No Yes 22
Figueroa Lopez and
Brante (2020)
Southeast Atlantic Ocean
Angola Pestana et al. (2017)  Yes Yes No 29
South Africa Mead et al. (2011a, Yes Yes Yes 80*
b), Robinson et al.
(2016, 2020)
Southwest Atlantic Ocean
Brazil Teixeira and Creed No No Yes 138
(2020)
Argentina-Uruguay Schwindt et al. (2020) Yes Yes Yes 129
Northeast Pacific Ocean
Canada: Pacific coast Levings et al. (2002) No No No 57
United States: Pacific Ruiz et al. (2000) No Yes Yes 187
coast
Mexico: Pacific coast Ledn-Gonzéalez etal. No No Yes 73
(2021)
Hawaiian Islands Carlton and Eldredge  Yes Yes Yes 333
(2009, 2015)
Northwest Pacific Ocean
Japan Iwasaki (2006), Otani  Yes* Yes* Yes 30
(2006), Doi et al.
(2011), Lutaenko
et al. (2013)
China and South Xiong et al. (2017), No No No 90
China Sea Wang et al. (2021)
Singapore Jaafar et al. (2012), No No No 22

Wells et al. (2019)
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Table 3 (continued)

Country or region Reference(s) Biogeographic status of selected ~ Cryptogenic species ~ Number of non-native
“native” species re-assessed? mentioned from the ~ marine species reported
- - literature in reference(s) cited
Re-assigned Re-assigned
to non-native to cryptogenic
status status

Southwest Pacific Ocean
Galapagos Islands Carlton et al. (2019)  Yes Yes Yes 53

Chile Castilla et al. (2005), No* No No 26
Castilla et al. (2009)

Southeast Pacific Ocean

Australia Hewitt (2002), Hewitt Yes Yes No 132%*
et al. (2004), Wyatt
et al. (2005), Sliwa
et al. (2009)

New Zealand Cranfield et al. (1998) Yes No No 127*

See Supplementary File S1 for References

*Japan: Doi et al. (2011) (crustacea) only

*Chile: Castilla et al. (2005) suggest 7 species as non-native candidates but do not include these as introductions

*New Zealand: Hayden et al. (2009) note an additional 40 “suspected introduced marine species,” citing unpublished data
*Australia: from Table 25.2 of Sliwa et al. (2009)

*South Africa: number of species calculated from data in Robinson et al. (2016) and (2020); not 56 as in van Wilgen et al. (2022)
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Table 4 Examples of records of known or probable non-native species “hidden” in taxonomic or invasions literature

Species Known or probable native Examples of introduced loca-  References (with parenthetical
region tions citations, if such exist, of authors
who have discovered and cited
these records; parallel locations
bold-faced in columns 3 and 4)
Taxonomic Literature with “Hidden” Invasion Records
Jassa marmorata (amphipod) ~ Northwest Atlantic Ocean *Norway Beermann et al. (2020)
*Germany
*Spain
*Iceland
*Peru
*Japan
*South Korea
Jassa slatteryi (amphipod) North Pacific Ocean *Spain Beermann et al. (2020)
*North Africa
*Chile
*Peru
Mpyosotella myosotis (salt Northeast Atlantic Ocean *South Africa Martins (1996) (Herbert 2012,
marsh snail) *Bermuda South Africa)
*Peru

Invasion Literature with “Hidden” Invasion Records for Other Countries or Regions

Mpycale parishii (sponge)

Tripedalia cystophora (box
jellyfish)

Cassiopea andromeda (jel-
lyfish)

Anemonia alicemartinae (sea
anemone)

Diadumene leucolena (sea
anemone)

Diadumene paranaensis (sea
anemone)

Exaiptasia pallida (sea
anemone)

Leodora knightjonesi (spirorbid
tube worm)

Amphibalanus amphitrite
(barnacle)

Fistulobalanus pallidus (bar-
nacle)

Indo-Pacific

Tropical Western Atlantic
Ocean

Indo-West Pacific

Indo-West Pacific or Atlantic
Ocean

Northwest Atlantic Ocean

Unknown

Atlantic Ocean

Indo-Pacific
Indo-Pacific

Atlantic Ocean

** Jamaica
#* Brazil
*#* Pacific Panama

**[ndonesia
**Seychelles

**Red Sea
*Bermuda
**Florida Keys
*Chile

*Peru
*Morocco
*Canary Islands
*Senegal
*Indian Ocean
*Pacific Panama
*Mexico (Gulf of California)

*California

*California
*Mexico

*Pacific Panama
*Galapagos Islands
*Hawaiian Islands
*Australia

*Japan

*Red Sea

**West Indies

*Peru

**[ndian Ocean

Carlton and Eldredge (2009)

Carlton and Eldredge (2015)

Carlton and Eldredge (2009)

Glon et al. (2020)

Glon et al. (2020)

Glon et al. (2020)

Glon et al. (2020) (Carlton et al.
2019, Galapagos)

Carlton and Eldredge (2009)
Carlton et al. (2011)

Carlton et al. (2011)
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Table 4 (continued)

Species

Known or probable native

region

Examples of introduced loca-
tions

References (with parenthetical
citations, if such exist, of authors
who have discovered and cited
these records; parallel locations
bold-faced in columns 3 and 4)

Paralimnoria andrewsi (iso-
pod)

Anoplodactylus erectus (sea
spider)

Tanystylum rehderi (sea spider)

Haplostomides hawaiiensis
(parasitic copepod)

Dictyota flabellata (brown
alga)

Indo-Pacific

Eastern North Pacific Ocean

Indo-Pacific
Indo-Pacific—Australia

Northeast Pacific Ocean

*Florida
*Puerto Rico
*Ghana

**Korea

**Guam

*#*Mexico (Gulf of California)

**Japan
**Pakistan

Carlton and Eldredge (2009)

Carlton and Eldredge (2009)

Carlton and Eldredge (2009)
Carlton and Eldredge (2015)

Carlton and Eldredge (2015)

Taxonomic Literature with “Hidden” Invasion Records Not Identified As Such in the Cited References

Bugulina simplex (bryozoan)

Anguinella palmata (bryozoan)
Styela canopus (ascidian)

Styela plicata (ascidian)

Janua heterostropha (spirorbid
tubeworm)

Pentacoelum punctatum (flat-
worm)

Hydroides elegans (serpulid
tubeworm)

Amphibalanus improvises
(barnacle)

Mediterranean Sea

North Atlantic Ocean
Northwest Pacific Ocean

Northwest Pacific Ocean

Northeast Atlantic Ocean

Northeast Atlantic Ocean

Indo-Pacific

Northwest Atlantic Ocean

##*kPery

##%kPery

*** Ascension Id
***Mozambique
#**Persian Gulf
***England
***]taly
*#**Bermuda

***]taly

***West Indies
*#%Philippines

#*% Australia
*#**Brazil

*##*+West Indies
*##*kMexico (Pacific)
#*% Australia
*#**New Zealand
*##*Tuamotu Islands
***Rapa Nui

##%] ouisiana

*#**Ghana

#¥%FPeru

Ryland (1960) (re-identification
of B. flabellata of Osburn
1950)

Osburn (1953)
Kott (2005)

Kott (2005)

Knight-Jones and Knight-Jones
(1974), Knight-Jones et al.
(1975, 1979)

Sluys and Bush (1988)

Bastida-Zavala and Ten Hove
(2002)

Henry and McLaughlin (1975)

See Supplementary File S1 for References

“Indicated as introduced in the cited reference

**Newly hypothesized as introduced in the cited reference

“*Newly suggested here as introduced species in the cited locations
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Table 6 Recent examples of invertebrates recognized at the time of description as non-native, and therefore not native in their type

localities
New species described as: Type locality in: Current status References
Caulibugula arcasounensis Arcachon Bay, France Remains unknown elsewhere ~ De Blauwe (2005)

(bryozoan)
Imogine necopinata (flatworm)

Celtodoryx girardae (sponge)

Biflustra perambulata (bryo-
zoan)

Marivagia stellata (jellyfish)
Stragulum bicolor (soft coral)

Mawai benovici (jellyfish)

Podocoryna loyola (hydroid)
Marphysa victori (polychaete)

Arnoglossus nigrofilamentosus
(fish)

Hazeus ingressus (fish)

Lissodendoryx littoralis
(sponge)

Chondria tumulosa * (red
seaweed)

North Sea Canal, Netherlands
Gulf of Morbihan, France

Cochin Harbor, India

Israel
Brazil

Adriatic Sea

Bahia de Paranagua, Brazil

Arcachon Bay, France

Israel

Turkey

Ladysmith Harbor, British
Columbia, Canada

Pearl and Hermes Atoll,
Hawaiian Islands

Cryptocentrus steinhardti (fish) Israel
Aurelia pseudosolida (jellyfish) Adriatic Sea

Remains unknown elsewhere

Now recognized as Celtodoryx
ciocalyptoides, native to Asia

Since found in Singapore
(Tilbrook and Gordon 2016)
and in hull fouling on a
vessel from the Ivory Coast
intercepted in Spain (Cuesta
et al. 2016)

Since found in the Indian
Ocean

Remains unknown elsewhere

Since found elsewhere in the
Mediterranean as well as in
Senegal on the West Africa
coast (Bayha et al. 2017)

Remains unknown elsewhere

Now recognized as Marphysa
bulla (Liu et al. 2018) (a
junior synonym) native to
China/Japan

Remains unknown elsewhere

Remains unknown elsewhere
Remains unknown elsewhere

Remains unknown elsewhere

Remains unknown elsewhere

Remains unknown elsewhere

Sluys et al. (2005)

Perez et al. (2006), Henkel and
Janussen (2011), Gouillieux
et al. (2022)

Louis and Menon (2009), Louis
etal. (2018)

Galil et al. (2010), Galil et al.
(2013)

Van Ofwegen and Haddad
(2011)

Piraino et al. (2014), Avian et al.
(2016)

Haddad et al. (2014)
Lavesque et al. (2020)

Fricke et al. (2017)

Engin et al. (2018)
Ott et al. (2019)

Sherwood et al. (2020)

Goren and Stern (2021)
Garic and Batistic (2022)

See Supplementary File S1 for References

*Chondria tumulosa: proposed as cryptogenic by Sherwood et al. (2020) but here recognized as non-native based upon criteria 1,
4, 6, 8, and 14. This macroscopic, conspicuous alga would not have been overlooked in the Hawaiian Archipelago in over 100 years
of marine floristic exploration, even on Pearl and Hermes Atolls, where other marine bioinvasions have been present for many years
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