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We document the first occurrence of Sigmodontinae
(Mammalia, Rodentia, Cricetidae) from the Pliocene of
northern South America, from the San Gregorio Formation of
northwestern Venezuela. The recovered isolated molars are
identified as Oligoryzomys sp. and Zygodontomys sp., two
currently widespread sigmodontines in South America. These
records constitute the oldest representatives of these genera,
potentially new species, and the first Pliocene occurrence for
Oryzomyini and the whole subfamily outside Argentina.
Hypotheses on the historical biogeography of sigmodontines
have been constructed almost exclusively using genetic data
and the fossils we report provide a new kind of evidence.
The occurrence of Oligoryzomys sp. and Zygodontomys sp. in
Venezuela provides novel information for the diversification
models suggested for Oligoryzomys, by supporting a potential
eastern corridor of open environments from northern to
southern South America. The presence of sigmodontines
from the locality home of the new reports, Norte Casa
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Chiguaje, is consistent with the palaeoenvironmental conditions originally proposed for it based on
mammals and botanical records, being characterized as mixed open grassland/forest areas
surrounding permanent freshwater systems. The new sigmodontine evidence is used to discuss the
putative scenarios of the ancient evolution of the subfamily in South America, favouring a model
in which open areas (savannahs) to the east of the Andes played crucial role aiding or obstructing
Late Miocene–Pliocene sigmodontine dispersion southwards.
ing.org/journal/rsos
R.Soc.Open

Sci.10:221417
1. Introduction
South America harbours most of the living diversity of the Sigmodontinae, the richest group of cricetid
rodents. Recent accounts indicate the clade is comprised at least 95 extant genera, including those that
became extinct during historical time [1]. Most of them (except †Cordimus, †Megalomys, †Pennatomys
and Rheomys) are recorded between the Atrato River (Colombia) and the Cape Horn Islands in the
southernmost part of the continent [2–4]. Due to the great diversity in modern genera, it has been
thought that South America was the location of most of the group’s evolutionary history [5–9].
However, this is undermined by the scarcity of palaeontological evidence [1,10,11].

The oldest non-controversial evidence on fossil sigmodontines comes from central Argentina [12].
Although the age of the fossil-bearing deposits has been disputed [1,13], they seem to be from the latest
Miocene according to recent refined faunal analyses and new absolute dates [14]. The palaeontological
record of sigmodontines outside Argentina is restricted to younger deposits, typically not older
than Late Pleistocene [11,15] or controversial Middle–Late Pleistocene (e.g. Tarija basin [16–18]).
Therefore, a sharp asymmetry characterizes the Sigmodontinae fossil history, with a long and crucial
segment biased to high latitudes and little and late evidence from currently tropical and subtropical
huge regions [19–22].

In this contribution we describe the first Pliocene sigmodontines recovered in South America outside
Argentina. Paradoxically, they come from the northernmost portion of the continent, near the Caribbean
coast of western Venezuela, and are part of a rich fossil vertebrate assemblage recently documented [23]
(figure 1). Main biogeographical and systematic aspects derived from this noteworthy finding are
addressed, including testing of models advanced to explain the historical biogeography of the
subfamily [24–29].
2. Geological setting
All specimens came from the locality of Norte Casa Chiguaje locality (NCC; 11°17052.900 N, 70°1407.300 W)
of the Vergel Member, San Gregorio Formation (Fm.), Falcón State, Venezuela (figure 1). The San
Gregorio Fm. is the youngest unit of the Urumaco stratigraphic sequence [30], with an estimated
thickness of 570 m at it type section [31–33]. The San Gregorio Fm. is divided into three formal
members [31]: Vergel (lower), Cocuiza (middle), and Río Seco (upper). The Vergel Member is an
approximately 260 m-thick sequence [33] composed of interbedding mudstones, sandstones and
sparse conglomeratic beds that denote fluvial environments (e.g. braided rivers) and alluvial fans [30–
33]. The area where the Vergel Member outcrops is currently characterized by arid conditions and
badlands, offering excellent exposures of the fossil-bearing layers (figure 1c; see fig. 2a–f in Carrillo-
Briceño et al. [23]).

The NCC locality and section (figure 1b) is characterized by unconsolidated yellowish-orange to light-
brown fine sandstones with a thin (approx. 30 cm) consolidated conglomeratic layer of a light–dark
grey matrix with well-rounded to sub-rounded clasts of up to 25 mm in diameter (figure 1c; see
fig. 2a–f in Carrillo-Briceño et al. [23]). From this single locality, abundant macro and micro fossil
remains of at least 49 continental taxa of stingrays, bony fishes, amphibians, crocodiles, lizards,
snakes, aquatic and terrestrial turtles and mammals were reported [23]. The vertebrates and
palaeobotanical elements found in NCC suggest mixed open grassland/forest areas surrounding
permanent freshwater systems [23].

In reference to the antiquity of the Vergel Member, a Late Pliocene age has been proposed based on its
stratigraphical position, palynological content, and the associated mammalian assemblage [23,34–36].
It is also supported by the Early Pleistocene age of the overlying Cocuiza Member based on its
nannoplankton content and the 86Sr/88Sr dating (figs 3 and 30 in Carrillo-Briceño et al. [23]).
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Figure 1. Localization and stratigraphic record of the Norte Casa Chiguaje locality (Pliocene, Venezuela). (a) Geographical location of
the studied locality (11°17052.900 N, 70°1407.300 W). (b) Generalized section of Norte Casa Chiguaje locality of the Vergel Member,
San Gregorio Formation (based on Carrillo-Briceño et al. [23]). (c) Photograph showing a general view of the fossiliferous outcrops at
NCC (from [23, fig. 2a]).
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3. Material and methods
The cricetid sample from the NCC locality consists of eleven specimens (five complete molars, three partial
molars, one upper incisor and two lower incisors) identified in this study as belonging to three different taxa.
The results presented here apply to two of these taxa because the third taxon is still under study. Also, the
systematic status of certain specimens cannot be determined (electronic supplementary material, figure S1).
The specimens were recovered through screen-washing (conducted by J.D.C.-B.), using standard sieves with
up to 0.5 mmmesh, of a total of approximately 250 kg of conglomerates and unconsolidated fine sandstones
from the NCC locality of the Vergel Member (San Gregorio Fm.). All specimens are housed in the Colección
Paleontológica de laAlcaldía BolivarianadeUrumaco, Falcón State, Venezuela.Dental nomenclature follows
Reig [37] and Barbière et al. [38] when possible (see electronic supplementarymaterial, figure S2). Taxonomic
identifications were achieved via comparison with recent reference specimens (electronic supplementary
material, S1) and literature [39–44]. Measurements are in millimetres and correspond to maximum length
and width; photographs illustrating studied specimens were obtained employing a scanning electronic
microscope (JEOL JSM-6010) in the University of Zurich.
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Figure 2. SEM photographs of the sigmodontine molars collected at the Norte Casa Chiguaje locality (Venezuela). (a–e)
Zygodontomys sp. (a,b) Anterior portion of a left M1 (AMU-CURS-854); (c,d) right m2 (AMU-CURS-1208); (e) right m2 (AMU-
CURS-853). ( f–j) Oligoryzomys sp. ( f,g) Lingual portion of a left M1 (AMU-CURS-1209); (h–j) left M2 (AMU-CURS-856). Views:
labial (b,d,i) lingual ( f ), occlusal (a,c,e,g,j) and posterior (h). Scale bar represents 0.5 mm.
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Institutional abbreviations: AMNH, American Museum of Natural History, New York, USA; AMU-
CURS, Colección Paleontológica de la Alcaldía Bolivariana de Urumaco, Falcón State, Venezuela; CNP,
Colección de Mamíferos del Centro Nacional Patagónico, Puerto Madryn, Argentina; FMNH, Field
Museum of Natural History, Chicago, USA; LACM, Los Angeles County Museum of Natural History,
Los Angeles, USA; MACN, Colección Nacional de Mastozoología, Museo Argentino de Ciencias
Naturales ‘Bernardino Rivadavia’, Buenos Aires, Argentina; MVZ, Museum of Vertebrate Zoology,
Berkeley, USA; ZFMK MAM, Collection of Mammalogy of the Zoological Research Museum
Alexander Koenig, Bonn, Germany.

Anatomical abbreviations: M1, M2, M3, m1, m2, m3, upper (M) and lower (m) first, second, and third
molars, respectively.
4. Systematic palaeontology
4.1. Zygodontomys sp.

Mammalia Linnaeus, 1758
Rodentia Bowdich, 1821
Cricetidae Fischer, 1817
Sigmodontinae Wagner, 1843
Oryzomyini Vorontsov, 1959
Genus Zygodontomys Coues, 1874
Zygodontomys sp.
Figure 2a–e. Material. AMU-CURS-853: right m2; AMU-CURS-854: anterior portion of left M1;

AMU-CURS-1208: right m2. Measurements are provided in table 1.



Table 1. Measurements (in mm) of the molars recorded at Norte Casa Chiguaje (Pliocene, Venezuela).

taxa specimen length width

Oligoryzomys sp. AMU-CURS-856 (M2) 1.26 1.05

Zygodontomys sp. AMU-CURS-853 (m2) 1.00 1.30

Zygodontomys sp. AMU-CURS-1208 (m2) 0.85 1.00
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4.1.1. Description

AMU-CURS-854 is restricted to the procingulum plus the anterior faces of the protocone and paracone, and
belongs to an apparently old individual based on the observed wear (figure 2a,b). The procingulum is
relatively wide, with a connection to the protocone placed centro-lingualy to the medial axis. The
protoflexus is shorter than the paraflexus, the latter being slightly curved as it rounds the anterolingual base
of the paracone. The two m2s (AMU-CURS-853 and 1208) are complete, showing alternating cusps and a
two-rooted condition (figure 2c–e). The labial cusps are larger than the lingual cusps. A small anterolabial
cingulum is visible, separated from the protoconid by a small protoflexid. All flexids do not overlap each
other at the midline axis. The entoflexid penetrates anteriorly at the level of the protoconid. In AMU-CURS-
853, there is a small mesostylid and a small ectostylid (figure 2e). The hypoflexid is wider than the other
flexids. A posteroflexid is present but relatively small, probably due to thewell-developed posterior cingulum.

4.1.2. Comparison

Them2s show a simple occlusal pattern lacking mesolophids or additional accessory structures; the broken
M1 also suggests an animal with simplified dentition because at least the anteroloph is absent. In addition,
the molars are moderately hypsodont. The combination of both traits, occlusal simplification and
hypsodonty, sets apart the NCC locality specimens from many sigmodontine clades (e.g. most of the
members of Abrotrichini, Akodontini, Oryzomyini, Thomasomyini) characterized by complex (i.e.
pentalophodont or tetralophodont pattern according to Hershkovitz [5]) and brachydont molars.

Among oryzomyines currently inhabiting northern Venezuela, a reduced posteroflexid in m2 is
observable in Zygodontomys, a genus that combines a simplified occlusal pattern and hypsodonty
(figure 3d,e). Voss [40, p. 20] specified that the condition of Zygodontomys is ‘anterocone(id) of M1/m1
undivided; …; mesolophs and mesolophids entirely absent’. All species of Zygodontomys show a
connection between the procingulum and the protocone that is situated centrally in young and adult
specimens [40]. However, this connection is slightly shifted lingually in older specimens. Table 2 lists
selected traits comparing studied fossils and Zygodontomys species. Observed similarities are enough
to support generic assignment, although one main difference is related to the number of roots (two
roots versus three in the extant species, see below).

4.2. Oligoryzomys sp.
Genus Oligoryzomys Bangs, 1900
Oligoryzomys sp.
Figure 2f–j. Material. AMU-CURS-1209: lingual portion of left M1; AMU-CURS-856: left M2.

Measurements are provided in table 1.

4.2.1. Description

AMU-CURS-1209 is identified a partial M1; although restricted to the lingual side of the tooth, several
preserved occlusal features are enough to confirm its anatomical position and advance a taxonomical
hypothesis (figure 2f,g). Its anterior part indicates the presence of a procingulum. The protocone shows
an anterior arm going antero-labialy to the procingulum, but its lingual side likely implies a connection
with the lingual conule. Posteriorly, the protocone connects with the paracone in the posterior portion
of its maximum dentine exposure and directly with the hypocone, via both the anterior arm of the
hypocone and the hypo-anterolophule, respectively. The protoflexus is slightly curved posteriorly,
whereas the hypoflexus is wide and straight. AMU-CURS-856, a left M2 (figure 2h–j), has the main
cusp pairs (paracone–protocone and metacone–hypocone) opposing and shows a crested occlusal
surface [5,45]. The tooth is sub-oval in outline and the light occlusal wear suggests a subadult



(a) (b) (c) (d)

(e)

Figure 3. Occlusal view of left first and second upper, and right second lower molars of extant representative of Oligoryzomys and
Zygodontomys used for comparison. (a) Oligoryzomys fulvescens, AMNH 181446 (left M1 and M2; from Weksler [41]). (b) O. flavescens,
CNP 5536 (left M1 and M2). (c) O. nigripes, CNP 5611 (left M1 and M2). (d ) Zygodontomys brunneus, FMNH 71258 (right m2; from
Voss [40]). (e) Z. brevicauda, AMNH 173971 (right m2; from Voss [40]). All scaled to the same size.

Table 2. Comparison of selected dental traits among Zygodontomys sp. from Norte Casa Chiguaje locality (Pliocene, Venezuela),
Zygodontomys brevicauda, and Z. brunneus.

character Zygodontomys sp. Z. brevicauda Z. brunneus

procingulum wide wide wide, almost as large

as M1

anterior platform absent present absent

dentine in procingulum rounded (reduced labio-

lingualy)

labio-lingualy compressed labio-lingualy

compressed

connection between

procingulum and protocone

inclined straight inclined

protoflexus small and continuous small, anterior shift small, anterior shift

paraflexus separates protocone and

paracone

smaller, protocone and

paracone well in contact

separates protocone

and paracone

number of roots on m2 2 3 3

mesostylid small small absent

connection between

protoconid and entoconid

not aligned with the

protoconid

not aligned with the

protoconid

aligned with the

protoconid

hypoconid–entoconid

alternation

alternate opposite slightly alternate

hypoflexid wide and slightly curved

posteriorly

curved posteriorly curved posteriorly
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individual. A thin anteroloph (anterior cingulum) is present as an enamel ridge and closes the paraflexus
labially. The protocone connects anteriorly to the anteroloph by its anterior arm, in the posterior portion of
its maximum dentine exposure to the anterior arm of the paracone, and posteriorly, with the hypo-
anterolophule. The hypocone has a long and oblique anterior arm—showing no dentine exposure—
which divides into a short hypo-anterolophule and longer hypo-mesolophule that connects with the
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projection from a mesostyle (forming a long mesoloph complex), closing off the mesoflexus. A small
cuspule also closes off the metaflexus labially. The metacone is connected to the hypocone through the
hypo-endolophule and the meta-anterolophule. The anterior arm of the metacone is oriented towards
the middle of the maximum dentine exposure. Posteriorly, the hypocone connects with a posterior
cingulum through its posterior arm. The weak development of this small posteroloph complex explains
such a general outline. Labial and lingual flexi do not overlap each other at the midline. Both the
hypoflexus and the mesoflexus are oriented transversely to the antero-posterior axis, whereas the para-
and metaflexus are curved posteriorly but never round their respective cusps. The posteroflexus
remains enclosed labially, and appears rounded. No information on the roots could be determined.
/journal/rsos
R.Soc.Open

Sci.10:221417
4.2.2. Comparison

Both the complexity and crown height of the specimens indicate affinities to sigmodontine taxa with
brachydont and complex molars (i.e. members of Oryzomyini, Rhagomyini, Thomasomyini,
Wiedomyini and few Sigmodontinae incertae sedis). The connection of the paracone to the anterior
part of the protocone is not recorded in Rhagomyini, Thomasomyini, Wiedomyini, and Delomys but it
is present in several Oryzomyini. Within the latter, the combination of direct connections of the
paracone and metacone to the maximum dentine exposures of the protocone and hypocone,
respectively, is restricted to Oligoryzomys (figure 3a–c). Therefore, the material of NCC locality can be
confidently referred to this widespread oryzomyine genus.

Table 3 lists the differences among several extant species of Oligoryzomys and the material of NCC
locality (see also electronic supplementary material, figure S3). The resemblance of several dental traits
of the NCC fossil molars to those of Oligoryzomys fulvescens, a widespread species in northern South
America and Central America [46,47], is remarkable. Oligoryzomys victus, a Caribbean species that
went extinct during historical times [48], can be separated from the NCC fossils by having an
incomplete mesoflexus, not being crossed by a para-mesolophule (isolating an enamel atoll in O. victus).
5. Discussion
5.1. Taxonomy of the sigmodontines from Norte Casa Chiguaje
Our study of fossilOligoryzomys shows that specimens display amosaic of characters seen in several extant
species (figure 3), likely indicating they represent a new species. However, a rigorous taxonomic
hypothesis cannot be advanced without examining extensive samples of well-defined species of
Oligoryzomys from northern South America. Recent systematic revisions in the widespread rodent
Oligoryzomys have been conducted mostly based on molecular evidence (see [49] and references
therein). Although 22 extant species are recognized as valid [3,50–52], at least 33 independent lineages
are considered as integrating the genus according to molecular-based phylogenies [53–55]. Most of the
recent revisionary efforts focused on Oligoryzomys lack any attempt to provide differences based on
molar morphology, even for those species regarded as new. An example is the contribution by Hurtado
& D’Elía [56, table 1], which presented morphological comparisons among Oligoryzomys destructor
destructor, O. d. spodiurus, O. andinus and O. flavescens. Although this significant study surveyed 30
features, including general body, external, and craniodental traits, not a single aspect of molar
morphology was included. A similar set of characters, excluding any from dentition, were used when
Oligoryzomys pachecoi was described and compared against O. destructor, O. chaparensis and O. f.
occidentalis [43], or when Oligoryzomys guille was named and separated from O. andinus [52]. Thus,
no molar information is available from these studies that would aid in the distinction of these species
of Oligoryzomys. Contrastingly, Palma & Rodriguez-Serrano [51, fig. 8] used dental morphology when
describing Oligoryzomys yatesi, as Massoia [57] previously did in his refinement of the several
Argentinean species. Given the lack of information about molar variation in most of the alpha-
taxonomy of Oligoryzomys, fossils can hardly be classified at specific level.

Hurtado & D’Elía [49] advanced a hypothesis on the biogeography of Oligoryzomys. They estimated
that the genus first appeared in northern and southern Amazonia, as well as Chaco and the tropical
Andes ecoregions, and then spread out to all South and Central American ecoregions. Oligoryzomys is
considered to have reached the Pacific ecoregion during the Pleistocene (ca 1.5 Ma). By contrast, the
Venezuelan fossil record firmly indicates that this area was already occupied by a member of
the genus by at least the Late Pliocene (around 3.6–2.6 Ma; figure 4). Nonetheless, and taking out the
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Figure 4. Current geographical distribution of the rodent genus Zygodontomys and fossil record attributed to Oligoryzomys and
Zygodontomys: Pliocene record from Casa Norte Chiguaje locality (NCC), and other Quaternary fossil recording localities,
including Aruba (1), Cariacou and Grenada (2), Saint Vincent (3), Orocual (4), Trinidad (5), Toca da Boa Vista and Lapa dos
Brejões (6), Gruta do Urso (7), Igrejinha (8), Carneiro (9), Lagoa Santa (10), Nossa Senhora Aparecida cave (11), Risso cave
(12), Abismo Iguatemi (13), Pilger (14), Sangão (15), Deobaldino Marques (16), Garivaldino (17), La Angostura (18), La Mesada
(19), Ruinas Jesuíticas de Lules (20), Cueva Traful 1 (21), Ramallo (22), Cueva del Milodon (23), and Tres Arroyos (24).
Constructed from several sources mentioned in the main text.
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temporality of the events probably due to the lack of calibration (N. Hurtado 2022, personal
communication to U.F.J.P.), their phylogeny is in accordance with our morphological comparison.
Indeed O. delicatus and O. fulvescens share a common ancestor with four other taxa, which correspond
to the arrival of the genus to the Pacific ecoregion (fig. 3 in [49]). This fact leads us to propose the
NCC taxa as putative calibration to the node 6 of Hurtado & D’Elía [49].
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In reference to Zygodontomys, it is composed in its current understanding by two extant species:
Z. brunneus and Z. brevicauda, the latter including several subspecies [4,58] ranked as full species in some
works (e.g. Z. cherriei [59]). Studies carried out during the last three decades are clearly suggesting that
this binary specific taxonomy is unrealistic [58,60–62]. Karyological data revealed different cytotypes allied
to Z. brevicauda [60] while mitochondrial DNA sequences agreed in indicating that the latter is a complex
of species [61]. An undescribed new species has been also proposed for an island population along the
Pacific coast of Panama, including a complex history for the remainder populations from nearby islands
and mainland [59]. A much-needed revision of the entire genus is pending and this situation creates an
uncertain alpha-taxonomy scenario to anchor palaeontological findings. At least 10 nominal forms are
today subsumed under Z. brevicauda [58]. Prima facie, the new Venezuelan fossils may represent a new
species of the genus, being characterized by greater hypsodonty, more alternate cusp alignment, more
planate occlusal surface, and two-rooted condition (figure 3). It is noteworthy that both m2s are two-
rooted contrasting with the widespread three-rooted condition in living and Holocene examples of
Zygodontomys. However, variability in the number of roots is not uncommon in genera with a tendency
towards increased hypsodonty (see the discussion about this topic regarding Sigmodon in Martin [63]).
Alternatively, all these traits could be suggesting that the Venezuelan fossil belongs to a new genus.
However, based on the scarcity of the available material we prefer the most parsimonious hypothesis
(i.e. to refer it to Zygodontomys) which also has the least impact at biological and nomenclatorial level.

Bonvicino et al. [61] estimated the age of divergence among members of the Z. brevicauda clade at 1.9 Ma.
Considering that Zygodontomys from NCC shows a mosaic of characters shared by Z. brunneus and
Z. brevicauda, then a putative decrease of diversity within the genus can be surmised. Wing [64, p. 71]
stated ‘Although a species of Zygodontomys now exists on Trinidad it is not the same species as the fossil
form’. Based on karyological and morphological evidence [40,58,61], Trinidadian recent populations
belong to Z. brevicauda; therefore, if Late Pleistocene fossils belong to another species, at least one extinction
event and replacement must have occurred. The same is apparently true for the island of Aruba where
Zygodontomys is recorded in the fossil record, but it is not a part of the extant rodent assemblage [58,65].
Alternatively, this supposed loss of diversity may only be due to the lack of an updated taxonomic revision.

5.2. Oligoryzomys and Zygodontomys: palaeoenvironmental significance
Geographically close to NCC, Oligoryzomys has been recorded in Holocene deposits in Granada and Saint
Vincent (O. victus [48,66]). Additional records are far south of the Equator and not older than Middle to
Late Pleistocene (figure 4). The oldest remains come from Middle–Late Pleistocene localities in Argentina
and are referred to Oligoryzomys cf. O. flavescens [67] and Oligoryzomys sp. [68]. Several additional Late
Pleistocene occurrences are also known from Argentina (La Angostura and La Mesada localities; O.
brendae and O. cf. O. occidentalis [69]), Brazil (Gruta do Urso, Toca da Boa Vista and Lapa dos Brejões;
O. cf. O. mattogrossae, O. sp. [70,71]), and Paraguay (Risso cave; O. sp. [72]). Holocene localities also
yielded Oligoryzomys remains from Argentina (La Mesada, Ruinas Jesuíticas de San José de Lules, La
Angostura and Cueva Traful 1; O. brendae, O. longicaudatus, O. cf. O. flavescens, O. cf. O. occidentalis, O.
sp. [68,69,73]), Brazil (Lagoa Santa, Gruta do Urso, Pilger, Sangão, Deobaldino Marques and
Garivaldino; O. flavescens, O. nigripes, O. mattogrossae, O. sp., O. cf. O. mattogrossae [19,21,71,74–78]),
and Chile (Cueva del Milodón, Tres Arroyos 1; O. longicaudatus, O. sp. [11,79,80]). Lastly, regarding
localities with an indeterminate Quaternary age in Brazil, O. cf. O. mattogrossae, O. sp., and cf.
Oligoryzomys have been reported from Igrejinha and Carneiro, Abismo Iguatemi and Nossa Senhora
Aparecida cave, respectively [22,81,82]. The Venezuelan finding described here constitutes the oldest
record for the genus and probably represents a new species based on its mosaic of dental characters.

Species of Oligoryzomys are currently present from southern North America to southernmost South
America, from sea level to around 3500 m in altitude, and are characteristic of very diverse habitats
[50]. They occur in lowland and montane forest (Atlantic Forest, lowland Amazonian rainforest and
Andean cloud forest), open vegetation such as grassland and shrublands (Cerrados, Pampas, Llanos,
Pantanal, Chaco), but also in drier and desertic environments including steppes and tablelands
(Patagonia, Caatinga, Peruvian Pacific Coast). For that reason, any attempt of palaeoenvironmental
signal based solely on Oligoryzomys is pointless. However, the reconstruction as made by Carrillo-
Briceño et al. [23] is not undermined by the record of Oligoryzomys because the palaeoenvironment of
NCC has been interpreted to be a mixed forest–grassland based on the fossil assemblage, which
includes two niches that the genus inhabits today.

In reference to Zygodontomys, to date, only four localities yielded fossil remains of the genus
(figure 4). Wing [64] recorded Zygodontomys from the Late Pleistocene of Trinidad (assigned to
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Z. brevicauda in a posterior revision [83]), and the same was made for cave deposits in the Caribbean
island of Aruba [65]. Also regarded as Late Pleistocene, Z. brevicauda was recovered from El Breal de
Orocual (ORS20), a Venezuelan palaeontological asphaltic locality [84]. A Late Holocene sigmodontine
assemblage containing numerous Z. brevicauda from the islands of Carriacou and Granada have been
described [44]. Our perception is that these Antillean findings do not represent Z. brevicauda. Dental
differences (e.g. median murid anteroposteriorly oriented and well-defined posterior cusps on m2) are
visible between illustrated materials (see figs 7 and 8 in [44]) and typical Z. brevicauda specimens, but
the generic assignment is clearly supported (see also the discussion on p. 18 in Mistretta et al. [44]).

Currently, Z. brevicauda is distributed from southeastern Costa Rica throughout Panama to Colombia,
Venezuela, the Guyanas and northern Brazil while Z. brunneus inhabits the intermountain valleys
of Colombia [40,58]. The genus is also recorded, with populations attributed to Z. brevicauda or
Zygodontomys sp., in the Lesser Antilles [85]. The fossil occurrence of Zygodontomys sp. at NCC sharing
traits of both extant species (table 2) likely indicates a more diverse generic past history. As suggested by
Carrillo-Briceño et al. [23], the Plio-Pleistocene is marked in this area by the establishment of the present
climatic condition, that is, one characterized by reduced precipitation and an open vegetation environment
[86–89]. This could have been the major factor driving the regional diversification of Zygodontomys [61].

Zygodontomys is a typical faunistic element characterizing natural or anthropogenic unforested lowland
territories (below 1300m [40]; figure 4). This ground-dwelling tropical sigmodontine is found abundantly in
a variety of terrestrial habitats including grasslands, savannah, clearings, marshy areas, secondarily
shrubby areas as well as agricultural fields [90,91]. The occurrence of Zygodontomys at NCC can be
interpreted as reflecting unforested environments with a dense ground cover. Based on the entire fauna
recorded from NCC locality, a mixed forested–grassland area surrounding permanent rivers have been
inferred [23]. The specimens described here support this environmental reconstruction, and the slightly
more hypsodont species of Zygodontomys probably mirrored unforested landscapes.

The extant sigmodontine fauna of the Urumaco region is diverse, with a dozen recognized species,
mostly oryzomyine [92–97]. They can be divided between their respective habitats, from open
(Calomys hummelincki, Holochilus venezuelae, Sigmodon alstoni, S. hirsutus, Zygodontomys brevicauda) to
more closed areas (Neacomys tenuipes, Oecomys flavicans, O. speciosus, O. trinitatis, Rhipidomys
venezuelae). A few are recorded from both open and forested environments (Necromys urichi,
Oligoryzomys delicatus). The Pliocene evidence at NCC, with representatives of open and mixed areas,
favours the hypothesis of a mixed forested–grassland area [23]. The lack of sigmodontine taxa
exclusively representing closed areas might be only due to taphonomic bias, since other forms
characterizing a forested environment (e.g. Didelphis, Marisela, Proeremotherium) have been collected [23].

5.3. Venezuelan fossil sigmodontines improve historical biogeography inferences
The Pliocene Venezuelan record of both Oligoryzomys and Zygodontomys poses challenging questions
related to the much discussed historical biogeography of the Sigmodontinae. Whereas the more recent
fossil record of this clade is well understood in its diversity and relationships with extant forms, its
earlier history has been and continues to be a matter of controversy, mostly dealing with the origin
and ancient history of the group [1].

It is now safe to state that sigmodontines—or their ancestors—entered South America prior to the
complete formation of the Panamanian Isthmus [29,98–101]. Despite the paucity of the ancient fossil record
and doubts raised about the antiquity of the materials recovered in South America [13,102–104], refined
faunal analyses and absolute dates are solid, pointing to a Late Miocene age (around 5.7–6.1 Ma) for the
oldest known sigmodontines [14]. Estimates of divergence times as well as the ancestral range
reconstruction based on molecular clocks propose a basal split for this group much earlier, at least during
the Early Middle Miocene in North or Central America [27–29,105–109]. In the most recent analysis at the
genomic scale (about 3000 loci and 60 taxa), the crown age of Sigmodontinae falls at the end of the Middle
Miocene (11.63 Ma [110]). There is a gap as large as 6 Myr between fossils and predictions based on genetic
data and much of this ghost history is spatially associated with northern South America.

Recording living genera is crucial for exploring the evolutionary history of the sigmodontine rodents.
Venezuelan fossils described here indicate that Oligoryzomys and Zygodontomys can be traced at least to
the Pliocene. Only few extant genera are previously known from the Pliocene (i.e. Akodon, Graomys and
Reithrodon [1,11]), with the communities of this epoch being mostly composed by extinct taxa (e.g.
†Cholomys, †Chukimys, †Dankomys [1,111–113]). The above facts have several implications, one of them
being the capacity of these fossils to illuminate how the mode of the evolutionary history of the
sigmodontines occurred. Since genetic studies are restricted to living taxa, information about the real
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structure of the radiation is not solely biased to younger events but also any possibility to evaluate the
impact of extinction of taxa (from genera to tribes) is mostly excluded (but see [114] for a different
approach to the history of didelphid marsupials based exclusively on molecular data [115]). The
Oryzomyini is the largest tribe of sigmodontine rodents that, based on morphology [5,45] and
phylogenomics, is considered a basal group and the hypothesized sister clade to all other Oryzomyalia
(a clade composed of at least 11 tribes plus a few incertae sedis genera [110]). The NCC record of these
Oryzomyini indicates the tribe has been present in northernmost South America since the Pliocene.

One important aspect to a refreshed understanding of sigmodontine evolutionary history is to provide a
better chronological control. In this sense, several clues predating the first evidence presented in this paper
suggest that the entire sigmodontine radiation is younger than previously believed. This hypothesis was
first advanced by Barbière et al. [112, p. 381], based on the oldest Argentinean fossil record. The
phylogenomic analyses conducted by Parada et al. [110] retrieved results pointing in the same direction.
At least for the origin of the Oryzomyalia, the gap between fossil record and molecular-based
estimations is shortening. Faunal analyses and absolute dates [14] place the oldest oryzomyalids at about
6 Ma in central Argentina while the estimated crown age for the group is 7.36 Ma [110]. If the entire
radiation of this clade, which shows a living diversity of at least 11 tribes (with the recent recognition of
Rhagomyini [116]), took place in 7 Myr, several aspects must be highlighted. One aspect regarding tribal
repartition is the possibility of tracing provincialism (i.e. more or less the current pattern of occupancy)
to the Pliocene. Zygodontomys is the only genus of nonforest mammals endemic to eastern Central
America and northern South America [40]. The available data are scarce but there is a rough congruence
between Pliocene and Recent areas of occurrence for sigmodontine taxa.

If the contemporary radiation of the sigmodontines began during the Pliocene, the evolution of the
entire subfamily (including not only oryzomyalids, but also Ichthyomyini and Sigmodontini) is rooted
deeper in time [117]. The entrance of the Sigmodontinae, or its ancestors, to South America is difficult to
envision without a clear understanding of palaeogeography. Several hypotheses have been proposed,
such as the establishment of a connection pre-Great American Biotic Interchange or a maritime dispersal
via the Caribbean Sea and the Antilles arch (see the discussion in Ronez et al. [1]). Although evidences
are still weak to test alternative scenarios, the dispersal hypothesis through the Antilles corridor seems
favoured by the Venezuelan fossil record. The northernmost portion of South America east to the Andes
may have received cricetids because of its neighbouring position to the Antillean arch. More important,
this part of the continent was marginal to the complex system of aquatic barriers called Pebas ([118–126]
and references therein). The potential impact of the latter in the ancient history of these rodents still has
not addressed in detail. However, there is a significant point that deserves to be highlighted here.
Although the initial diversification of sigmodontines is viewed as a ‘burst of speciation’, an explosive
and very rapid radiation [27,28,110], this picture is not totally accurate. Since the first reconstructions
with moderate taxonomic coverage [105], a period of stasis was detected involving the basal portion of
sigmodontine tree. During this stage, about 5 Myr long [110], just the 3 main branches composing the
living expression of the subfamily (i.e. Ichthyomyini, Oryzomyalia and Sigmodontini [116]) are present.
Then, around 7–6 Ma, the ‘explosive’ radiation of the oryzomyalids occurred. The most parsimonious
way to explain this two-step structure is to suppose that the initial wave of colonization was ‘contained’
by a main geographical barrier. The Pebas system, almost isolating northern South America ([127] and
references therein), could have played the role of such a barrier.

After the initial establishment of the sigmodontines on the continent, several drivers have been
proposed as important in promoting the diversification of these rodents [128]. One of the first models to
be advanced on this issue was that of Marshall [25] where open areas (savannahs) developed to the east
of the Andes and played a crucial role aiding or obstructing Late Miocene–Pliocene sigmodontine
dispersion southwards. According to this hypothesis, savannah/grassland landscapes allowed the
interchange between north and central/south portions of the continent favouring the progressive
dispersion of pastoral cricetids (sensu Hershkovitz [5]). The extensive territories exposed after the
regression of the Paranean Sea, during the still poorly known ‘Age of the Southern Plains’ [129], perhaps
acted as a ‘pump of speciation’ of sigmodontines. At least in central Argentina, the rising of C4 plants is
framed within this time-window (11 to 3 Ma), characterized by a gradual decrease in temperature and
the spread of grasslands [130]. Marshall’s model does not conflict with an arrival from the Antilles and a
first stage of isolation on the Guyana shield and northern neighbouring areas. Nevertheless, even when
our understanding of Andean and Amazonian Neogene palaeogeography dramatically increased
during the last four decades ([127] and references therein), there have been few additions to our
knowledge of the sigmodontine fossil record. One promising finding is the sigmodontine †Cordimus, a
genus with three species described from Quaternary deposits in the Caribbean islands of Curaçao &



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221417
13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 A

ug
us

t 2
02

3 
Bonaire [131]. Although one of the species, †Cordimus hooijeri, restricted to the Late Holocene in Bonaire
seems unrelated to the other two (resembling more probably Oligoryzomys), at least the type species of
the genus deserves closer attention. It is †Cordimus debuisonjei, collected in Curaçao, from sediments
supposedly bracketed between 2.3 and 1.3 Ma [131]. This form, characterized by brachydont complex
molars resembling oryzomyines in occlusal morphology, shows several unusual traits among
sigmodontines, including the single condition (i.e. being constituted by only one conulid [38]) on the
procingulum of the m1 associated with the absence of mesolophid on this same molar (fig. 2d in [131]).
The phylogenetic affinities of †Cordimus are unknown as well as its tribal affiliation, although it was
compared to †Copemys and several North American fossil Miocene muroids [131]. Maybe †Cordimus
could be an important piece of information to support a Caribbean dispersion to South America. Several
attempts to perform a direct study of these important fossils failed. Palaeontological collections in the
Naturalis Biodiversity Center in Leiden (The Netherlands), where †Cordimus was housed, were in
relocation (N. Den Ouden 2018, 2019 and 2020, personal communication to U.F.J.P.), and then the
materials were lost (L. Van Den Hoek Ostende 2020 and 2021, personal communication to U.F.J.P.).

The current distribution of the 13 tribes recognized for the Sigmodontinae clearly points to a complex
history where forested or unforested areas, mountain chains, and main river systems played a major role
[3]. Although hypothesized ancestral range reconstructions for the ancestors of the main tribes of
sigmodontines, from those originally proposed by Reig [6,132] to recent estimations based on molecular
data [108] retrieve areas spatially linked to the Andes, there is a growing perception that eastern South
America was crucial in the evolution of these rodents. A refined scenario is emerging regarding
both Caribbean tectonics [133–135] and Amazonian Neogene evolution [136,137], and this constitutes an
opportunity to put in context and rework previous hypotheses regarding historical biogeography.
Although treated as Oryzomyini after the influential revision made by Voss [40], Zygodontomys was
traditionally viewed as a form with controversial phylogenetic affinities [5]. We hypothesize that
Zygodontomys is the single survivor of an unrecognized tribe with ancient roots in northern South
America [49]. This enhances the results of Weksler [41, p. 75]: ‘the recovery of this clade and its position
at a basal branch within oryzomyines were unexpected. Scolomys and Zygodontomys are two of the most
distinctive clades of oryzomyines, and they are ecologically and morphologically dissimilar from one
another’. It has also been concluded by Percequillo et al. [138] that both genera may have differentiated
from Oryzomyini during the Late Miocene. Finally, the Venezuelan Pliocene occurrence of Zygodontomys
gives strong temporal support to a unique unsuspected radiation among sigmodontines [139].
6. Conclusion
The Late Pliocene Norte Casa Chiguaje locality yielded many fossils representing a diverse assemblage
including sigmodontine rodents, the most speciose subfamily of Neotropical mammals. Two oryzomyine
genera, Oligoryzomys sp. and Zygodontomys sp., are recognized from the locality, which represent the
first Pliocene record of sigmodontines outside Argentina. From a palaeoenvironmental point of view,
the presence of both genera reinforces the occurrence of mixed forested–grassland areas advanced
by the entire fauna as described by Carrillo-Briceño et al. [23]. Biogeographically, the occurrence of
fossil sigmodontines in northern Venezuela supports the possibility of a dispersal of their ancestors
through the Antilles corridor, as well as the importance of open areas/savannahs to their evolution.
More fossils are needed from this portion of the continent to reinforce or correct the hypotheses about
the time and diversification of the sigmodontine rodents which are today almost exclusively based on
molecular phylogenies [108–110,138,140]. The positive results obtained by screen-washing sediments
from NCC are eloquent and indicate there is much more to be learned from this neglected record.
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