SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2008; 38:523-556
Published online 21 August 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.847

A survey on approaches to RI
gridification

Cristian Mateos'-2, Alejandro Zunino'>* T and
Marcelo Campo>2

LISISTAN Research Institute, UNICEN, Campus Universitario, Tandil (B7001BBO),
Buenos Aires, Argentina
2Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina

SUMMARY

The Grid shows itself as a globally distributed computing environment, in which hardware and software
resources are virtualized to transparently provide applications with vast capabilities. Just like the electrical
power grid, the Grid aims at offering a powerful yet easy-to-use computing infrastructure to which
applications can be easily ‘plugged’ and efficiently executed. Unfortunately, it is still very difficult to
Grid-enable applications, since current tools force users to take into account many details when adapting
applications to run on the Grid. In this paper, we survey some of the recent efforts in providing tools for
easy gridification of applications and propose several taxonomies to identify approaches followed in the
materialization of such tools. We conclude this paper by describing common features among the proposed
approaches, and by pointing out open issues and future directions in the research and development of
gridification methods. Copyright © 2007 John Wiley & Sons, Ltd.

Received 26 March 2007; Revised 29 June 2007; Accepted 4 July 2007

KEY WORDS: grid computing; grid development; gridification tools

1. INTRODUCTION

The term ‘Grid Computing’ came into daily usage about 10 years ago to describe a form of
distributed computing in which hardware and software resources from dispersed sites are virtualized
to provide applications with a single and powerful computing infrastructure [1]. This infrastructure,
known as the Grid* [2], is a distributed computing environment aimed at providing secure and
coordinated computational resource sharing between organizations. Within the Grid, the use of

*Correspondence to: Alejandro Zunino, ISISTAN Research Institute, UNICEN, Campus Universitario, Tandil (B7001BBO),
Buenos Aires, Argentina.

TE-mail: azunino@exa.unicen.edu.ar

fResearchers commonly speak about ‘the Grid’ as a single entity, albeit the underlying concept can be applied to any Grid-like
setting.

Copyright © 2007 John Wiley & Sons, Ltd.

524 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

resources such as processing power, disk storage, applications and data, often spread across different
physical locations and administrative domains, is shared and optimized through virtualization and
collective management.

Grid infrastructures were originally intended to support computation-intensive, large-scale scien-
tific problems and applications by linking supercomputing nodes [3]. During the first half of the
1990s, the inception and increasing popularity of Internet standards gave birth to an early phase
of the Grid evolution, later known as Volunteer Computing [4]: users from all over the world
are able to donate CPU cycles by running a free program that downloads and analyzes scien-
tific data while their PCs are idle (e.g. when the screensaver is activated). Examples of these
projects are Distributed.net [5S] (Internet’s first general-purpose distributed computing project),
Folding@home [6] (protein folding), SETI@home [7] (search for extraterrestrial intelligence)
and, more recently, Evolution@home (evolutionary biology) [8]. Few years after the introduction
of Volunteer Computing, the first middlewares for implementing Grid systems over the Internet
appeared. Examples are Legion [9], Condor [10] and Globus [11].

Nowadays, Grid Computing is far from only attracting the scientific community. Organizations
of all types and sizes are becoming aware of the great opportunities this paradigm offers to share
and exploit computational resources, such as information and services. In fact, a number of projects
have been actively working towards providing an infrastructure for commercial and enterprise Grid
settings [12—14]. Furthermore, many well-established standardization forums have produced the
first global standards for the Grid. Recent results of these efforts include the Open Grid Services
Architecture (OGSA) [15], a service-oriented Grid system architecture, and the Web Services
Resource Framework (WSRF) [16], a framework for modeling and accessing Grid resources using
Web services [17].

Although many technological changes in both software and hardware have occurred since the
term ‘Grid” was first introduced, a recent survey [18] indicates that there are hardly any significant
disagreements within the Grid research community about the Grid vision. In fact, Ian Foster,
considered by researchers to be the father of the Grid, proposed a checklist [19] for determining
whether a system is a Grid or not, which has been broadly accepted.

Likewise, the basic Grid idea has not changed considerably within the past 10 years [18]. The
term ‘Grid’ comes from an analogy with the electrical power grid. Essentially, the Grid aims at
allowing users access computational resources as transparently and pervasively as electrical power
is now consumed by appliances from a wall socket [20]. Indeed, one of the goals of Grid computing
is to allow software developers to code an application (i.e. ‘the appliance’), deploy it on the Grid
(i.e. ‘plug it’) and then let the Grid to autonomously locate and utilize the necessary resources to
execute the application. Ideally, it would be better to take any existing application and put it to work
on the Grid, thus effortlessly taking advantage of Grid resources to improve performance. Sadly, the
analogy does not completely hold yet, since it is hard to ‘gridify’ an application without manually
rewriting or restructuring it to make it Grid-aware. Unlike the electrical power grid, which can be
easily used in a plug-and-play fashion, the Grid is rather complex to use [21].

In this sense, the purpose of this paper is to summarize the state of the art on Grid development
approaches, focusing specifically on those that target easy gridification, that is, the process of
adapting an ordinary application to run on the Grid. It is worth mentioning that this paper does
not exhaustively analyze the current technologies for implementing or deploying Grid applications.
Instead, this paper discusses existing techniques to gridify software that has not been at first thought
to be deployed on Grid settings, such as desktop applications or legacy code. In order to limit the

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 525

scope of the analysis, we will focus our discussion on the amount of effort each proposed approach
demands from the user in terms of source code refactoring and modification. As a complement, for
each approach, we will analyze the anatomy of applications after gridification and the kind of Grid
resources they are capable of transparently leveraging.

The rest of the paper is organized as follows. The next section presents the most relevant related
work. Section 3 briefly explains the anatomy of the Grid from a technical point of view. Section 4
discusses the evolution of gridification technologies. Section 5 surveys some of the most representa-
tive approaches for gridifying applications. Section 6 summarizes the main features of the surveyed
approaches and proposes several taxonomies to capture a big picture of the area. On the basis of
these taxonomies, Section 7 identifies common characteristics and trends. Section 8 presents the
concluding remarks.

2. RELATED WORK

In [22], the authors point out the programming and deploying complexity inherent in Grid
Computing. They state that there is a need for tools to allow application developers to easily write
and run Grid-enabled applications, and propose OGSA as the reference Grid architecture towards
the materialization of such tools. The authors also identify a taxonomy of Grid application-level
tools that is representative enough for many projects in the Grid community. This taxonomy
distinguishes between two classes of application-level tools for the Grid: programming models
(i.e. tools that build on the Grid infrastructure and provide high-level programming abstractions)
and execution environments (i.e. software tools into which users deploy their applications). The
discussion is clearly focused on illustrating how these models and environments can be used to
develop Grid applications from scratch, rather than gridify existing applications.

Another recent survey on Grid application programming tools can be found in [23]. Here, several
functional and non-functional properties that a Grid programming environment should have are
identified, and some tools based on these properties are reviewed. The survey concludes by deriving
a generic architecture for building programming tools that are capable of addressing the whole set
of properties, which prescribes a component-based approach for materializing both the runtime
environment and the application layer of a Grid platform. However, the work does not discuss
aspects related to gridification of existing applications either.

A survey on Grid technologies for wide-area distributed computing can be found in [24], where
the most predominant trends for accelerating Grid application programming and deployment are
identified. This work aims at providing an exhaustive list of Grid Computing projects ranging from
programming models and middlewares to application-driven efforts, while our focus is exclusively
on methods seeking to attain easy pluggability of conventional applications into the Grid. The
authors emphasize on the need for a Grid framework that is adaptable and extensible enough to
cope with the ‘waning star’ effect that has historically made predominant distributed computing
technologies less popular. In other words, as Grid technologies evolve, this Grid framework should
be able to evolve with them. A similar work is [25], in which a thorough examination of technologies
for the materialization of Data Grids—those providing services and infrastructures to manage huge
amounts of data—is presented. The survey compares Data Grids with other distributed data-intensive
paradigms in great detail, and proposes various taxonomies to characterize the approaches that are
currently being followed in the construction and materialization of Data Grids, focusing on aspects

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

526 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

such as data transport and replication, resource allocation and job scheduling. On the basis of this
analysis, the authors identify scalability, interoperability and data maintainability as the requirements
that still need to be properly addressed before Data Grids are massively adopted for developing large-
scale, collaborative data-sharing and scientific applications. Finally, in [26], a taxonomy identifying
architectural approaches followed in the implementation of resource management systems for the
Grid is proposed. Roughly, the survey describes the common requirements for resource management
systems and presents an abstract functional model, from where it derives the proposed taxonomy.
The survey found that most approaches to Grid resource management are being developed in the
context of computational and service-oriented Grids, but little research is being done in the context
of Data Grids.
The next section explains the internal structure of the Grid as it is conceived today.

3. THE GRID: CONCEPTS AND ARCHITECTURE

A good starting point to understand the analogy with the goal of explaining between the Grid and
the electrical power grid is GridCafé [27], a project from CERN? with the goal of explaining the
basics of the Grid to a wider audience. Basically, GridCafé compares both infrastructures according
to the following features:

e Transparency: The electrical power grid is transparent because users do not know how and
from where the power they use is obtained. The Grid is also transparent, since Grid users
execute applications without worrying about what computational resources are used to perform
the computations, or where these resources are located.

e Pervasiveness: Electricity is available almost everywhere. The Grid is also pervasive, since
according to the Grid vision computing resources and services will be accessible not only
from PCs but also from laptops and mobile devices. Consequently, reusing existing pervasive
infrastructures (e.g. the Internet) and ubiquitous Web technologies such as Web browsers, Java
[28] and Web Services could be a big step towards complete pervasiveness and therefore easy
adoption of the Grid.

e Payment: Grid resources are essential utilities, since they will be provided—just like
electricity—on an on-demand and pay-per-use basis. The idea of billing users for the actual
use of resources on the Grid finds its roots in an old computational business model called
Utility Computing, also known as On-Demand Computing. A good example of a project
actively working on utility-driven technologies for the Grid is Gridbus [29].

While the power grid infrastructure links together transmission lines and underground cables to
provide users with electrical power, the Grid aims at using the Internet as the main carrier for
connecting mainframes, servers and even PCs to provide scientists and application developers with
a myriad of computational resources. From a software point of view, this support represents the
bottommost layer of a software stack that is commonly used to describe the Grid in architectural
terms. This architecture is depicted in Figure 1.

$The CERN (European Organization for Nuclear Research) is the world’s largest particle physics laboratory, which has
recently become a host for Grid Computing projects.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 527
User Applications Tools and applications
Collective Directory brokering,

diagnostics, and monitoring

Secure access to

Resource and Connectivity)
resources and services

Hardware resources such as
Fabric computers, storage media,
networks and sensors

Figure 1. The Grid software stack [30].

The stack is composed of four layers: Fabric, Resource and Connectivity, Collective and User
Applications. Roughly, the Resource and Connectivity layer consists of a set of protocols capable
of being implemented on top of many resource types (e.g. TCP, HTTP). Resource types are defined
at the Fabric layer, which in turn are used to construct metaservices at the Collective layer, and Grid
applications at the User Applications layer. The main characteristics of each layer are described as
follows:

e Fabric: As mentioned above, this layer represents the physical infrastructure of the Grid,
including resources such as computing nodes and clusters, storage systems, communication
networks, database systems and sensors, which are accessed by means of Grid protocols.

e Resource and Connectivity: Defines protocols to handle all Grid-specific transactions between
different resources on the Grid. Protocols at this layer are further categorized as connectivity-
related protocols, which enable the secure exchange of data between Fabric layer resources
and perform user authentication, and resource-related protocols, which permit authenti-
cated users to securely negotiate access to, interact with, control and monitor Fabric layer
resources.

e Collective: The collective layer contains protocols and services associated with capturing inter-
actions across collections of resources. Services offered at this layer include directory (discover
resources by their attributes), coallocation (coordinated resource allocation), job scheduling,
resource brokering, monitoring and diagnosis (detect and handle failures, overloads, etc.), and
data replication.

e User Applications: Each of the previous layers exposes well-defined protocols and APIs that
provide access to services for resource management, data access, resource discovery and
interaction, and so on. On the other hand, the User Application layer comprises applications
that operate within the Grid, which are built upon Grid services by means of those APIs and
protocols.

It is worth noting that some ‘applications’ within the topmost layer may in turn be Grid programming
facilities, such as frameworks and middlewares, exposing themselves to protocols and APIs on
which more complex applications (e.g. workflow systems) are created. In fact, these facilities can
be seen as the ‘wall socket” by which applications are connected to the Grid. Application developers
are likely to use high-level software tools that provide a convenient programming environment and
isolate the complexities of the Grid, rather than use Grid services directly.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

528 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

However, applications that have not been written to run on the Grid still have to be adapted in
order to use the functionality provided by Grid programming facilities. In other words, these kinds
of applications need to be gridified so that they can take advantage of Grid services and resources
through a specific middleware or framework. As a consequence, an extra development effort is
required from application programmers which might not have the necessary skills or expertise to
port their applications to the Grid. To sum up, the foreseen goal of gridification is to let conventional
applications benefit from Grid services without requiring these applications to be modified.

4. GRIDIFICATION TECHNOLOGIES: ORIGINS AND EVOLUTION

It is difficult to determine exactly when the term ‘gridification’ was first introduced, but the idea
of achieving easy pluggability of ordinary applications into the Grid surely took a great impulse
at the time the analogy between electrical power grids and computational Grids was established.
Nowadays, the concept of gridification is widely recognized among the Grid research community,
and many researchers explicitly use the term ‘gridification’ to refer to this idea. The evolution of
Grid technologies from the point of view of gridification is presented in the following paragraphs.

The first attempt to achieve gridification began with the use of popular technologies traditionally
employed in the area of Parallel and Distributed Computing, such as PVM [31], MPI [32] and
RMI [33]. Basically, the underlying programming models of these technologies were reconsidered
for use in Grid settings, yielding as a result standardized Grid programming APIs such as MPICH-
G2 [34] (message passing) and GridRPC [35] (remote procedure call). Grid applications developed
under these models are usually fragmented into ‘masters’ and ‘workers’ components communicating
through ad hoc protocols and interaction mechanisms. Developers are also responsible for managing
parallelization and location of application components. As a consequence, at this stage there was no
clear idea of Grid resource virtualization. Consequently, gridification was mainly concerned with
taking advantage of the Grid infrastructure, that is, the Fabric layer of the software stack shown in
Figure 1.

The second phase of the evolution of gridification technologies involved the introduction of
Grid middlewares. Some of them were initially focused on providing services for automating the
scavenging of processing power, memory and storage resources (e.g. Condor, Legion), while others
aimed at raising the level of abstraction of Grid functionality by providing metaservices (brokering,
security, monitoring, etc.). A representative example of a middleware in this category is Globus,
which has become the de facto standard for building Grid applications. Overall, users are now
supplied with a concrete virtualization layer that isolates the complexities of the Grid by means
of services. In fact, technologies such as MPICH-G2 and GridRPC are now seen as middleware-
level services for communication rather than Grid programming facilities per se. Gridification is
therefore conceived as the process of writing/modifying an application to utilize the various services
provided by a specific Grid middleware. As the reader may observe, the main goal of gridification
technologies at this stage is to materialize the middle layers of the Grid software stack.

The appearance of the first Grid middlewares was followed by the introduction of Grid program-
ming toolkits and frameworks. In this step, the problem of writing applications for the Grid received
more attention and the community recognized a common behavior shared by different Grid applica-
tions. The idea behind these technologies is to provide generic APIs and programming templates to
unburden developers of the necessity of knowing the many particularities for contacting individual

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 529

Grid services (e.g. protocols and endpoints), of capturing common patterns of service composi-
tion (e.g. secure data transfer) and of offering convenient programming abstractions (e.g. master—
worker templates). The most important contribution of these solutions is to capturing common
Grid-dependent code and design in an application-independent manner. These tools can be seen as
an incomplete application implementing non-application-specific functionality, with hot-spots or
slots where programmers should put application-specific functionality in order to build complete
applications [36,37].

For example, the Java CoG Kit [38] provides an object-oriented, framework-based interface to
Globus-specific services. The Grid Application Toolkit (GAT) [39,40] and SAGA [41] are similar to
the Java CoG Kit, but they offer APIs for using Grid services that are independent of the underlying
Grid middleware. With respect to template-based Grid frameworks, some examples are MW [42],
AMWAT [43] and JaSkel [44]. All in all, the goal of these tools is to make Grid programming easier.
The conception of gridification at this phase does not change too much from that of the previous
one, but Grid programming is certainly done at a higher level of abstraction. As a consequence,
less design, code, effort and time are required when using these tools.

Up to this point, the most remarkable characteristic shared among the above technologies is
that gridification is done in a one-step fashion, that is, there is no clear separation between the
tasks of writing the pure functional code of an application and adding its Grid concerns. The Grid
technology being used plays a central role during the entire Grid application development process,
since developers Grid-enable applications as they code them by keeping in mind a specific Grid
middleware, toolkit or framework. Therefore, technologies promoting one-step gridification assume
that developers have a solid knowledge on Grid programming and runtime facilities.

Alternatively, there are currently a number of Grid projects promoting what we might call a
two-step gridification methodology, which is intended to support users having little or even no
background on Grid technologies. Basically, the ultimate goal of this line of research is to come
out with methods that allow developers to focus first on implementing and testing the functional
code of their applications, and then on automatically Grid-enabling them. As a consequence, this
approach is suited for gridifying applications that were not initially designed to run on the Grid.
It is worth noting that technologies under this gridification paradigm can be seen as a complement
to the ones described previously. In fact, active research is being done to develop more usable and
intuitive Grid programming models, toolkits and middlewares.

Figure 2 shows how the evolution of Grid technologies has reduced the knowledge that is neces-
sary to gridify an application. As depicted in the figure, we identify four separate phases in this
evolution. Transition between two consecutive phases is given by a radical change in the concep-
tion of the notion of gridification. In the first phase, ‘gridify’ means to manually use the Grid
infrastructure. In the second phase, where virtualization of Grid resources through services was
introduced, ‘gridify’ refers to adapt applications to using Grid services. The third phase witnessed
the introduction of the first Grid development technologies materializing the common behavior of
Grid applications; therefore, gridification takes place at a higher level of abstraction. Finally, the
fourth phase incorporated the notion of two-step gridification: Grid technologies recognized the
need to provide methods to transform ordinary applications to Grid-aware ones with little effort.

Certainly, the relationship between the two axes is not linear, but it is descriptive enough to get
an idea about the consequences of gridification in the long term. As the reader can see, the ideal
method for gridification would yield a hypothetical value for Grid awareness equal to zero, that
is, the situation in which developers can effectively exploit the Grid without explicitly using any

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

530 C. MATEOS, A. ZUNINO AND M. CAMPO S &E
A
g
? 9
¢
qc_) [0) .
& © | (Message pass-\:
S ing and RPC |
© = (MPICH-G2,
28 GridRPC)
G35 Grid
% middlewares

Grid toolkits
and
frameworks

: [Semi-automa-
:| tic methods

for gridification

Ideal tool/

method for

t°‘|’ay gridification?
Little/no Grid Virtua/ization/ High—level Grid Two-step Evolution of
‘resource . notionof : programming : gridification gridification
virtualization : Grid service : models and APIs: metodology technologies

Figure 2. Origins and evolution of gridification technologies.

Grid technology in their code. In this paper, we are interested in reviewing the existing approaches
that are focused on supporting two-step gridification. The next section discusses the most relevant
projects for the purpose of this article.

5. GRIDIFICATION PROJECTS

In light of the gridification problem, a number of studies have proposed solutions to port existing
software to the Grid. For example, Ho et al. [45] presented an approach to assist users in gridifying
complex engineering design problems, such as aerodynamic wing design. Similarly, Wang et al.
[46] introduced a scheme of gridification specially tailored to gridify scientific legacy code. In
addition, Kolano [47] proposed an OGSA-compliant naturalization! service for the Globus platform
that automatically detects and resolves software dependencies (e.g. executables, system libraries,
Java classes, among others) when running CPU-intensive jobs on the Grid.

Although the above technologies explicitly address the problem of achieving easy gridification,
they belong to what we might identify as early efforts in the development of true gridification
methods, which are characterized by solutions lacking generality and targeting a particular appli-
cation type or domain. Nonetheless, there are a number of projects attempting to provide more
generic, semi-automatic methods to gridify a broader range of Grid applications, mostly in the form

IThe American Heritage Dictionary defines naturalization as ‘adapting or acclimating (a plant or an animal) to a new envi-
ronment; introducing and establishing as if native’.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 531

of sophisticated programming and runtime environments. In this sense, Sections 5.1-5.10 present
some of these projects.

5.1. GEMLCA

GEMLCA (Grid Execution Management for Legacy Code Architecture) [48] is a general architec-
ture for transforming legacy applications to Grid services without the need for code modification.
GEMLCA allows users to deploy a legacy program written in any programming language as an
OGSA-compliant service. The access point for a client to GEMLCA is a front end offering services
for gridifying legacy applications, and also for invoking and checking the status of running Grid
services. An interesting feature of this front end is that it is fully integrated with the P-GRADE [49]
workflow-oriented Grid portal, thus allowing the creation of complex workflows where tasks are
actually gridified legacy applications.

GEMLCA aims at providing an infrastructure to deploy legacy applications as Grid services
without re-engineering their source code. As depicted in Figure 3, GEMLCA is composed of four
layers:

e Compute Servers: Represents hardware resources, such as servers, PCs and clusters, on which
legacy applications in the form of binary executables are potentially available. Basically, the
goal of GEMLCA is to make these applications accessible through Web Services-enabled Grid
services.

e Grid Host Environment: Implements a service-oriented Grid layer on top of a specific OGSA-
compliant Grid middleware. Current distributions of GEMLCA support Globus version 3.X
and 4.X.

Command- Browser— ;
line inten‘acgs| enabled portals GEMLCA Client

——y

Legacy code

process
Legacy Legacy Legacy GEMLCA
S Resource
(code job] (code jobj (codejobj "
OGSA Container (Qlobus 3.X,
Globus 4.X, G-Lite, etc.) Grid Host

Environment

| Job Manager (e.g., Condor) |

Compute
Servers

Figure 3. Overview of GEMLCA.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

35UB01 7 SUOWILLIOD SAIIERID 3|qedt|dde au Aq pausenob afe saiiie YO ‘88N JO Sa|NnJ 10} Ariq 1T aUIUQ AB|IA UO (SUORIPUOD-PUR-SWLBIW0D S| 1M AlRIq 1 U1 UO//SANY) SUORIPUOD PUe SWB | 8L} 88S *[7202/TT/92] Uo ARl auljuQ 43|\ ‘sauoioefinsanu| ap feuoideN oksuo) 13DINOD Aq /18ads/z00T OT/I0p/W00 A8 | Im Aeld 1 puluo//Sdny WOl papeojumoq 'S ‘8002 ‘X#20.60T

532 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

e GEMLCA Resource: Provides portal services for gridifying existing legacy applications.
e GEMLCA Client: This layer comprises the client-side software (i.e. command-line interfaces
and browser-enabled portals) by which users may access GEMLCA services.

The gridification scheme of GEMLCA assumes that all legacy applications are binary executable
codes compiled for a particular target platform and running on a Compute Server. The Resource
layer is responsible for hiding the native nature of a legacy application by wrapping it with a
Grid service, and processing service requests coming from users. It is up to the user, however, to
describe the execution environment and the parameter information of the legacy application. This is
done by configuring an XML-based file called LCID (Legacy Code Interface Description), which
is used by the GEMLCA Resource layer to map Grid service requests to job submissions. LCID
files provide metadata about the application, such as its executable binary path, the job manager
and the minimum/maximum number of processors to be used, and parameter information, given by
the name, type (input or output), order, regular expressions for input validation, etc. The following
code presents the LCID file corresponding to the gridification of the Unix mkdir command:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE GLCEnvironment ”"gemlcaconfig.dtd”>
<GLCEnvironment id="mkdir”
executable="/bin/mkdir” jobManager="Condor”
maximumdJob="5" minimumProcessors="1">
<Description>Unix mkdir command</Description>
<GLCParameters>
<Parameter name="-p” friendlyName="New.folder”
inputOutput="Input” order="0" mandatory="No”">
<initialValue />
</Parameter>
</GLCParameters>
</GLCEnvironment>

As explained, the GEMLCA gridification process demands zero coding effort and little configu-
ration from the user. In spite of this fact, users not having an in-depth knowledge about GEMLCA
concepts may experience difficulties when manually specifying LCID files. In this sense, the
GEMLCA front end also provides user-friendly Web interfaces to easily describe and deploy legacy
applications.

A more serious problem of GEMLCA is concerned with the anatomy of a gridified application.
GEMLCA applications are essentially an ordinary executable file wrapped with an OGSA service
interface. GEMLCA services serve request according to a very non-granular execution scheme (i.e.
running the same binary code on one or more processors), but no internal changes are made in the
wrapped applications. As a consequence, the parallelism cannot be controlled in a more grained
manner. For many applications, this capability is crucial to achieve good performance.

5.2. GrADS

GrADS (Grid Application Development Software) [50] is a performance-oriented middleware with
the goal of optimizing the execution of numerical applications written in C on distributed hetero-
geneous environments. GrADS puts a strong emphasis on application mobility and scheduling
issues in order to optimize application performance and resource usage. Platform-level mobility in
GrADS is performed through the so-called Rescheduler, which periodically evaluates the perfor-
mance gains that can potentially be obtained by migrating applications to underloaded resources.
This mechanisms is known as opportunistic migration.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 533

Users wanting to execute an application contact the GrADS Application Manager. This, in turn,
contacts the Resource Selector, which accesses the Globus MDS service to obtain the available
list of computing nodes and then uses the NWS (Network Weather Service) [51] to obtain the
runtime information (CPU load, free memory and disk space, etc.) from each of these nodes.
This information, along with execution parameters and a user-generated execution model for the
application, is passed on to the Performance Modeler, which evaluates whether the discovered
resources are enough to achieve good performance or not. If the evaluation yields a positive result,
the Application Launcher starts the execution of the application using Globus job management
services. Running jobs can be suspended or canceled at any time due to external events such as
user intervention.

GrADS provides a user-level C library called SRS (Stop Restart Software) that offers applica-
tions functionality for stopping at a certain point of their execution, restarting from a previous
point of execution and performing variable checkpointing. To SRS-enable an ordinary application,
users have to manually insert instructions into the application source code in order to make calls
to the SRS library functions. Unfortunately, SRS is implemented on top of MPI; hence, it can
only be used in MPI-based applications. Nonetheless, as these applications are composed of a
number of independent, mobile communicating components, they are more granular, thus potentially
achieving better use of distributed resources than conventional GrADS applications—that is, without
using SRS.

5.3. GRASG

GRASG (Gridify and Running Applications on Service-oriented Grids) [52] is a framework for
gridifying applications as Web Services with relatively little effort. Also, in order to make better
use of Grid resources, GRASG provides a scheduling mechanism that is able to schedule jobs
accessible through Web Services protocols. Basically, GRASG provides services for job execution,
monitoring and resource discovery that enhance those offered by Globus.

The architecture of GRASG is depicted in Figure 4. Its main components are four Web Services
named Information Service (IS), Resource Allocation and Scheduling Service (RASS), Job Execu-
tion Service (JES) and Data Service (DS). Each Grid resource (i.e. a server) is equipped with the
so-called sensors and wrapped with a JES. Sensors are responsible for capturing and publishing
meta-information about their hosting resource (platform type, number of processors, installed appli-
cations, workload, etc.), while JES services are responsible for job execution and guaranteeing
Quality of Service. More important, a JES wraps all the (gridified) applications installed on a server.
External clients can execute gridified applications and ‘talk’ to GRASG components by means of
SOAP [53], a well-known protocol for invoking Web Services.

The IS, RASS and DS services are placed on the Sife layer, which sits on top of the Grid resources.
The IS periodically collects information about the underlying resources from their associated sensors
and uses this information to satisfy resource requests originating either at the RASS or at an
external client. The RASS bridges application clients to JESs. Specifically, the RASS is in charge
of processing job execution requests coming from clients, allocating and reserving the needed Grid
resources, monitoring the status of running jobs and returning the results back to the clients. Lastly,
the DS is used mainly for moving data among computation servers. It is implemented as a Web
Service interface to GridFTP [54], an FTP-based, high-performance, secure, reliable data transfer
protocol for Grid environments.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

534 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

External

Resource '\ Resource

Allocation and| information | | <o ation
Scheduling Service
Site layer Service N/
T4 \ R
Job submission > 4 __infgrsrzurﬁsn
JES | [UEs | [JES™ |

Gid (Y| Grd (Grid (Y
Resource Resource Resource :

Resource layer

Figure 4. GRASG architecture.

GRASG conceives ‘gridification’ as the process of deploying an existing application (binary
executable) on a Grid resource. Once deployed, applications can be easily accessed through their
corresponding JES, which stores all the necessary information (e.g. executable paths, system vari-
ables, etc.) to execute a gridified or a previously installed application. Similar to GEMLCA,
application granularity after gridification is very coarse. To partially deal with potential perfor-
mance issues caused by this problem, users can define custom scheduling and resource discovery
mechanisms for a gridified application by writing new sensors that are based on shell or Perl
scripts.

5.4. GridAspecting

GridAspecting [55] is a development process, based on aspect-oriented programming (AOP) [56],
to explicitly separate crosscutting Grid concerns in parallel Java applications. Its main goal is to
offer guidelines for Grid application implementation focusing on separating the pure functional
code as much as possible from the Grid-related code. Besides, GridAspecting relies on a subset
of the Java thread model for application decomposition that enables Grid application testing even
outside a Grid setting.

GridAspecting uses a finer level of granularity than GEMLCA and GRASG for gridified compo-
nents. GridAspecting assumes that ordinary applications can be decomposed into a number of
independent fasks, which can be computed separately. As a first step, the programmer is responsible
for identifying these tasks across the, yet non-gridified, application code, and then encapsulating
them as Java threads. Any form of data communication from the main application to its task threads
should be implemented via parameter passing to the task constructor. As a second step, aspects
have to be provided by the programmer in order to map the creation of a task to a job execu-
tion request onto a specific Grid middleware (e.g. Globus). At runtime, GridAspecting uses the
Aspect] [57] AOP language to dynamically intercept all thread creation and initialization calls
emitted by the gridified application, replacing them with calls to the underlying middleware-level
execution services by means of those aspects.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 535

Despite being relatively simple, the process requires the developer to follow a number of code
conventions. However, applying GridAspecting results in a very modular and testable code. After
passing through the gridification process, the functional code of an application is entirely separated
from its Grid-related code. As a consequence, a different Grid API can be used without affecting
the code corresponding to the application logic.

5.5. GriddLeS

GriddLeS (Grid Enabling Legacy Software) [58] is a development environment that facilitates
the construction of complex Grid applications from legacy software. Specifically, it provides a
high-level tool for building Grid-aware workflows based on existing, unmodified applications,
called components. Overall, GriddLeS goals are directed towards leveraging existing scientific and
engineering legacy applications and easily wiring them together to construct new Grid applications.

The heart of GriddLeS is GridFiles, a flexible and extensible mechanism that allows workflow
components to communicate between each other without the need for source code modification.
Basically, GridFiles overloads the common file I/O primitives of conventional languages with
functionality for supporting file-based interprocess communication over a Grid infrastructure. In
this way, individual components behave as though they were executing in the same machine and
using a conventional file system, while they actually interchange data across the Grid. It is important
to note that GriddLeS is mainly suited for gridifying and composing legacy applications in which
the computation time/communication time ratio is very high. Additionally, components should
expose a clear interface in terms of required input and output files, so as to simplify the composition
process and not incur component source code modification.

GridFiles makes use of a special language-dependent routine, called FileMultiplexer, which inter-
cepts file operations and processes them according to a redirection scheme. Current materializations
include local file system redirection, remote file system redirection based on GridFTP and remote
process redirection based on sockets. When using process redirection, a multiplexer placed on the
sending component is linked with a multiplexer on the receiving component through a buffered
channel, which automatically handles data synchronization. In any case, the type of redirection is
dynamically selected depending on whether the file identifier represents a local file, a remote file
or a socket, and the target’s location for the redirection (file or component) is obtained from the
GNS (GriddLeS Name Server). The GridFiles mechanism is shown in Figure 5.

The GriddLeS approach is simple, yet very powerful. Application programmers can write and
test components without taking into account any Grid-related issues such as data exchanging,
synchronization or fault-tolerance, which in turn are handled by the underlying multiplexer being
used. Another interesting implication of this fact is that implemented components can transparently
operate either as a desktop program or as a block of a bigger application. The weak point of GriddLes
is that its runtime support suffers from portability problems, since it is necessary to have a new
implementation for each programming language and OS platform. Also, its implicit socket-based
communication mechanism lacks the level of interoperability required by current Grids.

5.6. Ninf-G

Ninf-G [59] is a C/FORTRAN programming environment that aims at providing a simple Grid
programming model mostly for non-computer scientists. It builds on top of the Globus toolkit and

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

536 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

Component Component
open, close open, close,
read, write, read, write,
seek seek
GrdFTP| | ——— — L —
Server Local file ! Local file '
' client . X client X

Remote file Remote file

. Remote X Remote
' | process client | | " | process client

(" GNS ' _(GNS (GriddLeS), o[GNS :
) client ' Name Server ' client '

FileMultiplexer . FileMultiplexer

:

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

Figure 5. GridFiles: file request redirection.

Client side : Server side

Server part

Client part

Client : ;
Component —{Giobus_1y0] | IPL Compiler
3) Invoke stub™_ 4) Transfer
\arguments generate
[GRAM [esseesssess Remote Executable
1) Interface 2) Interface reply : invoke
request —5 MDS p——| |nterface

retrieve | jnformation

Figure 6. Ninf-G architecture.

offers a reference implementation of the GridRPC specification. Ninf-G provides familiar RPC
semantics so that the complicated structure of the Grid is hidden behind an RPC-like interface.

Figure 6 describes the architecture of Ninf-G, which is based on two major components: Client
Component and Remote Executable. The Client Component consists of a client API and libraries
for GridRPC invocations. The Remote Executable comprises a stub and system-supported wrapper
functions, both similar to those provided by Java RMI or CORBA [60]. The stub is automatically
generated by Ninf-G from a special IDL file describing the interface of a remote executable. Both
client and server programs are obtained after gridifying an application.

When executing a gridified application, the Client Component and the Remote Executable
communicate with each other by using Globus services. First, the Client Component gets the

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 537

IDL information for the server-side stub, comprising the remote executable path and parameter
encoding/decoding information. This is done by means of the MDS (Monitoring and Discovery
System), the Globus network directory service. Then, the client passes the executable path to the
Globus GRAM (Grid Resource Allocation Manager), which invokes the server-side part of the
application. On execution, the stub requests the invocation arguments from the client, which are
transferred using the Globus-IO service.

Roughly, the first step to gridify an application is to identify a client part and one or more
server parts. The user should properly restructure its application whenever a server part cannot be
straightforwardly obtained from the code, such as merging the most resource-consuming functions
into a new one and picking the latter as the server program. In any case, the user must carefully
remove any data dependence between the client and the server program, or among server parts (e.g.
global variables). Up to this point, the gridification process does not require to be performed within
a Grid setting.

The next step is concerned with inserting Ninf-G functions into the client program so as to enable
it to interact, via RPC, with its server part(s). Ninf-G has a number of built-in functions for initiating
and terminating RPC sessions and, of course, performing asynchronous or synchronous RPC calls.
Typical scenarios when gridifying a code with Ninf-G are illustrated in Figure 7.

Deploying a gridified application involves creating the executables on each server. First, the
user must specify the interface for the server program(s) using Ninf-G IDL, which is used to
automatically generate server-side stubs. Finally, the user must manually register this information
in MDS. Although simple, these tasks can be tedious if several applications are to be gridified.

5.7. PAGIS

PAGIS [61] is a Grid programming framework and execution environment suitable for unskilled
Grid developers. PAGIS provides a component-based programming model that emphasizes on
separating what an application does from kow it does it. Roughly, putting an application to work on
the Grid with PAGIS first requires dividing the application into communicating components, and
then implementing how these components are executed and controlled within a Grid environment.

A PAGIS application comprises a number of components connected through a network of unidi-
rectional links called a process network. In PAGIS terminology, components and links are known
as processes and channels, respectively. A process is a sequential Java program that incrementally

main(){ main(){
pre_processing(); for (i=0;i<task_no;i++)
call_library(args):) task_processing(args);
‘ Gridification ‘ Gridification
main(){ main(}{
pre_processing(); for (i=0;i<task_no;i++)
grpc_call(handle, grpc_call_async(dest[i],
"call_library", "task_processing",
args); args);
} grpc_wait_all(dest);
}

Figure 7. Gridifying applications with Ninf-G: typical scenarios.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

538 C. MATEOS, A. ZUNINO AND M. CAMPO S &E
MetaA sending MetaB
receiving
executing Meta level
Y Base level
ObjectA [M°Ke. . 3»| ObjectB

Figure 8. Overview of metalevel programming.

reads data from its incoming channels in a first-in first-out fashion, transforms the data and produces
the output to some or all of its outcoming channels. At runtime, PAGIS creates a thread for each
process of a network and maintains a producer—consumer buffer for each channel. Production of
data is non-blocking, whereas consumption from an empty stream is blocking. As the reader may
observe, this mechanism shares many similarities with the Unix process pipelining model.

Similar to most component-based frameworks, PAGIS processes are described in terms of ports.
Ports define a communication contract with a process in the same way as classes define interfaces
for objects in object-oriented languages. In this way, applications are described by connecting ports
through channels. PAGIS includes an API, called PNAPI (Process Network API), that provides
several useful abstractions for describing applications in terms of process networks. Additionally,
it offers a graphical tool for visually creating, composing and executing process networks.

PAGIS allows a process network to be supplied with Grid behavior by means of metalevel
programming. Conceptually, metalevel programming divides an application into a base level,
composed of classes and objects implementing its functional behavior, and a meta level, consisting
of metaobjects that reify elements of the application at runtime—mostly method invocations—and
perform computations on them. Figure 8 illustrates the basics of metalevel programming. Both
base level objects, ObjectA and ObjectB, have been assigned two different metaobjects. As a conse-
quence, MetaA receives all method invocations sent from ObjectA and redirects them to the target’s
metaobject (in this case MetaB), which actually carries out the invocations. The labels in bold
represent the phases of a method invocation with which customized user actions can be associated.

PAGIS introduces the MetaComputation metaobject, specially designed to represent a running
process network as a single structure. Users can then materialize complex Grid functionality
by attaching metaobjects! to MetaComputation metaobjects. For example, one might implement
a custom metaobject for transferring certain method invocations to a remote metaobject, thus
achieving load balancing. Similarly, a metaobject that monitors and records the various runtime
aspects of an application can be easily implemented by logging information such as timing, source
and destination objects, among others, prior to method redirection.

The gridification scheme proposed by PAGIS is indeed interesting, since it allows to furnish
ordinary applications (i.e. the base level) with Grid-dependent behavior (i.e. the meta level) without
affecting its source code. The only requirement is that those applications should be appropriately
transformed so that they are structured as a process network. Similar to GridAspecting, a PAGIS
application (i.e. a process) is specified at a task level of granularity.

”Strictly speaking, these are meta-metaobjects, since they intercept method calls performed by other metaobjects.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 539

5.8. Proactive

Proactive [62] is a Java-based middleware for object-oriented parallel, mobile and distributed
computing. It includes an API that isolates many complex details of the underlying communi-
cation and reflection Java APIs, on top of which a component-oriented view is provided. This
API also includes functionality to transform conventional Java classes to a Proactive applica-
tion. The programming model featured by Proactive has also been implemented in C+4 and
Eiffel.

A typical Proactive application is composed of a number of mobile entities called active objects.
Each active object has its own thread of control and an entry point, called the root, by which
the object functionality can be accessed from ordinary objects. Active objects serve method calls
issued from other active/ordinary objects and also request for services implemented by other
local or remote active objects. Method calls sent to active objects are synchronized using the
wait-by-necessity mechanism, which transparently blocks the requester until the results of a call
are received. At the ground level, this mechanism relies on meta-programming techniques similar
to that of PAGIS; thus, it is very transparent to the programmer.

JVMs participating in a computation can host one or more nodes. A node is a logical entity
that groups and abstracts the physical location of a set of active objects. Nodes are identified
through a symbolic name, typically a URL. Therefore, active objects can be programmatically
attached/detached from nodes without the need for manipulating low-level information such as
network addresses or ports. Similarly, active objects can be sent for execution to remote JVMs by
simply assigning them to a different ‘container’ node.

Standard Java classes can be easily transformed into active objects. For example, let us assume
that we have a class named C, which exposes two methods foo and bar, with return type void and
double, respectively. The API call:

C ¢ = (C) ProActive.newActive(”C”, args, "rmi://isistan.exa.unicen.edu.ar/myNode”);

creates—by means of RMI—a new active object of type C on the node myNode. Further calls to
either foo or bar are asynchronously handled by Proactive, and any attempt to read the result of an
invocation to bar blocks the caller until the result is computed. In a similar way, the API can be
used to straightforwardly publish an active object as a SOAP-enabled Web Service.

Another interesting feature provided by Proactive is the notion of virfual nodes. The idea behind
this concept is to abstract away the mapping of active objects to physical nodes by eliminating
from the application code elements such as host names and communication protocols. Each virtual
node declared by the application is identified through a plain string and mapped to one or a set of
physical nodes by means of an external XML deployment descriptor file. As a consequence, the
resulting application code is independent of the underlying execution platform and can be deployed
on different Grid settings by just modifying its associated deployment descriptor file.

There are, however, some code conventions that programmers must follow before gridifying an
ordinary Java class as an active object. First, classes must be serializable and include a default
constructor (i.e. with no arguments). Second, the result of a call to a non-void method should be
placed on a local variable for the wait-by-necessity mechanism to work. Return types for non-void
methods should be replaced by system-provided wrappers accordingly. In our example, we have
to replace the return type in the bar method with a Proactive API class that wraps the double Java
primitive type.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

540 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

5.9. Satin

Satin [63] is a Java framework that allows programmers to easily parallelize applications based
on the divide-and-conquer paradigm. The ultimate goal of Satin is to free programmers from the
burden of modifying and hand-tuning applications to exploit a Grid setting. Satin is implemented
on top of Ibis [64], a programming environment with the goal, of providing an efficient Java-based
platform for Grid programming. Ibis consists of a highly efficient communication library, and a
variety of programming models, mostly for developing applications as a number of components
exchanging messages through messaging protocols such as Java RMI and MPI.

Satin extends Java with two primitives to parallelize single-threaded conventional Java programs:
spawn, to create subcomputations (i.e. divide), and sync, to block execution until the results from
subcomputations are available. Methods considered for parallel execution are identified by means of
marker interfaces that extend the satin.Spawnable interface. Furthermore, a class containing spawn-
able methods must extend the satin.SatinObject class and implement the corresponding marker
interface. In addition, the result of the invocation of a spawnable method must be stored on a local
variable. The next code shows the Satin version of a simple recursive solution to compute the kth
Fibonacci number:

interface FibMarkerinterface extends satin.Spawnable{
public long fibonacci(long k);

}
class Fibonacci extends satin.SatinObject implements FibMarkerinterface {

public long fibonacci(long k){
if (k< 2)
return k;
// The next two calls are automatically spawned,
// because “fibonacci” is marked in FibMarkerinterface
long f1 = fibonacci(k — 1);
long f2 = fibonacci(k — 2);
// Execution blocks until f1 and f2 are instantiated
super.sync ();
return f1 + f2;

}
static void main(String[] args){

Fibonacci fib = new Fibonacci();

// also spawned

long result = fib.fibonacci(k);

// Blocks the main application thread
// until a result is obtained

fib .sync();

}
)

After indicating spawnable methods and inserting appropriate synchronization calls into the
application source code, the programmer must feed a compiled version of the application to a tool
that translates, through Java bytecode instrumentation, each invocation to a spawnable method into
a Satin runtime task. For example, in the code shown above, a task is generated for every single
call to the fibonacci method.

Since each task represents the invocation (recursive or not) to a spawnable method, their granu-
larity is clearly smaller than the granularity of tasks similar to the ones supported by GridAspecting

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 541

or PAGIS. A running application may therefore be associated with a large number of fine-grained
tasks, which can be executed on any machine. For overhead reasons, most tasks are processed on the
machine in which they were created. In order to efficiently run gridified programs, Satin uses a task
execution scheme based on a novel load-balancing algorithm called CRS (Cluster-aware Random
Stealing). With this algorithm, when a machine becomes idle, it attempts to steal a task waiting
to be processed from a remote machine. Intra-cluster steals have a greater priority than wide-area
steals. This policy fundamentally aims at saving bandwidth and minimizing the latencies inherent
in slow wide-area networks.

5.10. XCAT

XCAT [65] is a component-based framework for Grid application programming built on top of
Web Service technologies. XCAT applications are created by connecting distributed components
(OGSA Web Services) that communicate either by SOAP messaging or by an implicit notification
mechanism. XCAT is compliant with Common Component Architecture [66], a specification with
the goal of yielding a reduced set of standard interfaces that a high-performance component frame-
work should provide to or expect from components in order to achieve easy distributed component
composition and interoperability.

XCAT components are connected by ports. A port is an abstraction representing the interface of
a component. Ports are described in SIDL (Scientific Interface Definition Language), a language
for describing component operations in terms of the data types often found in scientific programs.
There are two kinds of ports: provides ports, representing the services offered by a component,
and uses ports, describing the functionality a component might need but is implemented by another
component. Furthermore, XCAT provides ports can be implemented as OGSA Web Services. XCAT
uses ports can connect not only to any typed XCAT provides port (i.e. those described in SIDL)
but also to any OGSA-compliant Web Service.

XCAT allows scientific legacy applications to be deployed as components without code modifi-
cation using the concept of application manager (see Figure 9). Basically, each legacy application is

control
port

data Alslpllcatlon
stagerifig anager

control
messages

application
events

Legacy
Application

Figure 9. XCAT application managers.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

542 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

wrapped with a generic component (application manager) responsible for managing and monitoring
the execution of the application, and staging the necessary input and output data. The manager
also serves as a forwarder for events taking place inside the wrapped application, such as file
creation, errors and execution finalization/crash. Application managers can be connected to each
other and have one special port by which standard components can control them. It is worth noting
that legacy applications have, in general, a large granularity. As a consequence, XCAT shares
some of the limitations of GEMLCA and GRASG with respect to the granularity of gridified
applications.

6. A TAXONOMY OF GRIDIFICATION APPROACHES

Table I summarizes the main characteristics of the approaches described in the previous sections.
To better understand the structure of the table, the reader should recall the analogy between the
Grid and the electrical power grid discussed in Section 3.

Basically, each row of the table represents a ‘wall socket” by which applications are gridified and
connected to the Grid. The ‘Appliance type’ column symbolizes the kind of applications supported
by the gridification process, whereas the ‘Grid-aware appliance’ column briefly describes the new
anatomy of applications after passing through the gridification process. In addition, lower-level Grid
technologies upon which each approach is built are also listed. Finally, we center our discussion on
the different approaches to gridification (i.e. the ‘plugging techniques’) according to the taxonomies
presented in the following subsections.

In particular, the taxonomies of Sections 6.1 and 6.2 describe, from the point of view of source
code modification, the different ways in which an ordinary application can be affected by the
gridification process. The taxonomy presented in Section 6.3 represents the observed granularity
levels to which applications are Grid enabled. Finally, the taxonomy included in Section 6.4
briefly categorizes the approaches according to the kind of Grid resources they aim to virtu-
alize. These taxonomies are simple, but comprehensive enough to cover the various aspects of
gridification.

6.1. Application re-engineering

The application re-engineering taxonomy defines the extent to which an application must be manu-
ally modified in order to obtain its gridified counterpart. In general, the static anatomy of every
application can be described as a number of compilation units combined with a certain structure.
Compilation units are programming language-dependent pieces of software (e.g. Java classes, C
and Perl modules, etc.) assembled together to form an application. Usually, a compilation unit
corresponds to a single source code file. Furthermore, the way compilation units are combined
determines the structure of the application (e.g. the class hierarchy of a Java application, the depen-
dence graph between functions within a C program). According to Figure 10, the anatomy of a
conventional application might be altered in the following ways:

e Structure only: Some approaches alter the internal structure of the application, restructuring it
in such a way that some of its constituent parts are reorganized. For example, GridAspecting
requires the user to identify tasks within the application that can potentially be executed
concurrently. Similarly, the PAGIS framework requires to restructure applications as a set of

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 543
Table I. Summary of gridification tools.
Appliance Plugging technique Grid-aware Underlying
Wall socket type highlights appliance technologies

GEMLCA

GrADS

GRASG

Grid-aspecting

GriddLeS

Ninf-G

PAGIS

Proactive

Satin

XCAT

Binary executable

C application
(MPI-based if explicit
migration is to be
used)

Binary executable

Task-parallel Java

application

Stream-based binary
executable

C/Fortran application

Java application

Java application

Divide and conquer
Java application

Binary executable

The user must specify
the interface of
his/her application
(XML file)

Instruction insertion if
using SRS

Hand-tuning of
applications through
Perl/shell scripting
Manual task
decomposition and
Grid concerns
(aspects)
implementation
Transparent over
loading of system
libraries implementing
file/sockets operations
across the Grid

Users decompose
applications into
client/server parts,
and connect them
using GridRPC calls
Users identify
components and
assemble them
through channels to
build process
networks

Source code
conventions;
proxy-based wrapping
Source code
conventions; bytecode
instrumentation
enabling recursive
method calls to be
spawnable

The user must specify
the interface of
his/her executable in
SIDL

Globus-wrappered
binary executable

Globus-wrappered
binary executable

Binary executable
interfaced through a
JES Web Service
Multi-threaded,
aspect-enhanced Java
application

Globus-wrappered
binary executable
(component)

Client- and server-side
binary executables

Binary executable
(process)

Active object

Single-threaded,
parallel Java
application

Binary executable
interfaced through an
application manager

Web Services;
Globus

Web Services;

Globus; NWS; MPI

SOAP-based Web
Services; Globus

Aspect]

Globus; GridFTP

Globus; GridRPC

SOAP-based Web
Services; RMI

Ibis

Web Services

Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

Copyright © 2007 John Wiley & Sons, Ltd.

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

544

C. MATEOS, A. ZUNINO AND M. CAMPO S &E

No (GEMLCA, GRASG,

/ Griddles, XCAT)
Modify

source Structure only (GridAspecting, PAGIS)

code? \
Yes ——— Compilation units only (GrADS, Proactive, Satin)

Structure and
compilation units (Ninf-G)

Figure 10. Application re-engineering taxonomy.

components exposing and invoking services through well-defined interfaces. However, in both
cases, the user code originating these tasks and components practically remains unchanged. In
general, this procedure makes the appearance of the original application significantly different
from that of the Grid-aware application, but the pure implementation code is practically the
same. In other words, even though the code within compilation units may slightly change, the
focus of structure modification is on redesigning the application rather than on rewriting it (i.e.
internally modify methods/procedures).

Structure modification is a very common approach to gridification among template-based Grid
programming frameworks. With these frameworks, the user adapts the structure of his/her
application to a specific template implementing a recurring execution pattern defined by the
framework. For example, JaSkel [44] is a Java framework for developing parallel applications
that provides a set of abstract classes and a skeleton catalog, which implements interac-
tion paradigms such as farm, pipeline, divide-and-conquer and heartbeat templates. Another
example is MW [42], a framework based on the popular master—worker paradigm for parallel
programming.

Compilation units only: Conversely, other approaches alter only some compilation units of the
application. For instance, Proactive and Satin require the developer to modify certain methods
within the application to make them compliant to a specific coding convention. But, in both
cases, the class hierarchy of the application is barely modified. A taxonomy of gridification
techniques for single compilation units is presented in the next subsection.

Examples of compilation unit modification are commonly found in the context of distributed
programming. For instance, this technique is frequently employed when a single-machine Java
application is adapted to using a distributed object technology such as RMI or CORBA. Some
of the (formerly local) objects are explicitly distributed on different machines and looked up
by adding specific API calls inside the application code. However, the behavioral relation-
ships between those distributed objects do not change. Similar examples can also be found in
distributed procedural programming using technologies such as MPI or RPC.

Structure and compilation units: Of course, gridification methods may also modify both the
structure and compilation units of the application. For example, Ninf-G demands the developer
to split an application into client- and server-side parts and then to modify the client so as to
remotely interact with the server(s). Note that the internal structure of the application changes
dramatically, since a single server part may contain a code combining the functions originally
placed at different compilation units. Overall, not only is the ordinary application refactored
by creating many separate programs, but also several modifications to some of the original
functions are introduced.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556

DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 545

Intuitively, the first technique enables the user to perform modifications at a higher level of abstrac-
tion than the second one. Users are not required to provide code for using Grid functionality and
deal with Grid details but have to change the application shape. As a consequence, the application
logic is not significantly affected after gridification. In principle, the most undesirable technique is
by far to modify the structure and compilation units of an application, since not only the application
shape but also the nature of its code are changed. However, it is very difficult to determine whether
a technique is better than the others, as the amount of effort necessary to gridify an application
with either of the three approaches depends on its complexity/size, the amount/type of modifica-
tions imposed by the gridification method for restructuring and/or rewriting the application, the
programming language, and the particular Grid setting and underlying technologies being used for
application execution.

6.2. Compilation unit modification

The compilation unit modification taxonomy determines how applications are altered following
gridification with respect to modification of their compilation units. As shown in Figure 11, we can
broadly identify the following categories:

e [Instruction insertion: The most intuitive way to gridify is, as its name indicates, by manually

inserting instructions implementing specific Grid functionality at proper places within the
code. A case of instruction insertion arises in GrADS when the user wishes to explicitly
control application migration and data staging. A clear advantage of this technique is that the
programmer can optimize his/her application at different levels of granularity to produce a
very efficient Grid application. However, in most cases, the application logic is literally mixed
up with Grid-related code, thus making maintainability, legibility, testing and portability to
different Grid platforms very hard.
There are many Grid middlewares that require users to employ instruction insertion when
gridifying compilation units. For example, JavaSymphony [67] is a programming model, the
purpose of which is to simplify the development of performance-oriented, object-based Grid
applications. It provides a semi-automatic execution model that deals with migration, paral-
lelism and load balancing of applications, and at the same time allows the programmer to
control—uvia instruction insertion—such features as needed. Other examples are Javelin 3.0 [68]
and GridWay [69], two platforms for deployment and execution of CPU-intensive applica-
tions which require users to modify applications in order to exploit job checkpointing and
parallelization.

No (GEMLCA, GridAspecting, GRASG,

/ Griddles, PAGIS, XCAT)
Modify

compilation Instruction insertion (GrADS)

units? \
Yes ——— Call replacement (Ninf-G)

Coding conventions (Proactive, Satin)

Figure 11. Compilation unit modification taxonomy.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

546

C. MATEOS, A. ZUNINO AND M. CAMPO S &E

Call replacement: A very common technique to gridify compilation units is by replacing certain
groups of sequential instructions by appropriate calls to the underlying middleware API. Such
instructions may range from operations for carrying out interprocess communication to coding
for manipulating data. Unlike the previous case, call replacement places more emphasis on
replacing certain pieces of conventional code by the Grid-aware code instead of inserting new
instructions throughout the user application.

Call replacement assumes that users know what portions of their code should be replaced in
order to adapt it for running on a particular Grid middleware. Nevertheless, in order to help
users in doing this task, Grid middlewares usually offer guidelines tutoring users on how to
port their applications. For instance, gridifying with the Globus platform involves replacing
socket-based communication code by calls to the Globus I/O library, transforming conven-
tional data copy/transfers operations by GridFTP operations, and finally replacing all resource
discovery instructions (e.g. for obtaining available execution nodes) by calls to the MDS
service.

Clearly, call replacement is a form of gridification suitable for users who are familiar with
the target middleware API. Users not having a good understanding of the particular API to
be used may encounter difficulty in porting their applications to the Grid. Another drawback
of the approach is that the resulting code is highly coupled with a specific Grid API, thus
having many of the problems suffered by instruction insertion. These issues are partially solved
by toolkits that attempt to offer a comprehensive, higher-level programming API on top of
middleware-level APIs (e.g. Java CoG Kit, GAT). However, developers are forced to learn yet
another programming API. Indeed, Grid toolkits help alleviate developer pain caused by call
replacement, but certainly they are not the cure.

Coding conventions: This technique is based on the idea that all the compilation units of an
ordinary application must obey certain conventions about their structure and coding style prior
to gridification. These conventions allow tools to properly transform a gridified application
into one or more middleware-level execution units. For example, Proactive requires application
classes to extend the Java Serializable interface. Moreover, Satin requires that the result of any
invocation to a recursive method is placed on a variable, rather than accessing it directly (e.g.
pass it on as an argument to another method). Unlike instruction insertion and call replacement,
the gridified code is in general not tied to any specific Grid API or library.

To provide an illustrative example in the context of conventional software, we could cite
JavaBeans [70], a widely known specification from Sun that defines conventions for writing
reusable software components in Java. In order to operate as a JavaBean, a class must follow
conventions about method naming and behavior. This, in turn, enables easy graphical reuse
and composition of JavaBeans to create complex applications with little implementation
effort.

It is worth pointing out that using any of the above techniques does not automatically exclude from
using the others. In fact, they usually complement each other. For example, Satin, despite being
focused on gridifying by imposing coding conventions, requires programmers to coordinate several
calls to a spawnable computation within a method by explicitly inserting special synchronizing
instructions. Furthermore, it is unlikely that an application that has been adapted to use a specific
Grid API (e.g. GridFTP in the case of Ninf-G) will not include user-provided instructions for
performing some API initialization or disposal tasks.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556

DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 547

6.3. Gridification granularity

Granularity is a software metric that attempts to quantify the size of the individual components™* that
make up a software system. Large components (i.e. those including much functionality) are
commonly called coarse-grained, whereas those components providing little functionality are
usually called fine-grained. For example, with Service-oriented Architectures (SOA) [71], appli-
cations are built in terms of components called services. In this context, component granularity is
determined by the amount of functionality exposed by services, which may range from small (e.g.
querying a database) to big (e.g. a facade service to a travel business).

Notwithstanding granularity being usually associated with the size of application components
from a user’s point of view, the concept can also be applied to get an idea of how granular
the runtime components of a gridified application are. We define gridification granularity as
the granularity of the individual components that constitute an executing gridified application
from the point of view of the Grid middleware. Basically, these Grid-enabled components are
execution units like jobs or tasks to which the Grid directly provides scheduling and execu-
tion services. Note that ‘conventional’ granularity does not necessarily determine gridification
granularity. Clearly, this is because the former is concerned with the size of the components
before an application is transformed to run on a Grid setting. For example, during gridification, a
single coarse-grained service might be partitioned into several more granular services to achieve
scalability.

Similar to conventional granularity, gridification granularity takes continuous values ranging from
the smallest to the largest possible component size. As shown in the taxonomy of Figure 12, we
divided the spectrum of gridification granularities into three discrete values:

e Coarse-grained: A running application is composed of a number of ‘heavy’ execution units.
Typically, the application execution is handled by only one runtime component. This level of
granularity usually results from employing solutions such as GEMLCA, GRASG, GriddLes
and XCAT, which adapt the executable of an ordinary application to be executed as a single
Grid-aware job. At runtime, a job behaves like a ‘black box’ that receives a pre-determined set
of input parameters (e.g. numerical values, files, etc.), performs some computation and returns
the results back to the executor. A similar case occurs with compiled versions of applications
gridified with GrADS.

Coarse—grained (GEMLCA, GrADS, GRASG,
Griddles, Proactive, XCAT)

Gg:gjr']fllﬁgﬂg,n —— Medium-grained (GridAspecting, Ninf-G, PAGIS)

Fine—grained (Satin)

Figure 12. Gridification granularity taxonomy.

**The term ‘component’ refers to any single piece of software included in a larger system and should not be confused with
the basic building blocks of the component-based programming model.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

548 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

Coarse-grained gridification granularity suffers from two major problems. On the one hand,
the application is treated by the middleware as a single execution unit. Therefore, unless
refactored, it may not be possible for the individual resource-consuming parts of a running
application to take advantage of mechanisms such as distribution, parallelization or scheduling
to achieve higher efficiency. On the other hand, the middleware sees a running application as
an indivisible unit of work. As a consequence, some of its portions that might be dynamically
reused by other Grid applications (e.g. a data mining algorithm) cannot be discovered or
invoked.

To a lesser extent, Proactive applications can also be considered as coarse grained. An ordinary
Java application (i.e. its main class and helper classes) is gridified by transforming it into a self-
contained active object. The user sees the non-gridified application as composed of a number
of (medium-grained) objects. On the other hand, Proactive sees the gridified application as one
big (active) object. When executing the application, the Proactive runtime performs scheduling
and distribution activities on active objects rather than on plain objects. Nevertheless, Proactive
is more flexible than the other approaches in this category, since it allows developers to
explicitly manage mobility inside an active object, invoke methods from other active objects
and externalize the methods implemented by an active object.

e Medium-grained: The running application has a number of execution units of moderate gran-
ularity. Systems following this approach are GridAspecting, Ninf-G and PAGIS. In the former
and latter cases, the user identifies those tasks within the application code that can be executed
concurrently. Then, they are mapped by the middleware to semi-granular runtime task objects.
Similarly, a running Ninf-G application is composed of several IDL-interfaced processes that
are distributed across a network. Unlike GridAspecting and PAGIS, this approach affords an
opportunity for dynamic component invocation, as a Ninf-G application might perform calls
to the functions exposed by the components of another Ninf-G application.

e Fine-grained: This category represents the gridification granularity associated with runtime
components generated on the invocation of a method/procedure. A representative case of fine-
grained granularity is Satin. Basically, a middleware-level task is created after every single
call to a spawnable method, regardless of whether calls are recursive or not. From the appli-
cation point of view, there is a better control of parallelism and asynchronism. However, a
running application may generate a large number of tasks that should be handled efficiently
by the underlying middleware. This fact suggests the need for a runtime support providing
sophisticated execution services smart enough to efficiently deal with task scheduling and
synchronization issues.

It is worth noting that, in some cases, the user may indirectly adjust (e.g. by refactoring code) the
gridification granularity to fit specific application needs. For example, a set of medium-grained
tasks could be grouped into one bigger task in order to reduce communication and synchronization
overhead. Conversely, the functionality performed by a task could be decomposed into one or more
tasks to achieve better parallelism. Nonetheless, this process can be cumbersome and sometimes
counterproductive. For example, Proactive applications can be restructured by turning standard
objects into active objects, but then the programmer must explicitly provide the code for handling
active object lookup and coordination. Similarly, gridification granularity of Ninf-G applications
can be reduced by increasing the number of server-side programs. However, this could cause the
application to spend more time communicating than doing useful computations.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 549

Infrastructure resources only ___—> Scavenger

GEMLCA, GrADS, GRASG,
— (Ninf—G, Satin) > Non-scavenger

Yes
/ \ Infrastructure resources _____— Intra—application linking

Resource and Grid applications
harvesting (Griddles, Proactive, XCAT) ~— —— Extra—application linking

\ No (GridAspecting, PAGIS)

Figure 13. Resource-harvesting taxonomy.

6.4. Resource harvesting

The resource harvesting taxonomy describes, in a general way, the kind of Grid resources to which
access is made transparent by each gridification method. The utmost goal of Grid Computing, as
explained at the beginning of this article, is to virtualize distributed resources so that they can
be transparently used and consumed by ordinary applications. Certainly, gridification tools play a
fundamental role in achieving such a transparency. The resource-harvesting taxonomy is depicted
in Figure 13.

Surprisingly, some gridification methods do not pursue resource virtualization. Specifically, solu-
tions such as GridAspecting or PAGIS aim at preserving the integrity of the application logic during
gridification and make them independent of a specific Grid platform or middleware. In this way,
users have the flexibility to choose the runtime support or middleware that better suits their needs.
However, as these approaches do not offer facilities for using Grid services, the burden of providing
the ‘glue’ code for interacting with the Grid is entirely placed on the application developer, which
clearly demands a lot of programming effort.

Most gridification methods, however, provide some form of Grid resource leveraging, along
with a minimal or even no effort from the application developer. Basically, these are integrated
solutions that offer services for gridifying ordinary applications as well as accessing Grid resources.
Depending on the type of resource they attempt to virtualize, these methods can be further classified
as follows:

e Infrastructure resources only: Applications resulting from applying the gridification process
are not concerned with providing services to other Grid applications. Applications are
simply ported to the Grid to transparently leverage middleware-level services (e.g. resource
brokering, load balancing, mobility, scheduling, parallelization, storage management, etc.)
that virtualize and enhance the capabilities of computational resources such as processing
power, storage, bandwidth, etc. Moreover, some approaches are more focused on harnessing
idle CPU power (the so-called ‘scavengers’; GrADS, Ninf-G, Satin), whereas others also
include simple abstractions and easy-to-use services to deal with data management on the
Grid (GEMLCA, GRASG). In any case, the emphasis is put solely on taking advantage of
Grid resources, rather than on using Grid services and services implemented by other Grid
applications.

o Infrastructure resources and Grid applications: The goal of these approaches is to simplify
the consumption of both Grid services and functionality offered by gridified applications.
At the middleware level, gridified applications are treated just like any other individual Grid

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

550 C. MATEOS, A. ZUNINO AND M. CAMPO S &E
Table II. Comparison between gridification tools leveraging both Grid resources and applications.
Interface Communication Application

Tool description protocol discovery
GriddLeS Implicit (file-based) Sockets No

Proactive Explicit (WSDL) SOAP Yes (lookup by active object

identifier)
XCAT Explicit (WSDL) SOAP or XML-based implicit No
notification

resource: an entity providing special capabilities that can be used/consumed by other appli-
cations by means of specialized Grid services. Note that this is a desirable property for a
gridification tool, since reusing existing Grid applications may improve application modularity
and drastically reduce development effort [72].

Linking together Grid applications requires the underlying middleware to provide, in prin-
ciple, mechanisms for communicating applications. These mechanisms may range from
low-level communication services such as those implemented by GriddLes to high-level,
interoperable messaging services like SOAP. In addition, mechanisms are commonly provided
to describe the interface of a gridified application in terms of the internal services that are
made accessible to the outside, and also to discover existing Grid applications. For example,
popular technologies for describing and discovering Grid applications are WSDL [73]
and UDDI [74], respectively. Table II briefly compares the tools that support application
linking by showing how they deal with application interface description, communication and
discovery.

There are basically two forms to connect applications: extra-application and intra-application.
In the extra-application approach, existing Grid applications can be reused by combining and
composing them into a new application. For example, XCAT conceives gridified applications
as being indivisible components that can be combined—with little coding effort—into a bigger
application, but no binding actions are ever carried out from inside any of these components.
Another example of a gridification tool following this approach is GMarte [75], a high-level
Java API that offers an object-oriented view on top of Globus services. With GMarte, users
can compose and coordinate the execution of existing binary codes by means of a (usually
small) new Java application. On the other hand, in the intra-application linking approach, users
are not required to implement a new ‘container’ application, since binding to existing Grid
applications is performed within the scope of a client application. GriddleS and Proactive are
examples of approaches based on intra-application linking.

Gridification approaches oriented towards consuming Grid resources are engaged in finding ways
to make the task of porting applications to use Grid services easier. On the other hand, approaches
seeking to effortlessly take advantage of Grid resources and existing applications generalize this
idea by providing a unified view over Grid resources in which applications not only consume
but also offer Grid services. It is important to note that this approach shares many similarities
with the service-oriented model, where applications may act both as clients and as providers of
services. In fact, many global Grid standards, such as OGSA and WSREF, have already embodied
the convergence of SOA and Grid Computing technologies.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556

DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 551

7. DISCUSSION

Table III summarizes the approaches discussed so far. Each cell of the table corresponds to the
taxonomic value associated with a particular tool (row) with respect to each of the taxonomies
presented in the previous section.

There are approaches that let users to gridify applications without modifying a single line of
code. Solutions belonging to this category take the application in their binary form, along with some
user-provided configuration (e.g. input and output parameters and resource requirements), and wrap
the executable code with a software entity that isolates the complex details of the underlying Grid.
It is important to note that this approach has both advantages and disadvantages. On the one hand,
the user does not need to have a good expertise on Grid technologies to gridify his/her applications.
Besides, applications can be plugged into the Grid even when the source code is not available. On
the other hand, the approach results in extremely coarse-grained gridified applications; thus, users
generally cannot control the execution of their applications in a fine-grained manner. This represents
a clear tradeoff between ease of gridification and flexibility to control the various runtime aspects
of a gridified application.

A remarkable result of the survey is the diversity of programming models existing among the
analyzed tools: procedural and message passing (GrADS), AOP (GridAspecting, PAGIS), workflow-
oriented (GriddLes), RPC (Ninf-G), component-based (PAGIS, Proactive, XCAT), object-oriented
(Proactive, Satin), just to name a few. This evidences the absence of a widely adopted program-
ming model for the Grid, in contrast to other distributed environments (e.g. the Web) where
well-established models for implementing applications are found [76].

Another interesting result is the way in which technologies such as Java, Web Services and
Globus have influenced the development of gridification tools within the Grid. Specifically, many
of the surveyed tools are based on Java or rely on Web Services, and almost all of them either
build on top of Globus or provide some integration with it. Nevertheless, this result should not

Table III. Summary of gridification approaches.

Application Compilation unit Gridification Resource

Tool re-engineering modification granularity harvesting

GEMLCA No No Coarse grained Grid resources

GrADS Yes (compilation units Instruction insertion Coarse grained Grid resources
only)

GRASG No No Coarse grained Grid resources

GridAspecting Yes (structure only) No Medium grained No

GriddLeS No No Coarse grained Grid resources and

applications

Ninf-G Yes (structure and Call replacement Medium grained Grid resources
compilation units)

PAGIS Yes (structure only) No Medium grained No

Proactive Yes (compilation units ~ Code conventions Coarse grained Grid resources and
only) applications

Satin Yes (compilation units ~ Code conventions Fine grained Grid resources
only)

XCAT No No Coarse grained Grid resources and

applications

Copyright © 2007 John Wiley & Sons, Ltd.

Softw. Pract. Exper. 2008; 38:523-556

DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

552 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

be surprising for several reasons. Java has been widely recognized as an excellent choice for
implementing distributed applications mainly because of its ‘write once, run anywhere’ philosophy,
which promotes platform independence. Web Services technologies enable high interoperability
across the Grid by providing a layer that abstracts clients and Grid services from network-related
details such as protocols and addresses. Lastly, Globus—baptized by Ian Foster as the ‘Linux of
the Grid’—has become the de facto standard toolkit for implementing Grid middlewares, since it
provides a continuous evolving and robust API for common low-level Grid functionalities, such as
resource discovery and monitoring, job execution and data management.

8. CONCLUSIONS

Grid Computing enables users to effortlessly take advantage of the vast amounts and types of
computational resources available on the Grid by simply plugging applications into it. However,
given the extremely heterogeneous, complex nature inherent in the Grid, adapting applications to
run on a Grid setting has been widely recognized as a very difficult task. So comes the challenge to
provide appropriate methods to gridify applications, that is, semi-automatic and automatic methods
for transforming conventional applications to benefit from Grid resources. In this sense, a number of
gridification approaches have been proposed in an attempt to reality to catch up with this ambitious
dream.

Unfortunately, current approaches to gridification cope only with a subset of the problems that
are essential to truly achieving gridification, while not addressing the others. Ideally, ordinary
applications should be made Grid-aware without the need for manual code refactoring, modification
or adaptation. Besides reducing development effort, this would enable even the most novice Grid
users to quickly and easily put their applications to run on the Grid. Similarly, users should also be
able to take advantage of Grid resources and existing Grid applications with little, or eventually non-,
coding effort. Last but not least, the gridification process should also take into account the runtime
characteristics of the applications being gridified to provide mechanisms by which users can easily
adjust the granularity of application components so as to produce Grid-aware applications that can
be efficiently executed. Consequently, there is a need for new approaches capable of effectively
coping with all these issues.

Recently, SOAs have appeared as an elegant approach to tackle down some of the problems
suffered by current gridification methods. SOAs provide the basis for loose coupling: interacting
applications that know little about each other in the sense that they discover the necessary informa-
tion to use external services (protocols, interfaces, location, etc.) in a dynamic fashion. This frees
developers from explicitly providing a code for connecting applications together and accessing
resources from within an application. Moreover, SOAs enable application modularity, interoper-
ability, reusability and various application granularities. As a matter of fact, it is not clear where
to draw the line between Grid Services and Web Services technologies [18]. Furthermore, current
Grid standards are actively promoting the use of SOAs and Web Services for materializing the next
generation architectures and middlewares for the Grid [72].

Finally, although the analysis in this paper has been explicitly centered around the notion of
gridification as the process of transforming the source code of an application to run on the Grid, an
aspect that deserves special attention is the amount of configuration that may be necessary to truly
make this transformation happen. In a broader sense, gridifying an application is concerned not only

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 553

with making conventional source code Grid-aware but also with supplying some Grid-dependent
configuration in order to run the adapted application, which usually ranges from application-specific
parameters (e.g. expected execution time and memory usage) to deployment information (e.g.
number of nodes to use). Sadly, this demands developers’ knowing in advance of many platform-
related details before an application can take advantage of Grid services.

As gridification methods evolve, difficulties in gridifying ordinary applications seem to move
from adapting source code to configuring and deploying Grid-aware applications. For example,
this fact is evident in those approaches (e.g. GEMLCA, GRASG, XCAT) where code modification
is not required but deployment becomes difficult. Nevertheless, the problem of simplifying the
deployment of Grid applications has been acknowledged by some of the current gridification tools.
For instance, a Proactive application can be executed on several Internet-connected machines by
configuring and launching the application at a single location. Another incipient work towards this
end can be found in [77], a middleware with the goal of easing both programming and deployment
of conventional Java applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful comments and suggestions to improve the quality of the
paper.

REFERENCES

—_

. Foster I, Kesselman C (eds.). The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann: San Francisco,

CA, U.S.A,, 2003.

2. Foster 1. The grid: Computing without bounds. Scientific American 2003; 288(4):78-85.

3. Foster I, Kesselman C, Tuecke S. The anatomy of the Grid: Enabling scalable virtual organization. The International
Journal of High Performance Computing Applications 2001; 15(3):200-222.

4. Sarmenta LFG, Hirano S. Bayanihan: Building and studying volunteer computing systems using Java. Future Generation
Computer Systems, Special Issue on Metacomputing 1999; 15(5-6):675-686.

5. Distributed.net. The distributed.net project. http://www.distributed.net [20 July 2007].

6. Folding@home. The folding@home project. http://folding.stanford.edu/ [20 July 2007].

7. Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: An experiment in public-resource computing.
Communications of the ACM 2002; 45(11):56-61.

8. Loewe L. Evolution@home: Observations on participant choice, work unit variation and low-effort global computing.
Software—Practice and Experience 2007; DOI: 10.1002/spe.806.

9. Natrajan A, Humphrey MA, Grimshaw AS. The Legion support for advanced parameter—space studies on a Grid. Future
Generation Computer Systems 2002; 18(8):1033-1052.

10. Thain D, Tannenbaum T, Livny M. Condor and the Grid. Grid Computing: Making the Global Infrastructure a Reality,
Berman F, Fox G, Hey A (eds.). Wiley: New York, NY, U.S.A., 2003; 299-335.

11. Foster I. Globus toolkit version 4: Software for service-oriented systems. IFIP International Conference on Network and
Parallel Computing, vol. 3779. Springer: Berlin, 2005; 2—13.

12. Chien A, Calder B, Elbert S, Bhatia K. Entropia: Architecture, performance of an enterprise desktop Grid system.
Journal of Parallel and Distributed Computing 2003; 63(5):597-610.

13. Levine D, Wirt M. Interactivity with scalability: Infrastructure for multiplayer games. The Grid 2: Blueprint for a New
Computing Infrastructure, Foster I, Kesselman C (eds.). Morgan Kaufmann: Los Altos, CA, 2003; 167-178.

14. Sun Microsystems. Sun nl grid engine 6. http://www.sun.com/software/gridware/ [20 July 2007].

15. OGSA-WG. Defining the Grid: A roadmap for OGSA standards. http://www.gridforum.org/documents/GFD.53.pdf
[20 July 2007].

16. OASIS Consortium. Web services resource framework (WSRF)—primer v1.2. committee draft 02.
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf [20 July 2007].

17. Vaughan-Nichols SJ. Web services: Beyond the hype. Computer 2002; 35(2):18-21.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

554 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

18.

Stockinger H. Defining the Grid: A snapshot on the current view. Journal of Supercomputing 2007; DOI: 10.1007 /s11227-
006-0037-9.

19. Foster 1. What is the Grid? a three point checklist. Grid Today 2002; 1(6).

20. Taylor 1J. From P2P to web services and Grids: Peers in a client/server world. Computer Communications and Networks.
Springer: Berlin, 2005.

21. Chetty M, Buyya R. Weaving computational Grids: How analogous are they with electrical Grids? Computing in Science
and Engineering 2002; 4(4):61-71.

22. Bal H, Casanova H, Dongarra J, Matsuoka S. Application-level tools. The Grid 2: Blueprint for a New Computing
Infrastructure, Foster 1, Kesselman C (eds.). Morgan Kaufmann: Los Altos, CA, 2003; 463-489.

23. Kielmann T, Merzky A, Bal H, Baude F, Caromel D, Huet F. Grid application programming environments. Future
Generation Grids. Springer: Berlin, 2006; 286—306.

24. Baker M, Buyya R, Laforenza D. Grids and Grid technologies for wide-area distributed computing. Software—Practice
and Experience 2002; 32(15):1437-1466.

25. Venugopal S, Buyya R, Ramamohanarao K. A taxonomy of data Grids for distributed data sharing, management, and
processing. ACM Computing Surveys 2006; 38(1):1-53.

26. Krauter K, Buyya R, Maheswaran M. A taxonomy and survey of Grid resource management systems for distributed
computing. Software—Practice and Experience 2002; 32(2):135-164.

27. CERN. The GridCafé project. http://gridcafe.web.cern.ch/gridcafe/ [20 July 2007].

28. Arnold A, Gosling A. The Java Programming Language. Addison-Wesley: Reading, MA, U.S.A., 1996.

29. GRIDS Laboratory. The GridBus project. http://www.gridbus.org [20 July 2007].

30. Foster I, Kesselman C. Concepts and architecture. The Grid 2: Blueprint for a New Computing Infrastructure, Foster I,
Kesselman C (eds.). Morgan Kaufmann: Los Altos, CA, 2003; 37-63.

31. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek R, Sunderam V. PVM Parallel Virtual Machine, A User’s Guide
and Tutorial for Networked Parallel Computing. MIT Press: Cambridge, MA, 1994.

32. Dongarra J, Walker D. MPI: A standard message passing interface. Supercomputer 1996; 12(1):56—68.

33. Bryan Downing T. Java RMI: Remote Method Invocation. IDG Books Worldwide: Foster City, CA, U.S.A., 1998.

34. Karonis N, Toonen B, Foster I. MPICH-G2: A Grid-enabled implementation of the message passing interface. Journal
of Parallel and Distributed Computing 2003; 63(5):551-563.

35. Nakada H, Matsuoka S, Seymour K, Dongarra J, Lee C, Casanova H. A GridRPC model and API for end-user
applications. Technical Report, GridRPC Working Group, July 2005.

36. Johnson RE. Frameworks = (components + patterns). Communications of the ACM 1997; 40(10):39-42.

37. Codenie W, De Hondt K, Steyaert P, Vercammen A. From custom applications to domain-specific frameworks.
Communications of the ACM 1997; 40(10):71-77.

38. Globus Alliance. The Java CoG kit. http://wiki.cogkit.org/index.php/Java_-CoG_Kit [20 July 2007].

39. Allen G, Davis K, Dolkas KN, Doulamis ND, Goodale T, Kielmann T, Merzky A, Nabrzyski J, Pukacki J, Radke T,
Russell M, Seidel E, Shalf J, Taylor I. Enabling applications on the Grid: A GridLab overview. International Journal
of High Performance Computing Applications, Special issue on Grid Computing: Infrastructure and Applications 2003;
17(4):449-466.

40. Allen G, Davis K, Goodale T, Hutanu A, Kaiser H, Kielmann T, Merzky A, van Nieuwpoort RV, Reinefeld A, Schintke F,
Schott T, Seidel E, Ullmer B. The Grid application toolkit: Towards generic and easy application programming interfaces
for the Grid. Proceedings of the IEEE 2005; 93:534-550.

41. Goodale T, Jha S, Kaiser H, Kielmann T, Kleijer P, von Laszewski G, Lee C, Merzky A, Rajic H, Shalf J. SAGA: A
simple API for Grid applications—high-level application programming on the Grid. Computational Methods in Science
and Technology 2006; 20(1):7-20.

42. Goux J-P, Kulkarni S, Linderoth J, Yoder M. An enabling framework for master—worker applications on the computational
Grid. IEEE International Symposium on High Performance Distributed Computing (HPDC’00), Pittsburgh, PA, U.S.A.
IEEE Computer Society: Silver Spring, MD, 2000; 43-50.

43. Berman F, Wolski R, Casanova H, Cirne W, Dail H, Faerman M, Figueira S, Hayes J, Obertelli G, Schopf J, Shao G,
Smallen S, Spring N, Su A, Zagorodnov D. Adaptive computing on the Grid using AppLeS. IEEE Transactions on
Farallel Distributed Systems 2003; 14(4):369-382.

44. Ferreira JF, Sobral JL, Proenca AJ. JaSkel: A Java skeleton-based framework for structured cluster and Grid computing.
Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID’06), Washington,
DC, U.S.A. IEEE Computer Society: Silver Spring, MD, 2006; 301-304.

45. Ho Q, Ong Y, Cai W. Gridifying aerodynamic design problem using GridRPC. Grid and Cooperative Computing—GCC
2003 (Lecture Notes in Computer Science, vol. 3032), Li M, Sun X, Deng Q, Ni J (eds.). Springer: Berlin, 2003; 83-90.

46. Wang B, Xu Z, Xu C, Yin Y, Ding W, Yu H. A study of gridifying scientific computing legacy codes. Grid and
Cooperative Computing—GCC 2004 (Lecture Notes in Computer Science, vol. 3251), Jin H, Pan Y, Xiao N, Sun J
(eds.). Springer: Berlin, 2004; 404-412.

47. Kolano PZ. Facilitating the portability of user applications in grid environments. Distributed Applications and Interoperable
Systems, 4th IFIP WG6.1 International Conference (Lecture Notes in Computer Science, vol. 2893), Stefani J, Demeure IM,
Hagimont D (eds.). Springer: Berlin, 2003; 73-85.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556

DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

S &E A SURVEY ON APPROACHES TO GRIDIFICATION 555

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

73.

Delaittre T, Kiss T, Goyeneche A, Terstyanszky G, Winter S, Kacsuk P. GEMLCA: Running legacy code applications
as Grid services. Journal of Grid Computing 2005; 3(1-2):75-90.

Kacsuk P, Sipos G. Multi-Grid, multi-user workflows in the P-GRADE Grid portal. Journal of Grid Computing 2005;
3(3-4):221-238.

Vadhiyar S, Dongarra J. Self adaptability in Grid computing. Concurrency and Computation: Practice and Experience
(Special Issue on Grid Performance) 2005; 17(2-4):235-257.

Wolski R, Spring N, Hayes J. The network weather service: A distributed resource performance forecasting service for
metacomputing. Future Generation Computer Systems 1999; 15(5-6):757-768.

Ho Q, Hung T, Jie W, Chan H, Sindhu E, Ganesan S, Zang T, Li X. GRASG—A framework for ‘gridifying’ and
running applications on service-oriented Grids. Sixth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2006). IEEE Computer Society: Silver Spring, MD, 2006; 305-312.

W3C Consortium. SOAP version 1.2 part 0: Primer. W3C Recommendation. http://www.w3.org/TR/soap12-part0/
[20 July 2007].

Allcock B, Bester J, Bresnahan J, Chervenak AL, Foster I, Kesselman C, Meder S, Nefedova V, Quesnel D, Tuecke S.
Data management and transfer in high-performance computational Grid environments. Journal of Parallel Computing
2002; 28(5):749-771.

Maia PHM, Mendonca NC, Furtado V, Cirne W, Saikoski K. A process for separation of crosscutting Grid concerns.
Proceedings of the ACM Symposium on Applied Computing, New York, NY, U.S.A. ACM Press: New York, 2006;
1569-1574.

Kiczales G, Lamping J, Menhdhekar A, Maeda C, Lopes C, Loingtier J, Irwin J. Aspect-oriented programming,
Proceedings of the 11th European Conference on Object-oriented Programming, vol. 1241, Aksit M, Matsuoka S (eds.).
Springer: Berlin, Heidelberg, New York, 1997; 220-242.

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W. Getting started with Aspect]. Communications of
the ACM 2001; 44(10):59-65.

Kommineni J, Abramson D. GriddLeS enhancements and building virtual applications for the Grid with legacy components.
Advances in Grid Computing—EGC 2005 (Lecture Notes in Computer Science, vol. 3470), Sloot PMA, Hoekstra AG,
Priol T, Reinefeld A, Bubak M (eds.). Springer: Berlin, 2005; 961-971.

Takemiya H, Shudo K, Tanaka Y, Sekiguchi S. Constructing grid applications using standard grid middleware. Journal
of Grid Computing 2003; 1(2):117-131.

Pope AL. The CORBA Reference Guide: Understanding the Common Object Request Broker Architecture. Addison-
Wesley: Boston, MA, U.S.A., 1998.

Webb D, Wendelborn AL. The PAGIS Grid application environment. International Conference on Computational Science
(Lecture Notes in Computer Science, vol. 2659), Sloot PMA, Abramson D, Bogdanov AV, Dongarra J, Zomaya AY,
Gorbachev YE (eds.). Springer: Berlin, 2003.

Baduel L, Baude F, Caromel D, Contes A, Huet F, Morel M, Quilici R. Programming, deploying, composing, for the
Grid. Grid Computing: Software Environments and Tools. Springer: Berlin, 2006; 205-229.

van Nieuwpoort RV, Maassen J, Kielmann T, Bal HE. Satin: Simple and efficient Java-based Grid programming. Scalable
Computing: Practice and Experience 2005; 6(3):19-32.

van Nieuwpoort RV, Maassen J, Wrzesinska G, Hofman R, Jacobs C, Kielmann T, Bal HE. Ibis: A flexible and
efficient Java based Grid programming environment. Concurrency and Computation: Practice and Experience 2005;
17(7-8):1079-1107.

Gannon D, Krishnan S, Fang L, Kandaswamy G, Simmhan Y, Slominski A. On building parallel and Grid applications:
Component technology and distributed services. Cluster Computing 2005; 8(4):271-277.

Armstrong R, Gannon D, Geist A, Keahey K, Kohn S, Mcinnes L, Parker S, Smolinski B. Toward a common component
architecture for high-performance scientific computing. /EEE International Symposium on High Performance Distributed
Computing. IEEE Computer Society: Silver Spring, MD, 1999; 115-124.

Jugravu A, Fahringer T. JavaSymphony, a programming model for the Grid. Future Generation Computer Systems 2005;
21(1):239-247.

Neary MO, Cappello P. Advanced eager scheduling for Java-based adaptive parallel computing. Concurrency and
Computation: Practice and Experience 2005; 17(7-8):797-819.

Huedo E, Montero RS, Llorente IM. A framework for adaptive execution in Grids. Software—Practice and Experience
2004; 34(7):631-651.

Englander R. Developing Java Beans. O’Reilly & Associates, Inc.: Sebastopol, CA, U.S.A., 1997.

Huhns MN, Singh MP. Service-oriented computing: Key concepts and principles. IEEE Internet Computing 2005;
9(1):75-81.

Atkinson M, DeRoure D, Dunlop A, Fox G, Henderson P, Hey T, Paton N, Newhouse S, Parastatidis S, Trefethen A,
Watson P, Webber J. Web service Grids: An evolutionary approach: Research articles. Concurrency and Computation:
Practice and Experience 2005; 17(2—4):377-389.

W3C Consortium. Web services description language (wsdl) version 2.0 part 1: Core language. W3C Candidate
Recommendation. http://www.w3.org/TR/wsd120/ [20 July 2007].

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556

DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

556 C. MATEOS, A. ZUNINO AND M. CAMPO S &E

74. OASIS Consortium. Uddi version 3.0.2. UDDI Spec Technical Committee Draft. http://uddi.org/pubs/uddi_v3.htm
[20 July 2007].

75. Alonso JM, Herndndez V, Molt6 G. GMarte: Grid middleware to abstract remote task execution. Concurrency and
Computation: Practice and Experience 2006; 18(15):2021-2036.

76. Johnson R. J2EE development frameworks. Computer 2005; 38(1):107-110.

77. Mateos C, Zunino A, Campo M. JGRIM: An approach for easy gridification of applications. Future Generation
Computer Systems: The International Journal of Grid Computing: Theory, Methods and Applications 2007; DOI:
10.1016/j.future.2007.04.011.

Copyright © 2007 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 38:523-556
DOI: 10.1002/spe

85UB0 1 SUoWWOD 8AITE8ID 3|qeal|dde sy Aq peussnob afe seppiie O 8sn Jo S| 10} ARIqIT 8UIUO /8|1 UO (SUOTIPUOD-PUe-SLBIW0Y" A3 | I Aelg 1 BU1|UO//:ScL) SUONIPUOD pue swie 1 8y 8eS *[Z0z/TT/92] uo Ariqiauliuo A8|iMm ‘ssuoiefinssau| ap feuoioeN oksuod 13DINOD Aq /¥89ds/z00T 0T/I0p/woo’ 8| im Akelq 1 put|uo//sdny wiolj pspeo|umod ‘S ‘8002 ‘X#Z0L60T

